The Linear Algebra of the Generalized Pascal Matrix

Zhang Zhizheng
Department of Mathematics
Luoyang Teachers' Colleage
Luoyang, Henan, 471022
P.R. China

Submitted by Richard A. Brualdi

ABSTRACT

This paper discusses three kinds of generalized Pascal matrix, and generalizes the results of R. Brawer and M. Pirovino. © Elsevier Science Inc., 1997

Let x be any nonzero real number. The generalized Pascal matrix of the first kind, $P_{n}[x]$, is defined as (see [1])

$$
P_{n}(x ; i, j)=x^{i-j}\binom{i}{j}, \quad i, j=0, \ldots, n
$$

with

$$
\binom{i}{j}=0 \quad \text { if } \quad j>i .
$$

Further we define the $(n+1) \times(n+1)$ matrices $I_{n}, S_{n}[x]$, and $D_{n}[x]$ by

$$
\begin{aligned}
I_{n} & =\operatorname{diag}(1,1, \ldots, 1), \\
S_{n}(x ; i, j) & = \begin{cases}x^{i-j} & \text { if } j \leqslant i, \\
0 & \text { if } j>i,\end{cases} \\
D_{n}(x ; i, i) & =1 \quad \text { for } i=0, \ldots, n, \\
D_{n}(x ; i+1, i) & =-x \quad \text { for } i=0, \ldots, n-1, \\
D_{n}(x ; i, j) & =0 \quad \text { if } j>i \text { or } j<i-1 .
\end{aligned}
$$

It is easy to see that

Lemma 1.

$$
\begin{aligned}
S_{n}[x] & =D_{n}^{-1}[x], \\
P_{n}^{-1}[x] & =P_{n}[-x] .
\end{aligned}
$$

Example.

$$
\begin{aligned}
& S_{2}[x] D_{2}[x]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
x & 1 & 0 \\
x^{2} & x & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-x & 1 & 0 \\
0 & -x & 1
\end{array}\right]=I_{2}, \\
& P_{3}\lfloor x] P_{3}[-x]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & 1 & 0 & 0 \\
x^{2} & 2 x & 1 & 0 \\
x^{3} & 3 x^{2} & 3 x & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-x & 1 & 0 & 0 \\
x^{2} & -2 x & 1 & 0 \\
-x^{3} & 3 x^{2} & -3 x & 1
\end{array}\right]=I_{3} .
\end{aligned}
$$

Furthermore we need the matrices

$$
\begin{aligned}
\bar{P}_{k}[x] & =\left[\begin{array}{cc}
1 & 0^{T} \\
0 & P_{k}[x]
\end{array}\right] \in R^{(k+2) \times(k+2)}, \quad k \geqslant 0, \\
G_{k}[x] & =\left[\begin{array}{cc}
I_{n-k-1} & 0 \\
0 & S_{k}[x]
\end{array}\right] \in R^{(n+1) \times(n+1)}, \quad k=1, \ldots, n-1,
\end{aligned}
$$

and $G_{n}[x]=S_{n}[x]$.

Lemma 2.

$$
S_{k}[x] \bar{P}_{k-1}[x]=P_{k}[x] \quad \text { for } \quad k \geqslant 1
$$

Proof. The (i, j) element of $\bar{P}_{k-1}[x]$ is

$$
\binom{i-1}{j-1} x^{i-j} \quad(i, j=1,2, \ldots, k)
$$

or $1(i=0, j=0)$, or $0(i \neq 0, j=0)$ or $(i=0, j \neq 0)$.
Let $S_{k}[x] \bar{P}_{k-1}[x]=\left(C_{k}(x ; i, j)\right)$. Obviously, $C_{k}(x ; i, 0)=x^{i-0} \quad(i=$ $0,1,2, \ldots, n)$ and $C_{k}(x ; i, j)=0(i<j)$. When $i>j$, we have

$$
\begin{aligned}
C_{k}(x ; i, j) & =\sum_{h=0}^{k} x^{i-h}\binom{h-1}{j-1} x^{h-j} \\
& =\left[\sum_{h=0}^{i}\binom{h-1}{j-1}\right] x^{h-j}=\binom{i}{j} x^{i-j}
\end{aligned}
$$

Thus, $S_{k}[x] \bar{P}_{k-1}[x]=P_{k}[x]$.

Example.

$$
\begin{aligned}
S_{3}[x] \bar{P}_{2}[x] & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & 1 & 0 & 0 \\
x^{2} & x & 1 & 0 \\
x^{3} & x^{2} & x & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & x & 1 & 0 \\
0 & x^{2} & 2 x & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & 1 & 0 & 0 \\
x^{2} & 2 x & 1 & 0 \\
x^{3} & 3 x^{2} & 3 x & 1
\end{array}\right] .
\end{aligned}
$$

An immediate consequence of Lemma 2 and the definition of the $G_{k}[x]$'s is

Theorem 1. The generalized Pascal matrix of first kind, $P_{n}[x]$, can be factorized by the summation matrices $G_{k}[x]$:

$$
\begin{equation*}
P_{n}[x]=G_{n}[x] G_{n-1}[x] \cdots G_{1}[x] . \tag{1}
\end{equation*}
$$

Example.

$$
\begin{aligned}
P_{3}[x] & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & 1 & 0 & 0 \\
x^{2} & 2 x & 1 & 0 \\
x^{3} & 3 x^{2} & 3 x & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & 1 & 0 & 0 \\
x^{2} & x & 1 & 0 \\
x^{3} & x^{2} & x & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & x & 1 & 0 \\
0 & x^{2} & x & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & x & 1
\end{array}\right] .
\end{aligned}
$$

For the inverse of the generalized Pascal matrix of the first kind, $P_{n}[x]$, we get

$$
\begin{aligned}
P_{n}^{-1}[x] & =G_{1}^{-1}[x] G_{2}^{-1}[x] \cdots G_{n}^{-1}[x] \\
& =F_{1}[x] F_{2}[x] \cdots F_{n}[x]
\end{aligned}
$$

with

$$
F_{k}[x]=G_{k}^{-1}[x]=\left[\begin{array}{cc}
I_{n-k-1} & 0 \\
0 & D_{k}[x]
\end{array}\right], \quad k=1, \ldots, n-1,
$$

and

$$
F_{n}[x]=G_{n}^{-1}[x]=D_{n}[x] .
$$

Using Lemma 1, we have

Theorem 2.

$$
\begin{equation*}
P_{n}^{-1}[x]=P_{n}[-x]=F_{1}[x] F_{2}[x] \cdots F_{n}[x] . \tag{2}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
P_{n}^{-1}[x]=P_{n}[-x]=J_{n} P_{n}[x] J_{n}, \tag{3}
\end{equation*}
$$

where

$$
J_{n}=\operatorname{diag}\left(1,-1,1, \ldots,(-1)^{n}\right) \in R^{(n+1) \times(n+1)} .
$$

Equation (3) represents the well-known inverse relation

$$
x^{n-k} \delta_{n, k}=\sum_{j=k}^{n}(-1)^{j+k} x^{n-j}\binom{n}{j} x^{j-k}\binom{j}{k}
$$

that is,

$$
\delta_{n, k}=\sum_{j=k}^{n}(-1)^{j+k}\binom{n}{j}\binom{j}{k} \quad(\text { see }[3])
$$

We define the generalized Pascal matrix of the second kind, $Q_{n}[x]$, as

$$
Q_{n}(x ; i, j)=x^{i+j}\binom{i}{j}, \quad i, j=0, \ldots, n
$$

Similarly, we define the $(n+1) \times(n+1)$ matrices $M_{n}[x], N_{n}[x]$ by

$$
\begin{aligned}
& M_{n}(x ; i, j)= \begin{cases}x^{i+j} & \text { if } j \leqslant i, \\
0 & \text { if } j>i,\end{cases} \\
& N_{n}(x ; i, i)=\frac{1}{x^{i+j}} \quad \text { for } \quad i=0, \ldots, n, \quad x \neq 0, \\
& N_{n}(x ; i+1, i)=\frac{1}{(-x)^{i+j}} \quad \text { for } \quad i=0, \ldots, n-1, \quad x \neq 0, \\
& N_{n}(x ; i, j)=0 \quad \text { if } \quad j>i \text { or } j<i-1 .
\end{aligned}
$$

It is easy to see that

Lemma 3.

$$
\begin{aligned}
M_{n}[x] & =N_{n}^{-1}[x] \\
Q_{n}^{-1}[x] & =Q_{n}\left[-\frac{1}{x}\right] .
\end{aligned}
$$

Example.

$M_{3}[x] N_{3}[x]=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ x & x^{2} & 0 & 0 \\ x^{2} & x^{3} & x^{4} & 0 \\ x^{3} & x^{4} & x^{5} & x^{6}\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -\frac{1}{x} & \frac{1}{x^{2}} & 0 & 0 \\ 0 & -\frac{1}{x^{3}} & \frac{1}{x^{4}} & 0 \\ 0 & 0 & -\frac{1}{x^{5}} & \frac{1}{x^{6}}\end{array}\right]=I_{3}$,
$Q_{3}[x] Q_{3}\left[-\frac{1}{x}\right]$

$$
=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & x^{2} & 0 & 0 \\
x^{2} & 2 x^{3} & x^{4} & 0 \\
x^{3} & 3 x^{4} & 3 x^{5} & x^{6}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-\frac{1}{x} & \frac{1}{x^{2}} & 0 & 0 \\
\frac{1}{x^{2}} & -\frac{2}{x^{3}} & \frac{1}{x^{4}} & 0 \\
-\frac{1}{x^{3}} & \frac{3}{x^{4}} & -\frac{3}{x^{5}} & \frac{1}{x^{6}}
\end{array}\right]=I_{3} .
$$

By the definition of $\bar{P}_{k}[x]$, we get

Lemma 4.

$$
M_{k}[x] \bar{P}_{k-1}\left[\frac{1}{x}\right]=Q_{k}[x] \quad \text { for } k \geqslant 1
$$

Proof. Let $M_{k}[x] \bar{P}_{k-1}[1 / x]=\left(C_{k}(x ; i, j)\right)$; then $C_{k}(x ; i, 0)=x^{i} \quad(i=$ $0, \ldots, k)$ and $C_{k}(x ; i, j)=0(i<j)$. When $i>j$ we have

$$
\begin{aligned}
C_{k}(x ; i, j) & =\sum_{h=0}^{k} x^{i+h}\binom{h-1}{j-1} \frac{1}{x^{n-j}} \\
& =\sum_{h=0}^{i}\binom{h-1}{j-1} x^{i+j}=\binom{i}{j} x^{i+j}
\end{aligned}
$$

Thus,

$$
M_{k}[x] \bar{P}_{k-1}\left[\frac{1}{x}\right]=Q_{k}[x] .
$$

Example.

$$
M_{3}[x] \bar{P}_{2}\left[\frac{1}{x}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & x^{2} & 0 & 0 \\
x^{2} & x^{3} & x^{4} & 0 \\
x^{3} & x^{4} & x^{5} & x^{6}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{1}{x} & 1 & 0 \\
0 & \frac{1}{x^{2}} & \frac{2}{x} & 1
\end{array}\right]=Q_{3}[x] .
$$

An immediate consequence of Lemma 4 and the definition of the $G_{k}[x]$'s is

Theorem 3. The generalized Pascal matrix of the second kind, $Q_{n}[x]$, can be factorized by the summations $G_{k}[x]$ and $M_{n}[x]$:

$$
Q_{n}[x]=M_{n}[x] G_{n-1}\left[\frac{1}{x}\right] G_{n-2}\left[\frac{1}{x}\right] \cdots G_{1}\left[\frac{1}{x}\right] .
$$

Example.

$$
\begin{aligned}
Q_{3}[x] & =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & x^{2} & 0 & 0 \\
x^{2} & 2 x^{3} & x^{4} & 0 \\
x^{3} & 3 x^{4} & 3 x^{5} & x^{6}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & x^{2} & 0 & 0 \\
x^{2} & x^{3} & x^{4} & 0 \\
x^{3} & x^{4} & x^{5} & x^{6}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \frac{1}{x} & 1 & 0 \\
0 & \frac{1}{x^{2}} & \frac{1}{x} & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \frac{1}{x} & 1
\end{array}\right] .
\end{aligned}
$$

For the inverse of the generalized Pascal matrix of the second kind, $Q_{n}[x]$, we get

$$
\begin{aligned}
Q_{n}^{-1}[x] & =G_{1}^{-1}\left[\frac{1}{x}\right] G_{2}^{-1}\left[\frac{1}{x}\right] \cdots G_{n-1}^{-1}\left[\frac{1}{x}\right] M_{n}^{-1}[x] \\
& =F_{1}\left[\frac{1}{x}\right] F_{2}\left[\frac{1}{x}\right] \cdots F_{n-1}\left[\frac{1}{x}\right] N_{n}[x] .
\end{aligned}
$$

Using Lemma 3, we have

Theorem 4.

$$
Q_{n}^{-1}[x]=Q_{n}\left[-\frac{1}{x}\right]=F_{1}\left[\frac{1}{x}\right] F_{2}\left[\frac{1}{x}\right] \cdots F_{n-1}\left[\frac{1}{x}\right] N_{n}[x] .
$$

In particular

$$
Q_{n}^{-1}[x]=J_{n}^{*} Q_{n}[x] J_{n}^{*}
$$

where $J_{n}^{*}=\operatorname{diag}\left(1,-\frac{1}{x^{2}}, \frac{1}{x^{4}},-\frac{1}{x^{6}}, \ldots,(-1)^{n} \frac{1}{x^{2 n}}\right) \in R^{(n+1) \times(n+1)}$.
We define the symmetric generalized Pascal matrix $R_{n}[x]$ as

$$
R_{n}(x ; i, j)-x^{i+j}\binom{i+j}{j}, \quad i, j-0, \ldots, n
$$

Theorem 5. One has

$$
\begin{aligned}
F_{1}[x] F_{2}[x] \cdots F_{n-1}[x] F_{n}[x] R_{n}[x] & =Q_{n}^{T}[x], \\
F_{1}\left[\frac{1}{x}\right] F_{2}\left[\frac{1}{x}\right] \cdots F_{n-1}\left[\frac{1}{x}\right] N_{n}[x] R_{n}[x] & =P_{n}^{T}[x],
\end{aligned}
$$

and the Cholesky factorization [4] of $R_{n}[x]$ is given by

$$
R_{n}[x]=Q_{n}[x] P_{n}^{T}[x]=P_{n}[x] Q_{n}^{T}[x] .
$$

Proof. Let $Q_{n}[x] P_{n}^{T}[x]=\left(C_{n}(x ; i, j)\right)$. Then

$$
\begin{aligned}
& C_{n}(x ; i, j)=\left\{\begin{array}{l}
\sum_{k=0}^{j}\binom{i}{k}\binom{j}{k} x^{i+j}, \quad i \geqslant j, \\
\sum_{k=0}^{i}\binom{i}{k}\binom{j}{k} x^{i+j}, \quad i<j
\end{array}\right. \\
& \sum_{k=0}^{i}\binom{i}{k}\binom{j}{k}=\sum_{k=0}^{i}\binom{i}{k}\binom{j}{j-k}=\binom{i+j}{j}, \\
& \sum_{k=0}^{j}\binom{i}{k}\binom{j}{k}=\sum_{k=0}^{j}\binom{i}{i-k}\binom{j}{k}=\binom{i+j}{j}
\end{aligned}
$$

(Vandermonde identities). Thus, we have

$$
Q_{n}[x] P_{n}^{T}[x]=R_{n}[x] .
$$

Similarly

$$
P_{n}[x] Q_{n}^{T}[x]=R_{n}[x] .
$$

Example.

$$
\begin{aligned}
R_{3}[x] & =\left[\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
x & 2 x^{2} & 3 x^{3} & 4 x^{4} \\
x^{2} & 3 x^{3} & 6 x^{4} & 10 x^{5} \\
x^{3} & 4 x^{4} & 10 x^{5} & 20 x^{6}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
x & x^{2} & 0 & 0 \\
x^{2} & 2 x^{3} & x^{4} & 0 \\
x^{3} & 3 x^{4} & 3 x^{5} & x^{6}
\end{array}\right]\left[\begin{array}{cccc}
1 & x & x^{2} & x^{3} \\
0 & 1 & 2 x & 3 x^{2} \\
0 & 0 & 1 & 3 x \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Using Lemmas 1 and 3, we have

Theorem 6.

$$
\begin{aligned}
R_{n}^{-1}[x] & =P_{n}^{T}[-x] Q_{n}\left[-\frac{1}{x}\right] \\
& =Q_{n}^{T}\left[-\frac{1}{x}\right] P_{n}[-x] .
\end{aligned}
$$

Using Theorems 2 and 5 , we get

Theorem 7.

$$
\begin{aligned}
R_{n}^{-1}[x] & =J_{n} P_{n}^{T}[x] J_{n} J_{n}^{*} Q_{n}[x] J_{n}^{*} \\
& =J_{n}^{*} Q_{n}^{T}[x] J_{n}^{*} J_{n} P_{n}[x] J_{n} .
\end{aligned}
$$

For the previous three kinds of generalized Pascal matrix, we also can get

Theorem 8.

$$
\begin{aligned}
\operatorname{det} P_{n}[x] & =\operatorname{det} P_{n}^{-1}[x]=1 \\
\operatorname{det} Q_{n}[x] & =x^{n(n+1)} \\
\operatorname{det} Q_{n}^{-1}[x] & =x^{-n(n+1)} \\
\operatorname{det} R_{n}[x] & =\operatorname{det} R_{n}^{-1}[x]=x^{n(n+1)}
\end{aligned}
$$

REFERENCES

1 G. S. Call and D. J. Velleman, Pascal's matrices, Amer. Math. Monthly 100:372-376 (1993).
2 R. Brawer and M. Pirovino, The linear algebra of the Pascal matrix, Linear Algebra Appl. 174:13-23 (1992).
3 J. Riordan, Combinatorial Identities, Wiley, New York, 1968.
4 J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, New York, 1980.

