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Abstract. Let p be any odd prime. We mainly show that

p−1∑
k=1

2k

k

(3k

k

)
≡ 0 (mod p)

and
p−1∑
k=1

2k−1C
(2)
k ≡ (−1)(p−1)/2 − 1 (mod p),

where C
(2)
k =

(3k
k

)
/(2k + 1) is the kth Catalan number of order 2.

1. Introduction

The well-known Catalan numbers are those integers

Cn =
1

n + 1

(
2n

n

)
=

(
2n

n

)
−

(
2n

n− 1

)
(n = 0, 1, 2, . . . ).

(As usual we regard
(

x
−k

)
as 0 for k = 1, 2, . . . .) There are many com-

binatorial interpretations for these important numbers (see, e.g., [St, pp.
219-229]). With the help of a sophisticated binomial identity, H. Pan and
Z. W. Sun [PS] obtained some congruences on sums of Catalan numbers;
in particular, by [PS, (1.16) and (1.8)], for any prime p > 3 we have

p−1∑
k=0

Ck ≡
3(p

3 )− 1
2

(mod p) and
p−1∑
k=1

Ck

k
≡ 3

2

(
1−

(p

3

))
(mod p), (1.0)
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where the Legendre symbol (a
3 ) ∈ {0,±1} satisfies the congruence a ≡

(a
3 ) (mod 3). Recently Z. W. Sun and R. Tauraso [ST1, ST2] obtained

some further congruences concerning sums involving Catalan numbers.
For m,n ∈ N = {0, 1, 2, . . . }, we define

C(m)
n =

1
mn + 1

(
mn + n

n

)
=

(
mn + n

n

)
−m

(
mn + n

n− 1

)
and call it the nth Catalan number of order m. Clearly

C(1)
n = Cn and C(2)

n =
1

2n + 1

(
3n

n

)
.

In contrast with (1.0), we have the following result involving the second-
order Catalan numbers.

Theorem 1.1. Let p be an odd prime. Then
p−1∑
k=1

2kC
(2)
k ≡ 2

(
(−1)(p−1)/2 − 1

)
(mod p) (1.1)

and
p−1∑
k=1

2kC
(2)
k

k
≡ 4

(
1− (−1)(p−1)/2

)
(mod p). (1.2)

Actually Theorem 1.1 follows from our next two theorems.

Theorem 1.2. Let p > 5 be a prime. Then
p−1∑
k=0

2k

(
3k

k

)
≡6(−1)(p−1)/2 − 1

5
(mod p), (1.3)

p−1∑
k=0

2k

(
3k + 1

k

)
≡4(−1)(p−1)/2 + 1

5
(mod p), (1.4)

Theorem 1.3. For any prime p we have
p−1∑
k=1

2k

k

(
3k

k

)
≡ 0 (mod p). (1.5)

For any odd prime p we can also prove the following congruences:

5
p−1∑
k=1

2k

(
3k + 2

k

)
≡(−1)(p−1)/2 − 1 (mod p),

p−1∑
k=1

2k−1

k

(
3k + 1

k

)
≡(−1)(p−1)/2 − 1 (mod p),

p−1∑
k=1

2k−1

k

(
3k + 2

k

)
≡3

2

(
(−1)(p−1)/2 − 1

)
(mod p).
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We omit their proofs which are similar to those of Theorems 1.2-1.3.
With the help of Theorems 1.2 and 1.3, we can easily deduce Theorem

1.1.
Proof of Theorem 1.1 via Theorems 1.2 and 1.3. Clearly (1.1) and (1.2)
hold for p = 3, 5. Assume p > 5. By (1.3) and (1.4),

p−1∑
k=0

2k

2k + 1

(
3k

k

)
=3

p−1∑
k=0

2k

(
3k

k

)
− 2

p−1∑
k=0

2k

(
3k + 1

k

)
≡2(−1)(p−1)/2 − 1 (mod p).

This proves (1.1). For (1.2) it suffices to note that

p−1∑
k=1

2k

k(2k + 1)

(
3k

k

)
=

p−1∑
k=1

2k

k

(
3k

k

)
− 2

p−1∑
k=1

2k

2k + 1

(
3k

k

)
.

This concludes the proof. �
We are going to provide two lemmas in the next section. Theorems 1.2

and 1.3 will be proved in Sections 3 and 4 respectively.

2. Some Lemmas

Lemma 2.1. For m,n ∈ N we have

2n

bm/3c∑
k=0

(−2)k

(
n

m− 3k

)(
3k −m + n

k

)

=(−1)m
n∑

j=0

(
n

j

) m∑
k=0

(−2)k

(
n

m− k

)(
2j

k

)
.

(2.1)

Proof. Let P (x) = (2 + 2x− 4x3)n, and denote by [xk]P (x) the coefficient
of xk in the expansion of P (x). Then

2−n[xm]P (x) =[xm]((1 + x)− 2x3)n

=
bm/3c∑
k=0

(
n

k

)
(−2)k[xm−3k](1 + x)n−k

=
bm/3c∑
k=0

(−2)k

(
n

k

)(
n− k

m− 3k

)

=
bm/3c∑
k=0

(−2)k

(
n

m− 3k

)(
3k −m + n

k

)
.
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Since

P (x) = (1− x)n((2x + 1)2 + 1)n =
n∑

j=0

(
n

j

)
(1− x)n(2x + 1)2j ,

we also have

[xm]P (x) =
n∑

j=0

(
n

j

) m∑
k=0

2k

(
2j

k

)
(−1)m−k

(
n

m− k

)
.

Therefore (2.1) is valid. �
For any prime p, if n, k ∈ N and s, t ∈ {0, 1, . . . , p − 1} then we have

the following well-known Lucas congruence (cf. [Gr] or [HS]):
(
pn+s
pk+t

)
≡(

n
k

)(
s
t

)
(mod p). This will be used in the proof of the following lemma.

Lemma 2.2. Let p > 5 be a prime. Then we have

p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

t

)
≡ 3(−1)(p−1)/2 + 2

5
(mod p) (2.2)

and
p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

p + t

)
≡ 3

10

(
1− (−1)(p−1)/2

)
(mod p). (2.3)

Proof. Observe that

p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

t

)

=
(p−1)/2∑

s=0

(−1)s
2s∑

t=0

2t

(
2s

t

)
+

p−1∑
s=(p+1)/2

(−1)s

p−1∑
t=0

2t

(
2s

t

)

=
(p−1)/2∑

s=0

(−1)s32s +
p−1∑

s=(p+1)/2

(−1)s

p−1∑
t=0

2t

(
2s

t

)

=
(p−1)/2∑

s=0

(−1)s32s +
p−1∑

s=(p+1)/2

(−1)s

( 2s∑
t=0

2t

(
2s

t

)
−

2s∑
t=p

2t

(
2s

t

))

=
p−1∑
s=0

(−1)s32s −
p−1∑

s=(p+1)/2

(−1)s
2s∑

t=p

2t

(
2s

t

)

=
p−1∑
s=0

(−9)s −
p−1∑

s=(p+1)/2

(−1)s

2s−p∑
r=0

2p+r

(
2s

r + p

)
.
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For s = (p + 1)/2, . . . , p− 1, by Lucas’ congruence we have
2s−p∑
r=0

2r

(
p + (2s− p)

p + r

)
≡

2s−p∑
r=0

2r

(
2s− p

r

)
= 32s−p (mod p).

Thus, with the help of Fermat’s little theorem, we get
p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

t

)
≡1− (−9)p

10
−

p−1∑
s=(p+1)/2

(−1)s 2
3
· 9s

≡1− 2
3
(−9)

p+1
2

(1− (−9)(p−1)/2)
10

≡3(−1)(p−1)/2 + 2
5

(mod p).

This proves (2.2).
In view of Lucas’ congruence and Fermat’s little theorem, we also have
p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

p + t

)

≡
p−1∑

s=(p+1)/2

(−1)s

p−1∑
t=0

2t

(
2s− p

t

)
=

p−1∑
s=(p+1)/2

(−1)s32s−p

=3−p(−9)(p+1)/2 1− (−9)(p−1)/2

10
= (−1)(p+1)/2 3

10

(
1 + (−1)(p+1)/23p−1

)
≡ 3

10

(
1− (−1)(p−1)/2

)
(mod p).

So (2.3) is also valid. We are done. �

3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we first present an auxiliary result.

Theorem 3.1. Let p > 5 be a prime, and let d, δ ∈ {0, 1}. Then

(−1)d+δ

2δ

∑
δp−d63k6δp+p−1−d

2k

(
3k + d

k

)

≡4− δ

10
+

(3δ − 2)(5d− 3)
10

(−1)(p−1)/2 (mod p).

(3.1)

Proof. Applying (2.1) with n = p− 1 and m = δp + p− 1− d, we get

2p−1

b(δp+p−1−d)/3c∑
k=0

(−2)k

(
p− 1

δp + p− 1− d− 3k

)(
3k + d− δp

k

)

=(−1)δp+p−1−d

p−1∑
j=0

(
p− 1

j

) δp+p−1−d∑
k=0

(−2)k

(
p− 1

δp + p− 1− d− k

)(
2j

k

)
.
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Observe that
b(δp+p−1−d)/3c∑

k=0

(−2)k

(
p− 1

δp + p− 1− d− 3k

)(
3k + d− δp

k

)
=

∑
δp−d63k6δp+p−1−d

(−2)k

(
p− 1

p + δp− 1− d− 3k

)(
3k + d− δp

k

)

≡
∑

δp−d63k6δp+p−1−d

(−2)k(−1)δp+p−1−d−3k

(
3k + d

k

)

≡(−1)d+δ
∑

δp−d63k6δp+p−1−d

2k

(
3k + d

k

)
(mod p)

and

(−1)δp+p−1−d

p−1∑
j=0

(
p− 1

j

) δp+p−1−d∑
k=0

(−2)k

(
p− 1

δp + p− 1− d− k

)(
2j

k

)

≡
p−1∑
j=0

(−1)j
∑

δp−d6k<δp+p−d

2k

(
2j

k

)
=

p−1∑
j=0

(−1)j

p−1∑
t=0

2δp−d+t

(
2j

δp− d + t

)

≡2δ−d

p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

δp− d + t

)
(mod p).

Therefore ∑
δp−d63k6δp+p−1−d

2k

(
3k + d

k

)

≡(−2)δ−d

p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

δp− d + t

)
(mod p).

Recall that d ∈ {0, 1}. We have

p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

δp− d + t

)

=
p−1∑
s=0

(−1)s

p−1−d∑
t=−d

2d+t

(
2s

δp + t

)

=
p−1∑
s=0

(−1)s

( p−1∑
t=0

2d+t

(
2s

δp + t

)
+ d

((
2s

δp− 1

)
− 2p

(
2s

δp + p− 1

)))

=2d

p−1∑
s=0

p−1∑
t=0

(−1)s2t

(
2s

δp + t

)
+ d

p−1∑
s=0

(−1)s

((
2s

δp− 1

)
− 2p

(
2s

δp + p− 1

))
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and hence

(−1)d+δ
∑

δp−d63k6δp+p−1−d

2k

(
3k + d

k

)
− 2δ

p−1∑
s=0

p−1∑
t=0

(−1)s2t

(
2s

δp + t

)

≡d2δ−d

p−1∑
s=0

(−1)s

((
2s

δp− 1

)
− 2

(
2s

δp + p− 1

))

≡d2δ−1(3δ − 2)
p−1∑
s=0

(−1)s

(
2s

p− 1

)
≡ d(3δ − 2)2δ−1(−1)(p−1)/2 (mod p).

Since
p−1∑
s=0

(−1)s

p−1∑
t=0

2t

(
2s

δp + t

)
≡ 4− δ

10
+

3
10

(2− 3δ)(−1)(p−1)/2 (mod p)

by Lemma 2.2, we finally get

(−1)d+δ

2δ

∑
δp−d63k6δp+p−1−d

2k

(
3k + d

k

)
≡4− δ

10
+

3
10

(2− 3δ)(−1)(p−1)/2 +
d

2
(3δ − 2)(−1)(p−1)/2

≡4− δ

10
+

(3δ − 2)(5d− 3)
10

(−1)(p−1)/2 (mod p).

This proves (3.1). �

Proof of Theorem 1.2. Let d ∈ {0, 1}. If (2p − d)/3 6 k 6 p − 1, then
2k + d + 1 6 2k + 2 6 2p 6 3k + d and hence(

3k + d

k

)
=

(3k + d) · · · (2k + d + 1)
k!

≡ 0 (mod p).

Therefore ∑
2p−d63k63p−3

2k

(
3k + d

k

)
≡ 0 (mod p).

With the help of Theorem 3.1, we have
p−1∑
k=0

2k

(
3k + d

k

)
≡

∑
−d63k62p−1−d

2k

(
3k + d

k

)

≡
1∑

δ=0

∑
δp−d63k6δp+p−1−d

2k

(
3k + d

k

)

≡
1∑

δ=0

(−1)d(−2)δ

(
4− δ

10
+

(3δ − 2)(5d− 3)
10

(−1)(p−1)/2

)
≡ (−1)d−1

5

(
1 + (10d− 6)(−1)(p−1)/2

)
(mod p).
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This yields (1.3) and (1.4). We are done. �

4. Proof of Theorem 1.3

Proof of Theorem 1.3. Obviously (1.5) holds for p = 2, 3. Below we assume
p > 3.

Let δ ∈ {0, 1}. Applying (2.1) with m = p + δp and n = p we get

2p

p∑
k=0

(−2)k

(
p

p + δp− 3k

)(
3k − δp

k

)

=(−1)δ+1

p∑
j=0

(
p

j

) p+δp∑
k=0

(−2)k

(
p

p + δp− k

)(
2j

k

)
.

(4.1)

Observe that

p∑
k=0

(−2)k

(
p

p + δp− 3k

)(
3k − δp

k

)
=

∑
δp63k6p+δp−1

(−2)k

(
p

3k − δp

)(
3k − δp

k

)

=1− δ +
∑

δp<3k<p+δp

(−2)k

(
p

3k − δp

)(
3k − δp

k

)
.

For j = 1, . . . , p− 1 clearly(
p

j

)
=

p

j

(
p− 1
j − 1

)
≡ p

(−1)j−1

j
(mod p2).

Thus ∑
δp<3k<p+δp

(−2)k

(
p

3k − δp

)(
3k − δp

k

)

≡
∑

δp<3k<p+δp

(−2)kp
(−1)3k−δp−1

3k − δp

(
3k − δp

k

)

≡(−1)δ+1
∑

δp<3k<p+δp

(−2)kp
(−1)k

3k

(
(3k − δp) + δp

k

)
(by Lucas’ congruence)

≡(−1)δ+1 p

3

∑
δp<3k<p+δp

2k

k

(
3k

k

)
(mod p2).
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Notice that
p∑

j=0

(
p

j

) p+δp∑
k=0

(−2)k

(
p

p + δp− k

)(
2j

k

)

=
∑

δp62j62p

(
p

j

) p+δp∑
k=δp

(−2)k

(
p

k − δp

)(
2j

k

)

=
∑

δp<2j<2p

(
p

j

) p+δp∑
k=δp

(−2)k

(
p

k − δp

)(
2j

k

)

+
∑

2j∈{δp,2p}

(
p

j

) p+δp∑
k=δp

(−2)k

(
p

k − δp

)(
2j

k

)
.

Clearly ∑
δp<2j<2p

(
p

j

) p+δp∑
k=δp

(−2)k

(
p

k − δp

)(
2j

k

)

≡
∑

δp<2j<2p

(
p

j

)(
(−2)δp

(
p

0

)(
2j

δp

)
+ (−2)p+δp

(
p

p

)(
2j

p + δp

))

≡
∑

δp<2j<2p

(
p

j

)
(−2)δp

(
2j − δp

0

)

+ (1− δ)
∑

p<2j<2p

(
p

j

)
(−2)p+δp

(
2j − p

p− p

)
(by Lucas’ congruence)

≡(−2)δ21−δ(2p−1 − 1) + (1− δ)(−2)1+δ(2p−1 − 1)

≡(−1)δδ(2p − 2) = −δ(2p − 2) (mod p2).

(Note that δ ∈ {0, 1} and 2
∑

p/2<j<p

(
p
j

)
=

∑p−1
j=1

(
p
j

)
= 2p − 2.) Also,

∑
2j=δp

(
p

j

) p+δp∑
k=δp

(−2)k

(
p

k − δp

)(
2j

k

)
= (1− δ)

p∑
k=0

(−2)k

(
p

k

)(
0
k

)
= 1− δ

and ∑
2j=2p

(
p

j

) p+δp∑
k=δp

(−2)k

(
p

k − δp

)(
2j

k

)

≡
∑

k∈{δp,p+δp}

(−2)k

(
p

k − δp

)(
2p

k

)

≡(−2)δp

(
2
δ

)
+ (−2)p+δp

(
2

1 + δ

)
= 4δp − 2p+1 (mod p2).
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(Recall that 1
2

(
2p
p

)
=

(
2p−1
p−1

)
≡ 1 (mod p3) by the Wolstenholme congruence

(cf. [Gr] or [HT]).)
Combining the above with (4.1), we have

2p

(
1− δ + (−1)δ+1 p

3

∑
δp<3k<p+δp

2k

k

(
3k

k

))
≡(−1)δ+1

(
δ(2− 2p) + 1− δ + 4δp − 2p+1

)
(mod p2).

Setting δ = 0 and δ = 1 respectively, we obtain

2p − 2p p

3

∑
0<3k<p

2k

k

(
3k

k

)
≡ 2p+1 − 2 (mod p2)

and

2p p

3

∑
p<3k<2p

2k

k

(
3k

k

)
≡ 2− 2p + 4p − 2p+1 (mod p2).

It follows that
2
3
p

∑
0<3k<2p

2k

k

(
3k

k

)
≡ 4p − 4 · 2p + 4 = (2p − 2)2 ≡ 0 (mod p2).

If 2p 6 3k < 3p, then(
3k

k

)
=

3k · · · (2k + 1)
k!

≡ 0 (mod p).

Therefore
p−1∑
k=1

2k

k

(
3k

k

)
=

∑
0<3k<2p

2k

k

(
3k

k

)
+

∑
2p63k<3p

2k

k

(
3k

k

)
≡ 0 (mod p).

This completes the proof of Theorem 1.3. �
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