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Abstract: The Bernoulli Numbers are a sequence of rational numbers applied
in various mathematics fields and can be written as a limit with t tending toward
zero applied to the nth derivative of the function t/

(

et − 1
)

. From this result,
the Bernoulli Numbers are written in terms of the Eulerian Numbers. From
sucessives derivatives of the function t/

(

et − 1
)

the Eulers Triangle is obtained
and a second triangle which allow to construct a limit to represent Bernoulli
Numbers using Eulerian Numbers.
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1. Introduction

In 1303 the chinese mathematician Zhu Shijie constructed a matrix of numbers,
arranged in the shape of a triangle, from which one can draw several interesting
numerical relations. Three hundred and fifty years after is published Traite

du triangle arithmetique by Blaise Pascal, which again is treated exactly the
same triangle of numbers discovered by Zhu Shijie. This triangle of numbers
nowadays is better knowm as Pascal’s Triangle. The work Katsuyo Sampo, due
to the japanese mathematician Takakazu Seki Kowa, published posthumously
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in the year 1712, presents a sequence of numbers that plays an important role
in several mathematics branches. In 1713 the work Ars Conjectandi, due to the
swiss mathematician Jacob Bernoulli, appears again the sequence of numbers
discovered by Seki Kowa, in Chapter 3 can be find some of these numbers,
written as A = 1/6, B = −1/30, C = 1/42 and D = −1/30.

The sequence of numbers discovered by Seki Kowa and Jacob Bernoulli
is called Bernoulli Numbers, the first nine numbers are: B0 = 1, B1 ± 1/2,
B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, B7 = 0 and B8 = −1/30.

The Bernoulli Numbers can be obtained, for example, from Pascal’s Triangle
and one of its main applications refers to one of the greatest mathematical
challenge of the seventeenth century, called “The Problem of Basel which was
to determine the exact value of the infinite series:

1 +
1

4
+

1

9
+

1

25
+ · · ·+

1

n2
+ · · · . (1)

Leonhard Euler, presented a more general solution to this problem consid-

ering the case
∞
∑

n=1

1
n2k and summarized in the expression

ζ (2k) =
(−1)k−1 22k−1π2k

(2k)!
B2k. (2)

Here B2k exactly corresponds to the pairs Bernoulli Numbers.

2. Analysis of Derivative dn

dtn
t

et−1

Definition 2.1. The Bernoulli polynomials comprise a sequence of poly-
nomials {Bn (x)}

∞
n=0, which have the following properties:

B0 (x) = 1,

d

dx
Bn (x) = nBn−1 (x) ,

∫ 1

0
Bn (x) dx = 0, for n ≥ 1.

The numbers obtained for Bn (0), with n = 0,1, 2, . . ., are called Bernoulli
Numbers. The generating functions commonly used to describe the the Bernoulli
Numbers and the Bernoulli polynomials are respectively given by

∞
∑

n=0

Bn

tn

n!
=

t

et − 1
(3)



A LIMIT TO REPRESENT BERNOULLI NUMBERS... 591

and
∞
∑

n=0

Bn (x)
tn

n!
=

tetx

et − 1
. (4)

To confirm the result (3) we can expand the right side using Taylor series,
which yields:

t

et − 1
= lim

a→0

a

ea − 1
+ lim

a→0

[(

d

da

a

ea − 1

)

(t− a)

1!

]

+ lim
a→0

[

(

d2

da2
a

ea − 1

)

(t− a)2

2!

]

+ lim
a→0

[

(

d3

da3
a

ea − 1

)

(t− a)3

3!

]

+ · · · .

In the case where a is equal to zero we have a MacLaurin series, but if
we make a tend to zero at a/ (ea − 1) we have an undetermined limit, which
implies the use of the L’Hopital rule. Thus, we have that:

lim
a→0

a

ea − 1
= 1,

lim
a→0

(

d

da

a

ea − 1

)

= −
1

2
,

lim
a→0

(

d2

da2
a

ea − 1

)

=
1

6
,

lim
a→0

(

d3

da3
a

ea − 1

)

= 0,

lim
a→0

(

d4

da4
a

ea − 1

)

= −
1

30
.

With these results and the expression (3) we find:

∞
∑

n=0

Bn

tn

n!
= B0

t0

0!
+B1

t1

1!
+B2

t2

2!
+B3

t3

3!
+B4

t4

4!
+ . . . (5)

and knowing that

t

et − 1
= 1−

1

2

t

1!
+

1

6

t2

2!
+ 0

t3

3!
−

1

30

t4

4!
+ . . . (6)

We can then conclude that the Bernoulli Numbers can be expressed using
the following limit:

Bn = lim
t→0

(

dn

dtn
t

et − 1

)

. (7)
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Figure 1 shows the behavior of some derivatives of the function f (t) =
t/

(

et − 1
)

near the Bernoulli Numbers. The first column of Figure 1 shows the
function, the second column have the graphs shown in the interval [−10, 10] and
the third column have been changed to reduced intervals to visualize the behav-
ior of the function next to the Bn corresponding. We can observe the fluctuation
of functions representing those derivatives of t/

(

et − 1
)

near, respectively, to
the three first Bernoulli Numbers B0 = 1, B1 = −1/2 and B2 = 1/6. Con-
sidering some of the derivatives of t/

(

et − 1
)

and rewriting the numerator such
that we have first the terms containing tet and then the terms containing et,
we have the following results:

d0

dt0
t

et − 1
=

t

et − 1
,

d

dt

t

et − 1
=

−tet + et − 1

(et − 1)2
,

d2

dt2
t

et − 1
=

te2t + tet − 2e2t + 2et

(et − 1)3
,

d3

dt3
t

et − 1
=

−te3t − 4te2t − tet + 3e3t − 3et

(et − 1)4
,

d4

dt4
t

et − 1
=

te4t + 11te3t + 11te2t + tet − 4e4t − 12e3t + 12e2t + 4et

(et − 1)5
,

d5

dt5
t

et − 1
=

−te5t − 26te4t − 66te3t − 26te2t − tet + 5e5t + 50e4t − 50e2t − 5et

(et − 1)6
.
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Figure 1: Graphs of derivatives of t/
(

et − 1
)

at different intervals.

We can observe that the nth derivative of the function t/
(

et − 1
)

can be
represented as follows:

dn

dtn
t

et − 1
=

n
∑

i=1
cite

n−(i−1)t +
n
∑

i=1
die

n−(i−1)t

(et − 1)n+1 . (8)

Thus, we have the sum of the terms containing the product ten−(i−1)t given
by:

n
∑

i=1

cite
n−(i−1)t = c1te

nt + c2te
(n−1)t + c3te

(n−2)t + . . .+ cnte
t, (9)

in the case that we have only exponential portions en−(i−1)t the sum may be
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represented as:

n
∑

i=1

die
n−(i−1)t = d1e

nt + d2e
(n−1)t + d3e

(n−2)t + . . .+ dne
t. (10)

From the results obtained, can be seen that in the case of ci coefficients, we
have the following relations:

|c1| =|cn| = 1,

|c2| =|cn−1|,

|c3| =|cn−2|,

...

Here —ci— describes the absolute value of the coefficient ci.
In the first derivative of t/

(

et − 1
)

the numerator is equal to −tet + et − 1
and is the only case in which we have a constant, in this case −1, which is not
multiplied by en−(i−1)t or ten−(i−1)t where n − (i− 1) 6= 0. This symmetry of
values can also be observed in the case of coefficients di, allowing writing when
n ≥ 3, that:

|d1| =|dn| = n,

|d2| =|dn−1|,

|d3| =|dn−2|,

...

Here —di— describes the absolute value of the coefficient di.
When the order n of the derivative is odd and n ≥ 3 we can verify that

dn+1

2

= 0. Another feature that can also be extract is the fact that di is multiple

of n.
From the derivatives of of t/

(

et − 1
)

we can construct a matrix containing
only the signals, obtained from each of the portions of the numerators, shown
in Table 1.

In Table 1, the first columns shows the order of the derivative of t/
(

et − 1
)

,
lines contain only the signals of the numerators, for example, the fourth-order
derivative is:

(

te4t + 11te3t + 11te2t + tet − 4e4t − 12e3t + 12e2t + 4et
)

/
(

et − 1
)5
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Table 1: Matrix of signals of the numerator coefficients in the derivatives
of t/

(

et − 1
)

such that the signals of the coefficients ci and di, are given by +,+,+,+,−,−,+
and +. On the line that corresponds to the first derivative, the last signal
belongs to the constant −1. The signals from the numerators of the coefficients
obtained from derivatives of the function t/

(

et − 1
)

, can be obtained for n ≥ 2
using the expression:

n
∑

i=1

(−1)n
[

t+ sgn

(

n+ 1

2
− i

)]

eit, (11)

being sgn (x) the sign function given by:

sgn (x) =











1, x > 0

0, x = 0

−1, x < 0.

Using the steps above and knowing that the sequence of signals for the

coefficients c
(n)
i and d

(n)
i can be obtained from the expression (11), with results

presented in Tables 2 and 3. The numbers presented in Table 2 are called
Eulerian Numbers and the matrix formed by these numbers is called Euler’s
Triangle. A numeric matrix presented in Table 3 is built from the Euler’s
Triangle.

In Tables 2 and 3 we have that
∣

∣

∣
c
(n)
i

∣

∣

∣
and

∣

∣

∣
d
(n)
i

∣

∣

∣
represents, respectively, the

absolute value of the coefficient ci and di from the nth derivative of the function
t/

(

et − 1
)

.
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3. Limit Representation of Bn using En,m

Definition 3.1. The numbers En,m of orderings (1, 2, 3, . . . , n) with in-
creasing m sequences are called Eulerian Numbers and obtained by the expre-
sion:

En,m =
m
∑

k=1

(−1)m−k

(

n+ 1
m− k

)

kn,m = 1, 2, 3, . . . (12)

Proposition 3.1. Let Bn a Bernoulli Number and En,m a Eulerian Num-
ber, we have that Bn can be represented from En,m through the following limit:

Bn = lim
t→0

∑n
i=1 (−1)n [tEn,i + n (En−1,i − En−1,i−1)] e

it

(et − 1)n+1 , n > 1. (13)

Proof. From the results obtained in the previous section we can write the
nth derivative of the function t/

(

et − 1
)

as follows:

dn

dtn
t

et − 1
=

∑n
i=1 (−1)n

[

cit+ disgn
(

n+1
2 − i

)]

eit

(et − 1)n+1 (14)

knowing that in expression (12) when m is zero we have En,0 = 0 and in (14)
making the substitutions

ci = En,i (15)

and

disgn

(

n+ 1

2
− i

)

= n (En−1,i − En−1,i−1) , (16)

enables the construction of the following expression for the nth derivative of
the function t/

(

et − 1
)

:

dn

dtn
t

et − 1
=

∑n
i=1 (−1)n [tEn,i + n (En−1,i − En−1,i−1)] e

it

(et − 1)n+1 , n > 1 (17)

from where the result (13) follows.

Example. Consider the Bernoulli number B14 which is equal to 7/6, using
the expression (13) we have the following result:

B14 = lim
t→0

∑14
i=1 (−1)14 [tE14,i + n (E14−1,i − E14−1,i−1)] e

it

(et − 1)14+1

= lim
t→0

∑14
i=1 (−1)14

[

t
∑m

k=1 (−1)m−k

(

14 + 1
m− k

)

k14+

(et − 1)14+1
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+14

(

∑m
k=1 (−1)m−k

(

14 − 1 + 1
m− k

)

k14−1+

(et − 1)14+1

−
∑m

k=1 (−1)m−1−k

(

14− 1 + 1
m− 1− k

)

k14−1

)]

eit

(et − 1)14+1 .

yielding B14 =
7
6 .
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