SOME CONGRUENCES FOR THE SECOND-ORDER CATALAN NUMBERS

Li-Lu Zhao, Hao Pan and Zhi-Wei Sun
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zhaolilu@gmail.com, haopan79@yahoo.com.cn, zwsun@nju.edu.cn

Abstract. Let p be any odd prime. We mainly show that

$$
\sum_{k=1}^{p-1} \frac{2^{k}}{k}\binom{3 k}{k} \equiv 0(\bmod p)
$$

and

$$
\sum_{k=1}^{p-1} 2^{k-1} C_{k}^{(2)} \equiv(-1)^{(p-1) / 2}-1(\bmod p)
$$

where $C_{k}^{(2)}=\binom{3 k}{k} /(2 k+1)$ is the k th Catalan number of order 2.

1. Introduction

The well-known Catalan numbers are those integers

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}=\binom{2 n}{n}-\binom{2 n}{n-1} \quad(n=0,1,2, \ldots)
$$

(As usual we regard $\binom{x}{-k}$ as 0 for $k=1,2, \ldots$) There are many combinatorial interpretations for these important numbers (see, e.g., [St, pp. 219-229]). With the help of a sophisticated binomial identity, H. Pan and Z. W. Sun [PS] obtained some congruences on sums of Catalan numbers; in particular, by [PS, (1.16) and (1.8)], for any prime $p>3$ we have

$$
\begin{equation*}
\sum_{k=0}^{p-1} C_{k} \equiv \frac{3\left(\frac{p}{3}\right)-1}{2}(\bmod p) \text { and } \sum_{k=1}^{p-1} \frac{C_{k}}{k} \equiv \frac{3}{2}\left(1-\left(\frac{p}{3}\right)\right)(\bmod p) \tag{1.0}
\end{equation*}
$$

[^0]where the Legendre symbol $\left(\frac{a}{3}\right) \in\{0, \pm 1\}$ satisfies the congruence $a \equiv$ $\left(\frac{a}{3}\right)(\bmod 3)$. Recently Z. W. Sun and R. Tauraso [ST1, ST2] obtained some further congruences concerning sums involving Catalan numbers.

For $m, n \in \mathbb{N}=\{0,1,2, \ldots\}$, we define

$$
C_{n}^{(m)}=\frac{1}{m n+1}\binom{m n+n}{n}=\binom{m n+n}{n}-m\binom{m n+n}{n-1}
$$

and call it the nth Catalan number of order m. Clearly

$$
C_{n}^{(1)}=C_{n} \quad \text { and } \quad C_{n}^{(2)}=\frac{1}{2 n+1}\binom{3 n}{n}
$$

In contrast with (1.0), we have the following result involving the secondorder Catalan numbers.
Theorem 1.1. Let p be an odd prime. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} 2^{k} C_{k}^{(2)} \equiv 2\left((-1)^{(p-1) / 2}-1\right)(\bmod p) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{2^{k} C_{k}^{(2)}}{k} \equiv 4\left(1-(-1)^{(p-1) / 2}\right)(\bmod p) \tag{1.2}
\end{equation*}
$$

Actually Theorem 1.1 follows from our next two theorems.
Theorem 1.2. Let $p>5$ be a prime. Then

$$
\begin{align*}
\sum_{k=0}^{p-1} 2^{k}\binom{3 k}{k} & \equiv \frac{6(-1)^{(p-1) / 2}-1}{5}(\bmod p), \tag{1.3}\\
\sum_{k=0}^{p-1} 2^{k}\binom{3 k+1}{k} & \equiv \frac{4(-1)^{(p-1) / 2}+1}{5}(\bmod p), \tag{1.4}
\end{align*}
$$

Theorem 1.3. For any prime p we have

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{2^{k}}{k}\binom{3 k}{k} \equiv 0(\bmod p) \tag{1.5}
\end{equation*}
$$

For any odd prime p we can also prove the following congruences:

$$
\begin{aligned}
5 \sum_{k=1}^{p-1} 2^{k}\binom{3 k+2}{k} & \equiv(-1)^{(p-1) / 2}-1(\bmod p) \\
\sum_{k=1}^{p-1} \frac{2^{k-1}}{k}\binom{3 k+1}{k} & \equiv(-1)^{(p-1) / 2}-1(\bmod p) \\
\sum_{k=1}^{p-1} \frac{2^{k-1}}{k}\binom{3 k+2}{k} & \equiv \frac{3}{2}\left((-1)^{(p-1) / 2}-1\right)(\bmod p)
\end{aligned}
$$

We omit their proofs which are similar to those of Theorems 1.2-1.3.
With the help of Theorems 1.2 and 1.3 , we can easily deduce Theorem 1.1.

Proof of Theorem 1.1 via Theorems 1.2 and 1.3. Clearly (1.1) and (1.2) hold for $p=3,5$. Assume $p>5$. By (1.3) and (1.4),

$$
\begin{aligned}
\sum_{k=0}^{p-1} \frac{2^{k}}{2 k+1}\binom{3 k}{k} & =3 \sum_{k=0}^{p-1} 2^{k}\binom{3 k}{k}-2 \sum_{k=0}^{p-1} 2^{k}\binom{3 k+1}{k} \\
& \equiv 2(-1)^{(p-1) / 2}-1(\bmod p)
\end{aligned}
$$

This proves (1.1). For (1.2) it suffices to note that

$$
\sum_{k=1}^{p-1} \frac{2^{k}}{k(2 k+1)}\binom{3 k}{k}=\sum_{k=1}^{p-1} \frac{2^{k}}{k}\binom{3 k}{k}-2 \sum_{k=1}^{p-1} \frac{2^{k}}{2 k+1}\binom{3 k}{k}
$$

This concludes the proof.
We are going to provide two lemmas in the next section. Theorems 1.2 and 1.3 will be proved in Sections 3 and 4 respectively.

2. Some Lemmas

Lemma 2.1. For $m, n \in \mathbb{N}$ we have

$$
\begin{align*}
& 2^{n} \sum_{k=0}^{\lfloor m / 3\rfloor}(-2)^{k}\binom{n}{m-3 k}\binom{3 k-m+n}{k} \\
= & (-1)^{m} \sum_{j=0}^{n}\binom{n}{j} \sum_{k=0}^{m}(-2)^{k}\binom{n}{m-k}\binom{2 j}{k} . \tag{2.1}
\end{align*}
$$

Proof. Let $P(x)=\left(2+2 x-4 x^{3}\right)^{n}$, and denote by $\left[x^{k}\right] P(x)$ the coefficient of x^{k} in the expansion of $P(x)$. Then

$$
\begin{aligned}
2^{-n}\left[x^{m}\right] P(x) & =\left[x^{m}\right]\left((1+x)-2 x^{3}\right)^{n} \\
& =\sum_{k=0}^{\lfloor m / 3\rfloor}\binom{n}{k}(-2)^{k}\left[x^{m-3 k}\right](1+x)^{n-k} \\
& =\sum_{k=0}^{\lfloor m / 3\rfloor}(-2)^{k}\binom{n}{k}\binom{n-k}{m-3 k} \\
& =\sum_{k=0}^{\lfloor m / 3\rfloor}(-2)^{k}\binom{n}{m-3 k}\binom{3 k-m+n}{k} .
\end{aligned}
$$

Since

$$
P(x)=(1-x)^{n}\left((2 x+1)^{2}+1\right)^{n}=\sum_{j=0}^{n}\binom{n}{j}(1-x)^{n}(2 x+1)^{2 j}
$$

we also have

$$
\left[x^{m}\right] P(x)=\sum_{j=0}^{n}\binom{n}{j} \sum_{k=0}^{m} 2^{k}\binom{2 j}{k}(-1)^{m-k}\binom{n}{m-k}
$$

Therefore (2.1) is valid.
For any prime p, if $n, k \in \mathbb{N}$ and $s, t \in\{0,1, \ldots, p-1\}$ then we have the following well-known Lucas congruence (cf. [Gr] or [HS]): $\binom{p n+s}{p k+t} \equiv$ $\binom{n}{k}\binom{s}{t}(\bmod p)$. This will be used in the proof of the following lemma.
Lemma 2.2. Let $p>5$ be a prime. Then we have

$$
\begin{equation*}
\sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{t} \equiv \frac{3(-1)^{(p-1) / 2}+2}{5}(\bmod p) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{p+t} \equiv \frac{3}{10}\left(1-(-1)^{(p-1) / 2}\right)(\bmod p) \tag{2.3}
\end{equation*}
$$

Proof. Observe that

$$
\begin{aligned}
& \sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{t} \\
= & \sum_{s=0}^{(p-1) / 2}(-1)^{s} \sum_{t=0}^{2 s} 2^{t}\binom{2 s}{t}+\sum_{s=(p+1) / 2}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{t} \\
= & \sum_{s=0}^{(p-1) / 2}(-1)^{s} 3^{2 s}+\sum_{s=(p+1) / 2}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{t} \\
= & \sum_{s=0}^{p-1) / 2}(-1)^{s} 3^{2 s}+\sum_{s=(p+1) / 2}^{p-1}(-1)^{s}\left(\sum_{t=0}^{2 s} 2^{t}\binom{2 s}{t}-\sum_{t=p}^{2 s} 2^{t}\binom{2 s}{t}\right) \\
= & \sum_{s=0}^{p-1}(-1)^{s} 3^{2 s}-\sum_{s=(p+1) / 2}^{p-1}(-1)^{s} \sum_{t=p}^{2 s} 2^{t}\binom{2 s}{t} \\
= & \sum_{s=0}^{p-1}(-9)^{s}-\sum_{s=(p+1) / 2}^{p-1}(-1)^{s} \sum_{r=0}^{2 s-p} 2^{p+r}\binom{2 s}{r+p} .
\end{aligned}
$$

SOME CONGRUENCES FOR THE SECOND-ORDER CATALAN NUMBERS 5

For $s=(p+1) / 2, \ldots, p-1$, by Lucas' congruence we have

$$
\sum_{r=0}^{2 s-p} 2^{r}\binom{p+(2 s-p)}{p+r} \equiv \sum_{r=0}^{2 s-p} 2^{r}\binom{2 s-p}{r}=3^{2 s-p}(\bmod p)
$$

Thus, with the help of Fermat's little theorem, we get

$$
\begin{aligned}
\sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{t} & \equiv \frac{1-(-9)^{p}}{10}-\sum_{s=(p+1) / 2}^{p-1}(-1)^{s} \frac{2}{3} \cdot 9^{s} \\
& \equiv 1-\frac{2}{3}(-9)^{\frac{p+1}{2}} \frac{\left(1-(-9)^{(p-1) / 2}\right)}{10} \\
& \equiv \frac{3(-1)^{(p-1) / 2}+2}{5}(\bmod p) .
\end{aligned}
$$

This proves (2.2).
In view of Lucas' congruence and Fermat's little theorem, we also have $\sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{p+t}$
$\equiv \sum_{s=(p+1) / 2}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s-p}{t}=\sum_{s=(p+1) / 2}^{p-1}(-1)^{s} 3^{2 s-p}$
$=3^{-p}(-9)^{(p+1) / 2} \frac{1-(-9)^{(p-1) / 2}}{10}=(-1)^{(p+1) / 2} \frac{3}{10}\left(1+(-1)^{(p+1) / 2} 3^{p-1}\right)$
$\equiv \frac{3}{10}\left(1-(-1)^{(p-1) / 2}\right)(\bmod p)$.
So (2.3) is also valid. We are done.

3. Proof of Theorem 1.2

In order to prove Theorem 1.2, we first present an auxiliary result.
Theorem 3.1. Let $p>5$ be a prime, and let $d, \delta \in\{0,1\}$. Then

$$
\begin{align*}
& \frac{(-1)^{d+\delta}}{2^{\delta}} \sum_{\delta p-d \leqslant 3 k \leqslant \delta p+p-1-d} 2^{k}\binom{3 k+d}{k} \tag{3.1}\\
\equiv & \frac{4-\delta}{10}+\frac{(3 \delta-2)(5 d-3)}{10}(-1)^{(p-1) / 2}(\bmod p) .
\end{align*}
$$

Proof. Applying (2.1) with $n=p-1$ and $m=\delta p+p-1-d$, we get

$$
\begin{aligned}
& 2^{p-1} \sum_{k=0}^{\lfloor(\delta p+p-1-d) / 3\rfloor}(-2)^{k}\binom{p-1}{\delta p+p-1-d-3 k}\binom{3 k+d-\delta p}{k} \\
= & (-1)^{\delta p+p-1-d} \sum_{j=0}^{p-1}\binom{p-1}{j} \sum_{k=0}^{\delta p+p-1-d}(-2)^{k}\binom{p-1}{\delta p+p-1-d-k}\binom{2 j}{k} .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \sum_{k=0}^{\lfloor(\delta p+p-1-d) / 3\rfloor}(-2)^{k}\binom{p-1}{\delta p+p-1-d-3 k}\binom{3 k+d-\delta p}{k} \\
= & \sum_{\delta p-d \leqslant 3 k \leqslant \delta p+p-1-d}(-2)^{k}\binom{p-1}{p+\delta p-1-d-3 k}\binom{3 k+d-\delta p}{k} \\
\equiv & \sum_{\delta p-d \leqslant 3 k \leqslant \delta p+p-1-d}(-2)^{k}(-1)^{\delta p+p-1-d-3 k}\binom{3 k+d}{k} \\
\equiv & (-1)^{d+\delta} \sum_{\delta p-d \leqslant 3 k \leqslant \delta p+p-1-d} 2^{k}\binom{3 k+d}{k}(\bmod p)
\end{aligned}
$$

and

$$
\begin{aligned}
& (-1)^{\delta p+p-1-d} \sum_{j=0}^{p-1}\binom{p-1}{j} \sum_{k=0}^{\delta p+p-1-d}(-2)^{k}\binom{p-1}{\delta p+p-1-d-k}\binom{2 j}{k} \\
\equiv & \sum_{j=0}^{p-1}(-1)^{j} \sum_{\delta p-d \leqslant k<\delta p+p-d} 2^{k}\binom{2 j}{k}=\sum_{j=0}^{p-1}(-1)^{j} \sum_{t=0}^{p-1} 2^{\delta p-d+t}\binom{2 j}{\delta p-d+t} \\
\equiv & 2^{\delta-d} \sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{\delta p-d+t}(\bmod p) .
\end{aligned}
$$

Therefore

$$
\begin{gathered}
\sum_{\delta p-d \leqslant 3 k \leqslant \delta p+p-1-d} 2^{k}\binom{3 k+d}{k} \\
\equiv(-2)^{\delta-d} \sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{\delta p-d+t}(\bmod p) .
\end{gathered}
$$

Recall that $d \in\{0,1\}$. We have

$$
\begin{aligned}
& \sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{\delta p-d+t} \\
= & \sum_{s=0}^{p-1}(-1)^{s} \sum_{t=-d}^{p-1-d} 2^{d+t}\binom{2 s}{\delta p+t} \\
= & \sum_{s=0}^{p-1}(-1)^{s}\left(\sum_{t=0}^{p-1} 2^{d+t}\binom{2 s}{\delta p+t}+d\left(\binom{2 s}{\delta p-1}-2^{p}\binom{2 s}{\delta p+p-1}\right)\right) \\
= & 2^{d} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1}(-1)^{s} 2^{t}\binom{2 s}{\delta p+t}+d \sum_{s=0}^{p-1}(-1)^{s}\left(\binom{2 s}{\delta p-1}-2^{p}\binom{2 s}{\delta p+p-1}\right)
\end{aligned}
$$

and hence

$$
\begin{aligned}
& (-1)^{d+\delta} \sum_{\delta p-d \leqslant 3 k \leqslant \delta p+p-1-d} 2^{k}\binom{3 k+d}{k}-2^{\delta} \sum_{s=0}^{p-1} \sum_{t=0}^{p-1}(-1)^{s} 2^{t}\binom{2 s}{\delta p+t} \\
\equiv & d 2^{\delta-d} \sum_{s=0}^{p-1}(-1)^{s}\left(\binom{2 s}{\delta p-1}-2\binom{2 s}{\delta p+p-1}\right) \\
\equiv & d 2^{\delta-1}(3 \delta-2) \sum_{s=0}^{p-1}(-1)^{s}\binom{2 s}{p-1} \equiv d(3 \delta-2) 2^{\delta-1}(-1)^{(p-1) / 2}(\bmod p) .
\end{aligned}
$$

Since

$$
\sum_{s=0}^{p-1}(-1)^{s} \sum_{t=0}^{p-1} 2^{t}\binom{2 s}{\delta p+t} \equiv \frac{4-\delta}{10}+\frac{3}{10}(2-3 \delta)(-1)^{(p-1) / 2}(\bmod p)
$$

by Lemma 2.2, we finally get

$$
\begin{aligned}
& \frac{(-1)^{d+\delta}}{2^{\delta}} \sum_{\delta p-d \leqslant 3 k \leqslant \delta p+p-1-d} 2^{k}\binom{3 k+d}{k} \\
\equiv & \frac{4-\delta}{10}+\frac{3}{10}(2-3 \delta)(-1)^{(p-1) / 2}+\frac{d}{2}(3 \delta-2)(-1)^{(p-1) / 2} \\
\equiv & \frac{4-\delta}{10}+\frac{(3 \delta-2)(5 d-3)}{10}(-1)^{(p-1) / 2}(\bmod p) .
\end{aligned}
$$

This proves (3.1).
Proof of Theorem 1.2. Let $d \in\{0,1\}$. If $(2 p-d) / 3 \leqslant k \leqslant p-1$, then $2 k+d+1 \leqslant 2 k+2 \leqslant 2 p \leqslant 3 k+d$ and hence

$$
\binom{3 k+d}{k}=\frac{(3 k+d) \cdots(2 k+d+1)}{k!} \equiv 0(\bmod p) .
$$

Therefore

$$
\sum_{2 p-d \leqslant 3 k \leqslant 3 p-3} 2^{k}\binom{3 k+d}{k} \equiv 0(\bmod p) .
$$

With the help of Theorem 3.1, we have

$$
\begin{aligned}
\sum_{k=0}^{p-1} 2^{k}\binom{3 k+d}{k} & \equiv \sum_{-d \leqslant 3 k \leqslant 2 p-1-d} 2^{k}\binom{3 k+d}{k} \\
& \equiv \sum_{\delta=0}^{1} \sum_{\delta p-d \leqslant 3 k \leqslant \delta p+p-1-d} 2^{k}\binom{3 k+d}{k} \\
& \equiv \sum_{\delta=0}^{1}(-1)^{d}(-2)^{\delta}\left(\frac{4-\delta}{10}+\frac{(3 \delta-2)(5 d-3)}{10}(-1)^{(p-1) / 2}\right) \\
& \equiv \frac{(-1)^{d-1}}{5}\left(1+(10 d-6)(-1)^{(p-1) / 2}\right)(\bmod p)
\end{aligned}
$$

This yields (1.3) and (1.4). We are done.

4. Proof of Theorem 1.3

Proof of Theorem 1.3. Obviously (1.5) holds for $p=2,3$. Below we assume $p>3$.

Let $\delta \in\{0,1\}$. Applying (2.1) with $m=p+\delta p$ and $n=p$ we get

$$
\begin{align*}
& 2^{p} \sum_{k=0}^{p}(-2)^{k}\binom{p}{p+\delta p-3 k}\binom{3 k-\delta p}{k} \\
= & (-1)^{\delta+1} \sum_{j=0}^{p}\binom{p}{j} \sum_{k=0}^{p+\delta p}(-2)^{k}\binom{p}{p+\delta p-k}\binom{2 j}{k} . \tag{4.1}
\end{align*}
$$

Observe that

$$
\begin{aligned}
& \sum_{k=0}^{p}(-2)^{k}\binom{p}{p+\delta p-3 k}\binom{3 k-\delta p}{k} \\
= & \sum_{\delta p \leqslant 3 k \leqslant p+\delta p-1}(-2)^{k}\binom{p}{3 k-\delta p}\binom{3 k-\delta p}{k} \\
= & 1-\delta+\sum_{\delta p<3 k<p+\delta p}(-2)^{k}\binom{p}{3 k-\delta p}\binom{3 k-\delta p}{k} .
\end{aligned}
$$

For $j=1, \ldots, p-1$ clearly

$$
\binom{p}{j}=\frac{p}{j}\binom{p-1}{j-1} \equiv p \frac{(-1)^{j-1}}{j}\left(\bmod p^{2}\right)
$$

Thus

$$
\begin{aligned}
& \sum_{\delta p<3 k<p+\delta p}(-2)^{k}\binom{p}{3 k-\delta p}\binom{3 k-\delta p}{k} \\
& \equiv \sum_{\delta p<3 k<p+\delta p}(-2)^{k} p \frac{(-1)^{3 k-\delta p-1}}{3 k-\delta p}\binom{3 k-\delta p}{k} \\
& \equiv(-1)^{\delta+1} \sum_{\delta p<3 k<p+\delta p}(-2)^{k} p \frac{(-1)^{k}}{3 k}\binom{(3 k-\delta p)+\delta p}{k} \\
& \quad(\text { by Lucas' congruence }) \\
& \equiv(-1)^{\delta+1} \frac{p}{3} \sum_{\delta p<3 k<p+\delta p} \frac{2^{k}}{k}\binom{3 k}{k}\left(\bmod p^{2}\right) .
\end{aligned}
$$

SOME CONGRUENCES FOR THE SECOND-ORDER CATALAN NUMBERS 9

Notice that

$$
\begin{aligned}
& \sum_{j=0}^{p}\binom{p}{j} \sum_{k=0}^{p+\delta p}(-2)^{k}\binom{p}{p+\delta p-k}\binom{2 j}{k} \\
= & \sum_{\delta p \leqslant 2 j \leqslant 2 p}\binom{p}{j} \sum_{k=\delta p}^{p+\delta p}(-2)^{k}\binom{p}{k-\delta p}\binom{2 j}{k} \\
= & \sum_{\delta p<2 j<2 p}\binom{p}{j} \sum_{k=\delta p}^{p+\delta p}(-2)^{k}\binom{p}{k-\delta p}\binom{2 j}{k} \\
& +\sum_{2 j \in\{\delta p, 2 p\}}\binom{p}{j} \sum_{k=\delta p}^{p+\delta p}(-2)^{k}\binom{p}{k-\delta p}\binom{2 j}{k} .
\end{aligned}
$$

Clearly

$$
\begin{aligned}
& \sum_{\delta p<2 j<2 p}\binom{p}{j} \sum_{k=\delta p}^{p+\delta p}(-2)^{k}\binom{p}{k-\delta p}\binom{2 j}{k} \\
\equiv & \sum_{\delta p<2 j<2 p}\binom{p}{j}\left((-2)^{\delta p}\binom{p}{0}\binom{2 j}{\delta p}+(-2)^{p+\delta p}\binom{p}{p}\binom{2 j}{p+\delta p}\right) \\
\equiv & \sum_{\delta p<2 j<2 p}\binom{p}{j}(-2)^{\delta p}\binom{2 j-\delta p}{0} \\
& +(1-\delta) \sum_{p<2 j<2 p}\binom{p}{j}(-2)^{p+\delta p}\binom{2 j-p}{p-p}(\text { by Lucas' congruence }) \\
\equiv & (-2)^{\delta} 2^{1-\delta}\left(2^{p-1}-1\right)+(1-\delta)(-2)^{1+\delta}\left(2^{p-1}-1\right) \\
\equiv & (-1)^{\delta} \delta\left(2^{p}-2\right)=-\delta\left(2^{p}-2\right)\left(\bmod p^{2}\right) .
\end{aligned}
$$

(Note that $\delta \in\{0,1\}$ and $2 \sum_{p / 2<j<p}\binom{p}{j}=\sum_{j=1}^{p-1}\binom{p}{j}=2^{p}-2$.) Also,

$$
\sum_{2 j=\delta p}\binom{p}{j} \sum_{k=\delta p}^{p+\delta p}(-2)^{k}\binom{p}{k-\delta p}\binom{2 j}{k}=(1-\delta) \sum_{k=0}^{p}(-2)^{k}\binom{p}{k}\binom{0}{k}=1-\delta
$$

and

$$
\begin{aligned}
& \sum_{2 j=2 p}\binom{p}{j} \sum_{k=\delta p}^{p+\delta p}(-2)^{k}\binom{p}{k-\delta p}\binom{2 j}{k} \\
\equiv & \sum_{k \in\{\delta p, p+\delta p\}}(-2)^{k}\binom{p}{k-\delta p}\binom{2 p}{k} \\
\equiv & (-2)^{\delta p}\binom{2}{\delta}+(-2)^{p+\delta p}\binom{2}{1+\delta}=4^{\delta p}-2^{p+1}\left(\bmod p^{2}\right) .
\end{aligned}
$$

(Recall that $\frac{1}{2}\binom{2 p}{p}=\binom{2 p-1}{p-1} \equiv 1\left(\bmod p^{3}\right)$ by the Wolstenholme congruence (cf. [Gr] or [HT]).)

Combining the above with (4.1), we have

$$
\begin{aligned}
& 2^{p}\left(1-\delta+(-1)^{\delta+1} \frac{p}{3} \sum_{\delta p<3 k<p+\delta p} \frac{2^{k}}{k}\binom{3 k}{k}\right) \\
\equiv & (-1)^{\delta+1}\left(\delta\left(2-2^{p}\right)+1-\delta+4^{\delta p}-2^{p+1}\right)\left(\bmod p^{2}\right) .
\end{aligned}
$$

Setting $\delta=0$ and $\delta=1$ respectively, we obtain

$$
2^{p}-2^{p} \frac{p}{3} \sum_{0<3 k<p} \frac{2^{k}}{k}\binom{3 k}{k} \equiv 2^{p+1}-2\left(\bmod p^{2}\right)
$$

and

$$
2^{p} \frac{p}{3} \sum_{p<3 k<2 p} \frac{2^{k}}{k}\binom{3 k}{k} \equiv 2-2^{p}+4^{p}-2^{p+1}\left(\bmod p^{2}\right) .
$$

It follows that

$$
\frac{2}{3} p \sum_{0<3 k<2 p} \frac{2^{k}}{k}\binom{3 k}{k} \equiv 4^{p}-4 \cdot 2^{p}+4=\left(2^{p}-2\right)^{2} \equiv 0\left(\bmod p^{2}\right)
$$

If $2 p \leqslant 3 k<3 p$, then

$$
\binom{3 k}{k}=\frac{3 k \cdots(2 k+1)}{k!} \equiv 0(\bmod p)
$$

Therefore

$$
\sum_{k=1}^{p-1} \frac{2^{k}}{k}\binom{3 k}{k}=\sum_{0<3 k<2 p} \frac{2^{k}}{k}\binom{3 k}{k}+\sum_{2 p \leqslant 3 k<3 p} \frac{2^{k}}{k}\binom{3 k}{k} \equiv 0(\bmod p) .
$$

This completes the proof of Theorem 1.3.

References

[Gr] A. Granville, Arithmetic properties of binomial coefficients. I. Binomial coefficients modulo prime powers, in: Organic Mathematics (Burnady, BC, 1995), 253-276, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997.
[HT] C. Helou and G. Terjanian, On Wolstenholme's theorem and its converse, J. Number Theory 128 (2008), 475-499.
[HS] H. Hu and Z. W. Sun, An extension of Lucas' theorem, Proc. Amer. Math. Soc. 129 (2001), 3471-3478.
[PS] H. Pan and Z. W. Sun, A combinatorial identity with application to Catalan numbers, Discrete Math. 306 (2006), 1921-1940.
[St] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge, 1999.
[ST1] Z. W. Sun and R. Tauraso, On some new congruences for binomial coefficients, preprint, arXiv:0709.1665.
[ST2] Z. W. Sun and R. Tauraso, New congruences for central binomial coefficients, Adv. in Appl. Math., to appear. http://arxiv.org/abs/0805. 0563.

[^0]: 2000 Mathematics Subject Classification. Primary 11B65; Secondary 05A10, 11A07. The third author is the corresponding author. He was supported by the National Natural Science Foundation (grant 10871087) and the Overseas Cooperation Fund of China.

