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Abstract

In this paper, the concept of Riordan array is used to propose three theorems on combina-
torial sums, provided that

∑n
k=j F(n; k)dk;j = ’(n; j). A large number of useful identities tying

together the coe5cients in various combinatorial function expansions are obtained by proving
the equivalence of two combinatorial sums.
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1. Introduction

In 1991, Shapiro et al. [7] examined and further generalized the concept of renewal
array [6] under the name of Riordan array. Recently, Sprugnoli [8,9] used it to obtain
the closed form of many combinatorial sums and generalize the well-known identities
of Abel and Gould.
For sums of hypergeometric terms, an approach was widely studied by Wilf,

Zeilberger and PetkovBsek [5]. Based on Gosper’s algorithm [2], Wilf and Zeilberger
[5,10,11] developed a theory of “WZ-pairs” that allows extremely elegant certiFcation
of the truth of a certain class of combinatorial identities. PetkovBsek [5] developed an
algorithm for deciding whether a given linear recurrence with polynomial coe5cients
has a simple solution as a linear combination of hypergeometric terms. The algorithms

E-mail address: zhaodss@yahoo.com.cn (X. Zhao).

0012-365X/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2003.08.007

mailto:zhaodss@yahoo.com.cn


296 X. Zhao et al. / Discrete Mathematics 281 (2004) 295–307

demonstrated in [5,10,11] give a decision procedure for closed form evaluation of
deFnite hypergeometric summation.
On the contrary, Hsu [4] proposed a method for proving combinatorial identities, in

which two combinatorial sums were certiFed equivalent, irrespective of the fact that
they have a closed form, or not. In the present paper, we try to combine the work of
Shapiro, Sprugnoli and Hsu to propose some summation rules. Lots of useful identities
are developed as some applications of the summation rules.

2. Summation rules and examples

In [8], the Riordan array was deFned as follows:
Let d(t); h(t) be two real functions and d(t) =

∑
k dk t

k ; h(t) =
∑

k hk t
k with h0 �=

0. For a Fxed k, if dn;k = [tn]d(t)(th(t))k ; 06 k6 n, then the inFnite lower triangle
{dn;k} is called a Riordan array and denoted by D= (d(t); h(t)) = {dn;k}. In addition,
fk = [tn]f(t) denotes the coe5cients of tn in the expansion of f(t) in t.

Theorem 1. Let (d(t); h(t)) be a Riordan array, F(n; k) be a bivariate function de7ned
for integers n; k¿ 0 and f(t) =

∑
k¿0 fkt

k . If

n∑
k=j

F(n; k)dk;j = ’(n; j) (1)

then

n∑
k=0

F(n; k)[tk ](g(t)f(th(t))) =
n∑
j=0

fj’(n; j): (2)

Proof. By Theorem 1 in [8], we have

n∑
k=0

F(n; k)[tk ](g(t)f(th(t))) =
n∑
k=0

F(n; k)
k∑
j=0

dk;jfj

=
n∑
j=0

fj
n∑
k=j

F(n; k)dk;j

=
n∑
j=0

fj’(n; j):

Example 1. Let

d(t) = h(t) =
1

1− t ; f(t) =
∑
k¿0

fktk :
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Then

(d(t); h(t)) =
(

1
1− t ;

1
1− t

)
; dn;k =

(
n

k

)
:

Let F1(n; k) = 1. Then
n∑
k=j

F1(n; k)dk;j =
n∑
k=j

(
k

j

)
=

(
n+ 1

j + 1

)
;

and, by Theorem 1, we have
n∑
k=0

[tk ]
(

1
1− t f

(
t

1− t
))

=
n∑
j=0

(
n+ 1

j + 1

)
fj: (3)

For various functions f(t), we may Fnd various identities via (3). For example:
For f(t) = 1=(1− t), by (3), we have

n∑
k=0

2k =
n∑
j=0

(
n+ 1

j + 1

)
:

For f(t) = t=(1− t)2 =∑∞
k=0 kt

k , then

[tk ]
(

1
1− t f

(
t

1− t
))

= [tk ]
t

(1− 2t)2
= k2k−1;

and, by (3), we have
n∑
k=0

k2k−1 =
n∑
j=1

j

(
n+ 1

j + 1

)
:

For

f(t) =
tm

(1− t)(1− 2t) · · · (1− mt) ;

then

fj =

{
j

m

}
; [tk ]

(
1

1− t f
(

t
1− t

))
=

{
k + 1

m+ 1

}
[8; p:274];

and, by (3), we have
n∑
k=0

{
k + 1

m+ 1

}
=

n∑
j=0

{
j

m

}(
n+ 1

j + 1

)
:

If

F2(n; k) = Hk;

where

Hk = 1 +
1
2
+ · · ·+ 1

k
(k¿ 1)
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then
n∑
k=j

F2(n; k)dk;j =
n∑
k=j

Hk

(
k

j

)
=

(
n+ 1

j + 1

)(
Hn+1 − 1

j + 1

)

and, by Theorem 1, we have
n∑
k=0

Hk [tk ]
(

1
1− t f

(
t

1− t
))

=
n∑
j=0

fj

(
n+ 1

j + 1

)(
Hn+1 − 1

j + 1

)
: (4)

In particular, for f(t) = 1=(1 − t); t=(1 − t)2; tm=(1 − t)(1 − 2t) · · · (1 − mt), by (4),
we have the following identities:

n∑
k=0

2kHk =
n∑
j=0

(
n+ 1

j + 1

)(
Hn+1 − 1

j + 1

)
;

n∑
k=0

k2k−1Hk =
n∑
j=1

j

(
n+ 1

j + 1

)(
Hn+1 − 1

j + 1

)
;

n∑
k=0

{
k + 1

m+ 1

}
Hk =

n∑
j=0

{
j

m

}(
n+ 1

j + 1

)(
Hn+1 − 1

j + 1

)
;

where
{ j
m

}
denotes the Stirling numbers of the second kind.

From [3], we have the following identities:

[n=2]∑
k=j

(
n

2k

)(
k

j

)
= 2n−2j−1 n

n− j

(
n− j
j

)
[3; (3:120)]; (5)

[n=2]∑
k=j

(
n+ 1

2k + 1

)(
k

j

)
= 2n−2j

(
n− j
j

)
[3; (3:121)]; (6)

n∑
k=j

(
n− k
s

)(
k

j

)
=

(
n+ 1

s+ j + 1

)
[3; (3:3)]; (7)

n∑
k=j

(
s+ k

s

)(
k

j

)
=
n+ 1− j
s+ 1 + j

(
n+ 1

j

)(
n+ 1 + s

s

)
[3; (3:155)]; (8)

n∑
k=j

(−4)k
(
n+ k

2k

)(
k

j

)
= (−1)n22j

2n+ 1
2j + 1

(
n+ j

2j

)
[3; (3:162)]; (9)

n∑
k=j

(−4)k
n

n+ k

(
n+ k

2k

)(
k

j

)
= (−1)n22j

n
n+ j

(
n+ j

2j

)
[3; (3:160)];

(10)
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[n=2]∑
k=j

(−1)k
(
n− k
k

)
2n−2k

(
k

j

)
= (−1)j

(
n+ 1

2j + 1

)
[3; (3:179)]; (11)

n∑
k=j

(
�

k

)(
�

n− k

)(
k

j

)
=

(
�

j

)(
�+ � − j
n− j

)
[3; (6:14)]; (12)

n∑
k=j

(−1)k
(
n

k

)(
2n− k
n

)(
k

j

)
= (−1)j

(
n

j

)2

[3; (6:21)]; (13)

[n=2]∑
k=j

(
n

2k

)(
2k

k

)
2n−2k

(
k

j

)
=

(
2n− 2j

n

)(
n

j

)
[3; (6:33)]: (14)

Let {dn;k} = (1=(1 − t); 1=(1 − t)), we may Fnd various special identities via (2).
For example, from Eqs. (5)–(14), just as (3) and (4), we can obtain the following
identities:

[n=2]∑
k=0

(
n

2k

)
[tk ]

(
1

1− t f
(

t
1− t

))
=

[n=2]∑
j=0

2n−2j−1 n
n− j

(
n− j
j

)
fj; (15)

[n=2]∑
k=0

(
n+ 1

2k + 1

)
[tk ]

(
1

1− t f
(

t
1− t

))
=

[n=2]∑
j=0

2n−2j

(
n− j
j

)
fj; (16)

n∑
k=0

(
n− k
s

)
[tk ]

(
1

1− t f
(

t
1− t

))
=

n∑
j=0

(
n+ 1

s+ j + 1

)
fj; (17)

n∑
k=0

(
s+ k

s

)
[tk ]

(
1

1− t f
(

t
1− t

))

=
n∑
j=0

n+ 1− j
s+ 1 + j

(
n+ 1

j

)(
n+ 1 + s

s

)
fj; (18)

n∑
k=0

(−4)k
(
n+ k

2k

)
[tk ]

(
1

1− t f
(

t
1− t

))

=
n∑
j=0

(−1)n22j
2n+ 1
2j + 1

(
n+ j

2j

)
fj; (19)

n∑
k=0

(−4)k
n

n+ k

(
n+ k

2k

)
[tk ]

(
1

1− t f
(

t
1− t

))

=
n∑
j=0

(−1)n22j
n

n+ j

(
n+ j

2j

)
fj; (20)
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[n=2]∑
k=0

(−1)k
(
n− k
k

)
2n−2k [tk ]

(
1

1− t f
(

t
1− t

))

=
[n=2]∑
j=0

(−1)j
(
n+ 1

2j + 1

)
fj; (21)

n∑
k=0

(
�

k

)(
�

n− k

)
[tk ]

(
1

1− t f
(

t
1− t

))
=

n∑
j=0

(
�

j

)(
�+ � − j
n− j

)
fj;

(22)

n∑
k=0

(−1)k
(
n

k

)(
2n− k
n

)
[tk ]

(
1

1− t f
(

t
1− t

))
=

n∑
j=0

(−1)j
(
n

j

)2

fj;

(23)

[n=2]∑
k=0

(
n

2k

)(
2k

k

)
2n−2k [tk ]

(
1

1− t f
(

t
1− t

))

=
[n=2]∑
j=0

(
2n− 2j

n

)(
n

j

)
fj: (24)

For the Stirling numbers of the both kinds
[ n
k

]
and

{ n
k

}
, we have (see [8])

[tn]
(
ln

1
1− t

)m
=
m!
n!

[
n

m

]
;

[tn](et − 1)m =
m!
n!

{
n

m

}

and
n∑
k=j

[
n

m

]{
k

j

}
=
n!
j!

(
n− 1

j − 1

)
:

Now consider Riordan array (1; (et − 1)=t). Then

dn;k =
k!
n!

{
n

k

}
:

If F(n; k) =
[ n
k

]
k!, we have

n∑
k=j

F(n; k)dk;j =
n∑
k=j

[
n

k

]
k!
j!
k!

{
k

j

}
= n!

(
n− 1

j − 1

)
:
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So, by Theorem 1, we obtain
n∑
k=0

[
n

k

]
k![tk ]f(et − 1) =

n∑
j=1

n!

(
n− 1

j − 1

)
fj: (25)

Similarly, consider Riordan array(
1;

1
t
ln

1
1− t

)
= {dn;k}=

{
k!
n!

[
n

k

]}

and the following formula (see [8])
n+1∑
k=j

(−1)k

k

{
n

k − 1

}[
k

j

]
=

(−1)j

n+ 1

(
n+ 1

j

)
Bn−j+1;

where Bn is the nth Bernoulli number. We have
n+1∑
k=1

(−1)k(k − 1)!

{
n

k − 1

}
[tk ]f

(
ln

1
1− t

)

=
n+1∑
j=0

(−1)jj!fj
n+ 1

(
n+ 1

j

)
Bn−j+1: (26)

When f(t) = t, formula (26) specializes to
n+1∑
k=1

(−1)k+1 (k − 1)!
k

{
n

k − 1

}
= Bn;

i.e.
n∑
k=0

{
n

k

}
(−1)kk!
k + 1

= Bn;

a way to deFne the Bernoulli number in terms of the Stirling numbers of the second
kind.

For various functions f(t), we may obtain many identities by formulas from (15)
through (26) in a like way as Example 1.

Theorem 2. Let (d(t); h(t)) be a Riordan array. Let F(n; k) be a bivariate function
de7ned for integers n; k¿ 0, f(t) =

∑
n¿0 fnt

n and f̂(h)(t) = [f(y)|y = th(y)−1] =∑
n¿0 f̂nt

n. If
n∑
k=j

F(n; k)dk;j = ’(n; j);

then
n∑
k=0

F(n; k)[tk ](d(t)f(t)) =
n∑
j=0

f̂j’(n; j): (27)
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If h(0) = 1, then, with the Lagrange inversion formula, we have

f̂j =
1
j!

[tj−1](f′(t)(h(t))−j)

and
n∑
k=0

F(n; k)[tk ](d(t)f(t)) =
n∑
j=0

’(n; j)
1
j!

[tj−1](f′(t)(h(t))−j): (28)

Proof. By Theorem 3.1 in [9] and the Lagrange inversion formula [1], we have

n∑
k=0

F(n; k)[tk ](d(t)f(t)) =
n∑
k=0

F(n; k)
k∑
j=0

dk;jf̂j

=
n∑
j=0

f̂j

n∑
k=j

F(n; k)dk;j

=
n∑
j=0

f̂j’(n; j)

=
n∑
j=0

’(n; j)
1
j!

[tj−1](f′(t)(h(t))−j):

Example 2. For Riordan array (1=(1− t); 1=(1− t)), we have

h(t) =
1

1− t
and, from y = th(y)−1,

y =
t

1 + t
:

Therefore

f̂(h)(t) = [f(y)|y = th(y)−1] = f
(

t
1 + t

)
=

∞∑
n=0

f̂nt
n

and

f̂j = [tj]f
(

t
1 + t

)
:

Let F(n; k) = 1, then, by (27), we have

n∑
k=0

[tk ]
f(t)
1− t =

n∑
j=0

f̂j

(
n+ 1

j + 1

)
=

n∑
j=0

(
n+ 1

j + 1

)
[tj]f

(
t

1 + t

)
: (29)
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It is easy to Fnd that (2) becomes (27) if [tk ](g(t)f(th(t))) is replaced by
[tk ](d(t)f(t)) and fj by f̂j in (2). For example, just as (29), each of formulas (4)
and from (15) through (24) may be replaced, respectively, by

n∑
k=0

Hk [tk ]
f(t)
1− t =

n∑
j=0

(
Hn+1 − 1

j + 1

)(
n+ 1

j + 1

)
[tj]f

(
t

1 + t

)
; (30)

[n=2]∑
k=0

(
n

2k

)
[tk ]

f(t)
1− t =

[n=2]∑
j=0

2n−2j−1 n
n− j

(
n− j
j

)
[tj]f

(
t

1 + t

)
; (31)

[n=2]∑
k=0

(
n+ 1

2k + 1

)
[tk ]

f(t)
1− t =

[n=2]∑
j=0

2n−2j

(
n− j
j

)
[tj]f

(
t

1 + t

)
; (32)

n∑
k=0

(
n− k
s

)
[tk ]

f(t)
1− t =

n∑
j=0

(
n+ 1

s+ j + 1

)
[tj]f

(
t

1 + t

)
; (33)

n∑
k=0

(
s+ k

s

)
[tk ]

f(t)
1− t

=
n∑
j=0

n+ 1− j
s+ 1 + j

(
n+ 1

j

)(
n+ 1 + s

s

)
[tj]f

(
t

1 + t

)
; (34)

n∑
k=0

(−4)k
(
n+ k

2k

)
[tk ]

f(t)
1− t

=
n∑
j=0

(−1)n22j
2n+ 1
2j + 1

(
n+ j

2j

)
[tj]f

(
t

1 + t

)
; (35)

n∑
k=0

(−4)k
n

n+ k

(
n+ k

2k

)
[tk ]

f(t)
1− t

=
n∑
j=0

(−1)n22j
n

n+ j

(
n+ j

2j

)
[tj]f

(
t

1 + t

)
; (36)

[n=2]∑
k=0

(−1)k
(
n− k
k

)
2n−2k [tk ]

f(t)
1− t =

[n=2]∑
j=0

(−1)j
(
n+ 1

2j + 1

)
[tj]f

(
t

1 + t

)
; (37)

n∑
k=0

(
�

k

)(
�

−k

)
[tk ]

f(t)
1− t =

n∑
j=0

(
�

j

)(
�+ � − j
n− j

)
[tj]f

(
t

1 + t

)
; (38)
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n∑
k=0

(−1)k
(
n

k

)(
2n− k
n

)
[tk ]

f(t)
1− t =

n∑
j=0

(−1)j
(
n

j

)2

[tj]f
(

t
1 + t

)
; (39)

[n=2]∑
k=0

(
n

2k

)(
2k

k

)
2n−2k [tk ]

f(t)
1− t =

[n=2]∑
j=0

(
2n− 2j

n

)(
n

j

)
[tj]f

(
t

1 + t

)
: (40)

For (25) and (26), we have
n∑
k=0

[
n

k

]
k![tk ]f(t) =

n∑
j=1

n!

(
n− 1

j − 1

)
[tj]f(ln (1 + t)); (41)

n+1∑
k=1

(−1)k(k − 1)!

{
n

k − 1

}
[tk ]f(t)

=
n+1∑
j=0

(−1)jj!
n+ 1

(
n+ 1

j

)
Bn−j+1[tj]f(1− e−t): (42)

The partial Bell polynomials are the polynomials Bn;k =Bn;k(x1; x2; : : : ; xn−k+1) in an
inFnite number of variables x1; x2; : : : ; deFned by

1
k!

(∑
m¿1

xm
tm

m!

)k
=
∑
n¿k

Bn;k
tn

n!
; k = 0; 1; 2; : : : :

By the deFnition of Riordan arrays, we have(
1;
∑
m¿1

xm
tm

m!

)
= {Bn;kk!}:

For the partial Bell polynomials Bn;k , we have the following well-known formulas
(Faa di Bruno formula [1, p. 137]):

h̃0 = f̃0; h̃n =
n∑
k=1

f̃kBn;k(g̃1; g̃2; : : : ; g̃n−k+1);

where

f(t) =
∞∑
k=0

f̃k
tk

k!
;

g(t) =
∞∑
k=1

g̃k
tk

k!

and

f(g(t)) =
∞∑
k=0

h̃k
tk

k!
:
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Let Bn;0 = �n;0, then the above formulas may be replaced by

h̃n =
n∑
k=0

f̃kBn;k(g̃1; g̃2; : : : ; g̃n−k+1):

Theorem 3. Let F(n; k) be a bivariate function de7ned for integers n; k¿ 0. If
n∑
k=j

F(n; k)Bk;j =M (n; j); (43)

then
n∑
k=0

F(n; k)h̃k = F(n; 0)f̃0 +
n∑
j=1

f̃jM (n; j): (44)

Proof. By (43), we have
n∑
k=0

F(n; k)h̃k =
n∑
k=0

F(n; k)
k∑
j=0

f̃jBk; j

= F(n; 0)f̃0 +
n∑
k=1

F(n; k)
n∑
j=1

f̃jBk; j

= F(n; 0)f̃0 +
n∑
j=1

f̃j

n∑
k=j

F(n; k)Bk;j

= F(n; 0)f̃0 +
n∑
j=1

f̃jM (n; j):

Example 3. Let g(t) =
∑

k¿1 t
k = t=(1− t) and F(n; k) = 1=k!. Then

Bn;k(g̃1; g̃2; : : :) = Bn;k(1!; 2!; : : :) =

(
n− 1

k − 1

)
n!
k!

and
n∑
k=j

F(n; k)Bk;j =
n∑
k=j

1
k!

(
k − 1

j − 1

)
k!
j!

=
1
j!

n∑
k=j

(
k − 1

j − 1

)
=

1
j!

(
n

j

)
:

By (44), we have
n∑
k=0

[tk ]f
(

t
1− t

)
= f̃0 +

n∑
j=1

(
n

j

)
[tj]f(t);

i.e.

[tn]
1

1− t f
(

t
1− t

)
= f̃0 +

n∑
j=1

(
n

j

)
[tj]f(t);
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because, in general,
n∑
k=0

[tk ]f(t) = [tn]
f(t)
1− t :

Furthermore

f̃0 +
n∑
j=1

(
n

j

)
[tj]f(t) =

n∑
j=0

(
n

j

)
[tj]f(t);

and, in conclusion
n∑
j=0

(
n

j

)
[tj]f(t) = [tn]

1
1− t f

(
t

1− t
)
:

This, however, is the well-known Euler’s transformation, a simple result in the theory
of Riordan arrays.

Example 4. Let

g(t) =
∞∑
m=1

xm
tm

m!
; F(n; k) =

(
n

k

)
xn−k :

Then by [3k] in [1, p. 136], we have
n∑
k=j

F(n; k)Bk;j =
n∑
k=j

(
n

k

)
xn−kBk;j = (j + 1)Bn;j+1;

where Bn;k = Bn;k(x1; x2; : : : ; xn−k+1):
By (44), we obtain

n∑
k=0

(
n

k

)
xn−kk![tk ]f

( ∞∑
m=1

xm
tm

m!

)
= xnf̃0 +

n∑
j=1

(j + 1)!Bn;j+1[tj]f(t): (45)

For various functions f(t) and g(t), we can obtain various identities by (45). For

example, let f(t) = g(t) = et − 1 and Bn;j+1(1; 1; : : : ; 1) =
{

n
j+1

}
; then we have the

following identity:
n−1∑
k=1

Bk

(
n

k

)
=

n∑
j=1

(j + 1)

{
n

j + 1

}
;

where Bk is the Bell number deFned by

ee
t−1 − 1 =

∞∑
k=1

Bk
tk

k!
:
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