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Abstract. Orthogonal moments are recognized as useful tools for object
representation and image analysis. It has been shown that the recently
developed discrete orthogonal moments have better performance than
the conventional continuous orthogonal moments. In this paper, a new
set of discrete orthogonal polynomials, namely Hahn polynomials, are in-
troduced. The related Hahn moment functions defined on this orthogonal
basis set are investigated and applied to image reconstruction. In exper-
iments, the Hahn moments are compared with the other two discrete
orthogonal moments: Chebyshev and Krawtchouk moments. The simu-
lation results show that the Hahn moment-based reconstruction method
is superior to the other two discrete orthogonal moment-based methods.

1 Introduction

Moments and functions of moments have been widely used in pattern recognition
[1],[2], image analysis [3], [4], [5], object representation [6], edge detection [7], [8]
and texture analysis [9]. Examples of moment-based feature descriptors include
the geometric moments, rotational moments, orthogonal moments and complex
moments.

Orthogonal moments defined in terms of a set of orthogonal basis are of-
ten preferred due greatly to its ability to represent images with the minimum
amount of information redundancy. Moment-based image reconstruction was pi-
oneered by Teague who noted that image can be reconstructed from a set of
orthogonal moments [3]. Since then, successive studies on orthogonal moments
such as Legendre moment and Zenike moments for image reconstruction have

� This work was supported by the National Basic Research Program of China under
grant No. 2003CB716102 and the National Natural Science Foundation of China
under grant No. 60272045.

M. Kamel and A. Campilho (Eds.): ICIAR 2005, LNCS 3656, pp. 524–531, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Image Analysis by Discrete Orthogonal Hahn Moments 525

been extensively addressed in [4] and [5]. However, these moments usually in-
volve several major problems such as the numerical approximation of continuous
integrals, coordinate space transformation, high computational costs and etc.

Recently, a set of discrete orthogonal moment functions based on discrete
orthogonal polynomials, Chebyshev polynomials [10] and Krawtchouk polyno-
mials [11] have been successfully introduced as alternatives to continuous orthog-
onal moments. The discrete orthogonal moments hold most of useful features em-
bedded in the continuous orthogonal moments. Moreover, the implementation
of discrete orthogonal moments does not require any numerical approximation
since the basis set is orthogonal in the discrete domain of image coordinate space.
Therefore, the accuracy of image reconstruction can be expectably better than
the conventional continuous orthogonal moments.

In this paper, we will introduce a new set of discrete orthogonal moment
functions which are characterized with the discrete orthogonal Hahn polynomi-
als [12]. The resultant Hahn moment has most similar features to the Cheby-
shev and Krawtchouk moments, but it may outperform both the Chebyshev
and Krawtchouk moments. The rest of paper is organized as follows: In Sect.
2, we introduce Hahn polynomials and the related Hahn moments, then briefly
describe the computational aspects of the Hahn moments. In Sect. 3 we give out
the experimental results. Finally, we conclude the paper.

2 Hahn Polynomials and Moments

2.1 Hahn Polynomials

For any integer x ∈ [0, N − 1](N is a given positive integer), Hahn polynomial
of order n, n = 0, 1, ..., N − 1, is defined as [12],

h(µ,ν)
n (x, N) = (N + ν − 1)n(N − 1)n

×
n∑

k=0

(−1)k (−n)k(−x)k(2N + µ + ν − n − 1)k

(N + ν − 1)k(N − 1)k

1
k!

, (1)

where (a)k = a · (a + 1) · · · (a + k − 1) = Γ (a+k)
Γ (a) is the Pochhammer symbol

and µ, ν (µ > −1, ν > −1) are adjustable parameters controlling the shape
of polynomials. The discrete Hahn polynomials satisfy the following orthogonal
condition:

N−1∑

x=0

ρ(x)h(µ,ν)
m (x, N)h(µ,ν)

n (x, N) = d2
nδmn, 0 ≤ m, n ≤ N − 1, (2)

where δmn denotes the Dirac function, ρ(x) is so-called weighting function which
is given by

ρ(x) =
1

Γ (x + 1)Γ (x + µ + 1)Γ (N + ν − x)Γ (N − n − x)
(3)

and the square norm d2
n has the following expression
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d2
n =

Γ (2N + µ + ν − n)
(2N + µ + ν − 2n− 1)Γ (N + µ + ν − n)

× 1
Γ (N + µ − n)Γ (N + ν − n)Γ (n + 1)Γ (N − n)

. (4)

To avoid numerical fluctuations in moment computation, we usually scale the
Hahn polynomials by utilizing the square norm and the weighting function, i.e.,

h̃(µ,ν)
n (x, N) = h(µ,ν)

n (x, N)

√
ρ(x)
d2

n

, n = 0, 1, ..., N − 1. (5)

Therefore, the orthogonal property of normalized Hahn polynomials can be de-
scribed as

N−1∑

x=0

h̃(µ,ν)
m (x, N)h̃(µ,ν)

n (x, N) = δmn, 0 ≤ m, n ≤ N − 1. (6)

2.2 Hahn Moments of Image

Given a digitalized image f(x, y) with size N ×N , the (m + n)th order of Hahn
moment of image is

Hmn =
N−1∑

x=0

N−1∑

y=0

f(x, y)h̃(µ,ν)
m (x, N)h̃(µ,ν)

n (y, N), m, n = 0, 1, ..., N − 1. (7)

Using (6), Eq.(7) leads to the following inverse moment transform

f(x, y) =
N−1∑

m=0

N−1∑

n=0

Hmnh̃(µ,ν)
m (x, N)h̃(µ,ν)

n (y, N). (8)

It indicates that the image can be completely reconstructed by calculating its
discrete orthogonal moments up to order 2N − 2. This property makes the dis-
crete orthogonal moments superior to the conventional continuous orthogonal
moments. If moments are limited to an order M , we can approximate f by f̂

f̂(x, y) =
M∑

m=0

M∑

n=0

Hm−n,nh̃
(µ,ν)
m−n(x, N)h̃(µ,ν)

n (y, N), x, y = 0, 1, ..., N − 1. (9)

2.3 Computational Aspects

Using (1) and (5), the zero-order and first-order normalized Hahn polynomials
can be easily calculated, i.e.,

h̃
(µ,ν)
0 (x, N) =

√
ρ(x)
d2
0

, (10)
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h̃
(µ,ν)
1 (x, N) =

{
(N + ν − 1)(N − 1) − (2N + µ + ν − 2)x

}√
ρ(x)
d2
1

. (11)

Higher orders polynomials can be deduced from the following recursive relations,

Ah̃(µ,ν)
n (x, N) = B

√
d2

n−1

d2
n

h̃
(µ,ν)
n−1 (x, N) + C

√
d2

n−2

d2
n

h̃
(µ,ν)
n−2 (x, N),

n = 2, 3, ..., N − 1, (12)

where

A = − n(2N + µ + ν − n)
(2N + µ + ν − 2n + 1)(2N + µ + ν − 2n)

, (13)

B = x− 2(N − 1) + ν − µ

4
− (µ2 − ν2)(2N + µ + ν)

4(2N + µ + ν − 2n + 2)(2N + µ + ν − 2n)
, (14)

C =
(N − n + 1)(N − n + µ + 1)(N − n + ν + 1)(N − n + µ + ν + 1)

(2N + µ + ν − 2n + 2)(2N + µ + ν − 2n + 1)
. (15)

Equations (10)-(15) can be used to efficiently calculate the normalized Hahn
moment of any order. Also the weighting function ρ(x) can be solved by using
the recursive relation with respect to x, i.e.,

ρ(x) =
(N − x)(N + ν − x)

x(x + µ)
ρ(x − 1), x = 1, 2, ..., N − 1, (16)

with
ρ(0) =

1
Γ (µ + 1)Γ (N + ν)Γ (N − n)

. (17)

To extract the image moment set {Hmn}(0 ≤ m, n ≤ N − 1), we can simply
use the following matrix notation,

H = HT
x f Hy (18)

where f denotes the N × N image matrix and

Hx =
[
h̃

(µ,ν)
0 (x, N), h̃

(µ,ν)
1 (x, N), · · · , h̃

(µ,ν)
N−1(x, N)

]T

,

Hy =
[
h̃

(µ,ν)
0 (y, N), h̃

(µ,ν)
1 (y, N), · · · , h̃

(µ,ν)
N−1(y, N)

]T

and

h̃(µ,ν)
n (x, N) =

[
h̃

(µ,ν)
n (0, N), h̃

(µ,ν)
n (1, N), · · · , h̃

(µ,ν)
n (N − 1, N)

]T

,

n = 0, 1, ..., N − 1. (19)

Similarly, the inverse reconstruction procedure can be represented as

f = Hx H HT
y (20)
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Fig. 1. Test images. The left is binary image of Chinese character (size: 48 × 48) and

the right is the standard gray image of Lena (size: 96 × 96).

To approximate the image with limited moments of order up to M , we need
only to compute

H̃x =
[
h̃

(µ,ν)
0 (x, N), h̃

(µ,ν)
1 (x, N), · · · , h̃

(µ,ν)
M (x, N)

]T

,

H̃y =
[
h̃

(µ,ν)
0 (y, N), h̃

(µ,ν)
1 (y, N), · · · , h̃

(µ,ν)
M (y, N)

]T

and then yield the moment matrix H using (18). The approximation of image,
say f̂ , can be solved by the analogous way as shown in (20).

Noticed that the normalized Hahn polynomials are unavoidably related to
weighting function ρ(x). For the case of image reconstruction, we usually expect
that the Hahn polynomials are symmetric (odd or even) with respect to the
center point (x, y) = (N/2, N/2) (suppose N is even). As a result, we require
the same values for both µ and ν. For the sake of simplicity, we choose µ = ν = 0.

3 Experimental Results

To evaluate the performance of image reconstruction using Hahn moments, we
have selected several test images including the binary image and the gray level
image (shown in Fig. 1). Reconstruction results are compared with those us-
ing Chebyshev and Krawtchouk moments. Noisy images are also considered
to analyze the noise sensitivity of these different moment-based reconstruction
methods.

The mean square error (MSE) is used as the fidelity criteria measuring the
resemblance between the reconstructed images and the original one. It can be
defined by

MSE =
||f − f∗||2
||f∗||2 (21)

where || · || is the standard Euclidean norm and f∗ represents the original image
vector and f the reconstructed image vector.

Fig. 2 shows reconstructions using three different discrete orthogonal mo-
ments and the corresponding MSE comparison through the reconstruction pro-
cedure is depicted in Fig. 3. We observe that the reconstruction based on Hahn
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Fig. 2. Reconstructions using Chebyshev moments (first row), Krawtchouk moments

(second row, p = 0.5 [11]) and Hahn moments (third row, µ = ν = 0). The orders from

the left column to the right are 8, 16, 24, 32 and 47 respectively.
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Fig. 3. Comparisons of the binary image reconstruction results

Fig. 4. Reconstructions using Gaussian noise-contaminated binary image where the

maximum order is all fixed at 30. From left column to right column are: original images,

noisy images, and reconstructions using Chebyshev, Krawtchouk (p = 0.5 [11]), Hahn

moments (µ = ν = 0) respectively. The noise variance in the first row is 0.1 and the

second row 0.3.

moment function may outperform the other two types of discrete orthogonal
moments.

In Fig. 4, we test the noise robustness of different orthogonal moments. Gaus-
sian noises with different variances have been added to the original binary image
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Fig. 5. Noisy binary image reconstruction MSE comparison where Gaussian noise with

zero mean, variance: the left 0.1 and the right 0.3

(a) MSE: 0.1164 (b) MSE: 0.0830 (c) MSE: 0.0762

Fig. 6. Reconstructions of image Lena using (a) Chebyshev moments, (b) Krawtchouk

moments (p = 0.5 [11]) and (c) Hahn moments (µ = ν = 0) respectively. Moments up

to order 75 are used.

of Chinese character. All of the reconstructions have been normalized to binary
values with the same threshold 0.5. The MSE’s shown in Fig. 5 again indicate
the better performance of Hahn moments even if the image is contaminated with
slightly large variance Gaussian noise. In Fig. 5, we can see that the increasing
order moment may inversely degrade the image when image signal-to-noise rate
(SNR) is relatively low.

Fig. 6 shows the approximation of gray level image. Clearly, the Hahn mo-
ment based method can yield slightly lower MSE than the other two orthogonal
moments. It may indicate the best performance of discrete orthogonal Hahn
moments in image reconstruction.

4 Conclusions

In this paper, we have introduced a new set of discrete orthogonal polynomials,
namely Hahn polynomials. The corresponding Hahn moment functions defined
on this basis set were then investigated and applied to image reconstruction. In
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experimental studies, we have compared our Hahn moment based reconstruc-
tion method with the other two discrete orthogonal moments, Chebyshev and
Krawtchok moments based method. The results have shown the best perfor-
mance of Hahn moment based method.
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