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1. Introduction and the statements of main results

The Stirling number of the second kind S(n, k) is defined for n ∈ N and positive
integer k � n as the number of ways to partition a set of n elements into exactly k

non-empty subsets. It satisfies the recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k),

with initial condition S(0, 0) = 1 and S(n, 0) = 0 for n > 0. There is also an explicit
formula in terms of binomial coefficients given by

S(n, k) = 1
k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n. (1)

Divisibility properties of Stirling numbers have been studied from a number of different
perspectives. It is known that for each fixed k, the sequence {S(n, k), n � k} is periodic
modulo prime powers. The length of this period has been studied by Carlitz [5] and
Kwong [16]. Chan and Manna [6] characterized S(n, k) modulo prime powers in terms of
binomial coefficients. In fact, they gave explicit formulas for S(n, k) modulo 4, then for
S(n, a2m) modulo 2m, where m � 3, a > 0 and n � a2m + 1, and finally for S(n, apm)
modulo pm with p being an odd prime.

Divisibility properties of integer sequences are often expressed in terms of p-adic val-
uations. Given a prime p and a positive integer m, there exist unique integers a and n,
with p � a and n � 0, such that m = apn. The number n is called the p-adic valuation
of m, denoted by n = νp(m). The numbers min{νp(k!S(n, k)): m � k � n} are impor-
tant in algebraic topology, see, for example, [3,8,10–12,20,21]. Some work on evaluating
νp(k!S(n, k)) has appeared in above papers as well as in [7,9,24]. Amdeberhan, Manna
and Moll [2] investigated the 2-adic valuations of Stirling numbers of the second kind
and computed ν2(S(n, k)) for k � 4. They also raised an interesting conjecture on the
congruence classes of S(n, k), modulo powers of 2. Recently, Bennett and Mosteig [4]
used computational methods to justify this conjecture if k � 20. But this conjecture is
still kept open if k � 21.

This paper deals with the 2-adic valuations of the Stirling numbers of the second
kind. Lengyel [17] studied the 2-adic valuations of S(n, k) and conjectured, proved by
Wannemacker [23], ν2(S(2n, k)) = s2(k) − 1, where s2(k) means the base 2 digital sum
of k. Using Wannemacker’s result, Hong, Zhao and Zhao [13] proved that ν2(S(2n + 1,
k + 1)) = s2(k) − 1, which confirmed another conjecture of Amdeberhan, Manna and
Moll [2]. Lengyel [18,19] showed that if 1 � k � 2n, then ν2(S(c2n, k)) = s2(k) − 1 for
any positive integer c. Meanwhile, Lengyel [18] proved that ν2(S(c2n, k)) � s2(k) − 1 if
c � 1 is an odd integer and 1 � k � 2n+1. Actually, a more general result is true. That
is, one has
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Theorem 1.1. Let n, a, b, c ∈ N with 0 < a < 2n+1, b2n+1 + a � c2n and c � 1 being odd.
Then

ν2
(
S
(
c2n, b2n+1 + a

))
� s2(a) − 1.

If one picks b = c−1
2 and 1 � a � 2n, then the lower bound in Theorem 1.1 is arrived

as the following result shows.

Theorem 1.2. Let a, c, n ∈ N with c � 1 being odd, n � 2 and 1 � a � 2n. Then

ν2
(
S
(
c2n, (c− 1)2n + a

))
= s2(a) − 1.

Another interesting property is related to the difference of Stirling numbers of the
second kind. Lengyel [18] studied the 2-adic valuations of the difference S(c2n+1, k) −
S(c2n, k) with 1 � k � 2n and c � 1 odd. In the meantime, Lengyel posed the following
conjecture.

Conjecture 1.1. (See [18].) Let n, k, a, b ∈ N, c � 1 being odd and 3 � k � 2n. Then

ν2
(
S
(
c2n+1, k

)
− S

(
c2n, k

))
= n + 1 − f(k) (2)

and

ν2
(
S
(
a2n, k

)
− S

(
b2n, k

))
= n + 1 + ν2(a− b) − f(k)

for some function f(k) which is independent of n.

As usual, for any real number x, let �x� and �x� denote the smallest integer no less
than x and the biggest integer no more than x, respectively. Note that Lengyel [18] proved
that (2) is true for any integer k with s2(k) � 2. Lengyel [18] also noticed that for small
values of k, numerical experimentation suggests that f(k) = 1 + �log2 k� − s2(k)− δ(k),
where δ(4) = 2 and otherwise it is zero except if k is a power of two or one less, in which
cases δ(k) = 1. The present paper focuses on investigating Conjecture 1.1. One has the
following result.

Theorem 1.3. Let n, k, a, b ∈ N, c � 1 being odd, 3 � k � 2n, and a > b. If k is not a
power of 2 minus 1, then

ν2
(
S
(
a2n, k

)
− S

(
b2n, k

))
= n + ν2(a− b) − �log2 k� + s2(k) + δ(k), (3)

where δ(4) = 2, δ(k) = 1 if k > 4 is a power of 2, and δ(k) = 0 otherwise. In particular,

ν2
(
S
(
c2n+1, k

)
− S

(
c2n, k

))
= n− �log2 k� + s2(k) + δ(k). (4)
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By Theorem 1.3, one knows that Conjecture 1.1 holds except when k is a power of 2
minus 1.

In order to prove Theorem 1.3, one needs a special case of the 2-adic valuation of
S(n, k), which can be stated as follows.

Theorem 1.4. Let a, b, c,m, n ∈ Z+, 1 � a < 2n+1, m � n + 2 + �log2 b� and c � 1 being
odd. Then

ν2
(
S
(
c2m + b2n+1 + 2n, b2n+2 + a

)){= n, if a = 2n+1 − 1,
� s2(a), if a < 2n+1 − 1.

This paper is organized as follows. Some preliminary results are presented in Section 2.
Then the proofs of Theorems 1.1 and 1.2 are given in Section 3. Consequently, Section 4
is devoted to the proof of Theorem 1.4. Finally, in Section 5, one uses Theorems 1.1
and 1.4 to show Theorem 1.3.

2. Lemmas

Several well-known results, which are needed for the proofs of the main results, are
given in this section.

Lemma 2.1 (Legendre). (See [22].) Let n ∈ N. Then ν2(n!) = n− s2(k).

Lemma 2.2 (Kummer). (See [15].) Let k and n ∈ N be such that k � n. Then ν2(
(
n
k

)
) =

s2(k) + s2(n− k) − s2(n). Moreover, s2(k) + s2(n− k) � s2(n).

Lemma 2.3. (See [18].) Let k, n, c ∈ N and 1 � k � 2n. Then ν2(S(c2n, k)) = s2(k) − 1.

Lemma 2.4. (See [18].) Let k, n, c ∈ N, 2n < k < 2n+1 − 1 and c � 3 be an odd integer.
Then ν2(S(c2n, k)) � s2(k) and ν2(S(c2n, 2n+1 − 1)) = n.

Lemma 2.5. (See [18].) Let m,n, c ∈ N and 0 � m < n. Then ν2(S(c2n + 2m, 2n)) =
n− 1 −m.

Lemma 2.6. (See [23].) Let k, n,m ∈ N and 0 � k � n + m. Then

S(n + m, k) =
k∑

j=1

j∑
i=0

(
j

i

)
(k − i)!
(k − j)!S(n, k − i)S(m, j).

Lemma 2.7. (See [1].) For r � max(k1, k2) + 2, one has

k1!k2!(r − 1)!
(k1 + k2 + 1)!S(k1 + k2 + 2, r) =

r−1∑
i=1

(i− 1)!(r − i− 1)!S(k1 + 1, i)S(k2 + 1, r − i).
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Lemma 2.8. (See [14].) Let m,n, v ∈ N, v � 1 and p be a prime number. Then

Bm+npv (x) ≡
n∑

j=0

(
n

j

)(
xp + xp2

+ · · · + xpv)n−j
Bm+j(x) mod np

2 Zp[x], (5)

where the Bell polynomials are defined by

Bn(x) =
n∑

k=0

S(n, k)xk, n � 0. (6)

Let n =
∑∞

λ=0 ελ(n)2λ with ελ(n) ∈ {0, 1}. Then s2(n) =
∑∞

λ=0 ελ(n). Further, one
has the following result.

Lemma 2.9. Let m and n ∈ N. Then s2(m + n) = s2(m) + s2(n) if and only if ελ(m) +
ελ(n) = ελ(m + n) for all λ ∈ N.

Proof. This lemma follows immediately from the proof of Lemma 1 in [23]. �
Lemma 2.10. Let n, a ∈ N and 1 � a < 2n+1. Define the set J of positive integers by
J := {1 � j � 2n | s2(2n+1 + a − j) + s2(j) = s2(2n+1 + a)}. Then |J | = 2s2(a) − 1 if
1 � a � 2n, and |J | = 2s2(a)−1 if 2n < a < 2n+1.

Proof. For any positive integer d, define Md := {λ ∈ N | ελ(d) = 1}. Then d =
∑

λ∈Md
2λ

and s2(d) = |Md|. By Lemma 2.9 one knows that s2(2n+1 +a− j)+s2(j) = s2(2n+1 +a)
if and only if

ελ(j) + ελ
(
2n+1 + a− j

)
= ελ

(
2n+1 + a

)
(7)

for all λ ∈ N. Therefore by (7), one has that for any given λ ∈ N, ελ(j) = 0 or 1 if
ελ(2n+1 + a) = 1, and ελ(j) = 0 if ελ(2n+1 + a) = 0. It then follows that for any given
integer 1 � a � 2n, j ∈ J if and only if Mj ⊆ Ma and Mj 	= ∅. So |J | = 2|Ma| − 1 =
2s2(a) − 1 if 1 � a � 2n.

Now let 2n < a < 2n+1. So if j = 2n, then one can check that s2(2n+1 + a − 2n) +
s2(2n) = s2(2n+1+a). This implies that 2n ∈ J . On the other hand, since 1 < a−2n < 2n,
one gets that j ∈ J\{2n} if and only if Mj ⊆ Ma−2n and Mj 	= ∅. Hence |J | = 2|Ma−2n | =
2s2(a)−1 if 2n < a < 2n+1. The proof of Lemma 2.10 is complete. �
Lemma 2.11. Let n, a, c ∈ N with c � 1 being odd and 1 � a � 2n. Then

s2
(
c2n − a

)
= s2(c) + n− ν2(a) − s2(a). (8)

Proof. If a = 2n, then it is easy to check that (8) is true. Now let 1 � a < 2n. One can
write a =

∑n−1
λ=ν (a) ελ(a)2λ. Clearly s2(a) =

∑n−1
λ=ν (a) ελ(a) and εν2(a)(a) = 1. Then
2 2
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c2n − a = (c− 1)2n + 2n − a

= (c− 1)2n +
(

2ν2(a) +
n−1∑

λ=ν2(a)

2λ
)

−
n−1∑

λ=ν2(a)

ελ(a)2λ

= (c− 1)2n +
n−1∑

λ=ν2(a)

(
1 − ελ(a)

)
2λ + 2ν2(a). (9)

Since s2(c− 1) = s2(c) − 1, by (9) one has

s2
(
c2n − a

)
= s2(c− 1) +

n−1∑
λ=ν2(a)

(
1 − ελ(a)

)
+ 1

= s2(c) +
n−1∑

λ=ν2(a)

(
1 − ελ(a)

)
= s2(c) + n− ν2(a) − s2(a)

as required. This completes the proof of Lemma 2.11. �
Lemma 2.12. (See [13].) Let N � 2 be an integer and r, t be odd numbers. For any
m ∈ Z+, one has ν2((r2N − 1)t2m − 1) = m + N .

3. Proofs of Theorems 1.1 and 1.2

In this section, one uses induction and Lemmas 2.1 to 2.4 and 2.6 as well as 2.7 to
show Theorems 1.1 and 1.2. One begins with the proof of Theorem 1.1.

Proof of Theorem 1.1. If b = 0, then Theorem 1.1 is true by Lemmas 2.3 and 2.4. In
what follows one lets b � 1. There exists a unique integer e � 0 such that 2e � b < 2e+1.
One shows Theorem 1.1 using induction on e. First one treats the case e = 0, i.e., b = 1.
Using Lemma 2.6 with n, m and k replaced by (c− 1)2n, 2n and 2n+1 + a, respectively,
one has

S
(
c2n, 2n+1 + a

)
=

2n+1+a∑
j=1

j∑
i=0

f(i, j) =
2n∑
j=1

2n∑
i=0

f(i, j), (10)

where

f(i, j) :=
(
j

i

)
(2n+1 + a− i)!
(2n+1 + a− j)!S

(
(c− 1)2n, 2n+1 + a− i

)
S
(
2n, j

)
.

Since c is an odd integer, ν2((c− 1)2n) � n+ 1. It then follows from Lemmas 2.1, 2.3
and 2.4 that
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ν2
(
f(i, j)

)
� ν2

(
(2n+1 + a− i)!
(2n+1 + a− j)!

)
+ ν2

(
S
(
(c− 1)2n, 2n+1 + a− i

))
+ ν2

(
S
(
2n, j

))
� ν2

((
2n+1 + a− i

)
!
)
− ν2

((
2n+1 + a− j

)
!
)

+ s2
(
2n+1 + a− i

)
− 1 + s2(j) − 1

= (j − i) + s2
(
2n+1 + a− j

)
− s2

(
2n+1 + a− i

)
+ s2

(
2n+1 + a− i

)
+ s2(j) − 2

� s2
(
2n+1 + a− j

)
+ s2(j) − 2 (11)

since j � i. By Lemma 2.2 one knows that

s2(j) + s2
(
2n+1 + a− j

)
� s2

(
2n+1 + a

)
.

So by (11) and noting that 0 < a < 2n+1, one obtains

ν2
(
f(i, j)

)
� s2

(
2n+1 + a

)
− 2 = s2(a) − 1. (12)

It then follows from (10) and (12) that

ν2
(
S
(
c2n, 2n+1 + a

))
� min

0�i�j�2n

{
ν2
(
f(i, j)

)}
� s2(a) − 1.

Hence Theorem 1.1 is true if e = 0. In what follows, one lets e � 1.
Assume that Theorem 1.1 is true for the case t with t � e − 1. Then ν2(S(c2n,

b2n+1 + a)) � s2(a) − 1 for any integers b with 0 � b < 2e. In the following one proves
that Theorem 1.1 is true for the case e. This is equivalent to showing that Theorem 1.1
is true for all integers b ∈ [2e, 2e+1), which will be done in what follows.

Let b ∈ [2e, 2e+1) be any given integer. Since c2n � b2n+1 +a, there exist two positive
integers c1 and c2 such that c = c1 + c22ν2(b)+1 and c1 < 2ν2(b)+1. So by Lemma 2.6

S
(
c2n, b2n+1 + a

)
=

c12n∑
j=1

j∑
i=0

g(i, j), (13)

where

g(i, j) :=
(
j

i

)
(b2n+1 + a− i)!
(b2n+1 + a− j)!S

(
c22n+ν2(b)+1, b2n+1 + a− i

)
S
(
c12n, j

)
.

Claim 1. One has

ν2
(
S
(
c22n+ν2(b)+1, b2n+1 + a− i

))
� s2

(
b2n+1 + a− i

)
− s2(b). (14)
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Let’s now prove Claim 1. If ν2(c2) + ν2(b) � e, then b2n+1 + a − i < 2e+n+2 �
2ν2(b)+ν2(c2)+n+2 since a < 2n+1 and 2e � b < 2e+1. So by Lemmas 2.3 and 2.4, one
obtains that

ν2
(
S
(
c22n+ν2(b)+1, b2n+1 + a− i

))
= ν2

(
S

(
c2

2ν2(c2)
2n+ν2(b)+ν2(c2)+1, b2n+1 + a− i

))
� s2

(
b2n+1 + a− i

)
− 1

� s2
(
b2n+1 + a− i

)
− s2(b)

as desired. So Claim 1 is proved in this case.
If ν2(c2)+ν2(b) � e−1, then one can write b = b12ν2(c2)+ν2(b)+1 +b2 for some integers

0 < b1 < 2e−ν2(c2)−ν2(b) and 2ν2(b) � b2 < 2ν2(c2)+ν2(b)+1 since 2e � b < 2e+1. One can
deduce that s2(b2n+1 + a − i) = s2(b22n+1 + a − i) + s2(b1). It then follows from the
inductive hypothesis that

ν2
(
S
(
c22n+ν2(b)+1, b2n+1 + a− i

))
= ν2

(
S

(
c2

2ν2(c2)
2n+ν2(b)+ν2(c2)+1, b12n+ν2(b)+ν2(c2)+2 + b22n+1 + a− i

))
� s2

(
b22n+1 + a− i

)
− 1

= s2
(
b2n+1 + a− i

)
− s2(b1) − 1

� s2
(
b2n+1 + a− i

)
− s2(b)

as required. So Claim 1 is true for this case. This concludes the proof of Claim 1.

Claim 2. For all the integers i and j such that 0 � i � j � c12n with c1 < 2ν2(b)+1, one
has

ν2
(
g(i, j)

)
� s2(a) − 1. (15)

Suppose that Claim 2 is true. Then from (13) and Claim 2, one deduces that

ν2
(
S
(
c2n, b2n+1 + a

))
� min

0�i�j�c12n

{
ν2
(
g(i, j)

)}
� s2(a) − 1.

In other words, Theorem 1.1 holds if b ∈ [2e, 2e+1). To finish the proof of Theorem 1.1,
it remains to show that Claim 2 is true which will be done in the following.

If 1 � j < 2n+1, then by Lemmas 2.3 and 2.4 one has ν2(S(c12n, j)) � s2(j)−1. Thus
using Lemmas 2.1–2.2 and the Claim 1, one derives from a < 2n+1 that

ν2
(
g(i, j)

)
� ν2

(
(b2n+1 + a− i)!
(b2n+1 + a− j)!

)
+ s2

(
b2n+1 + a− i

)
− s2(b) + s2(j) − 1

� s2
(
b2n+1 + a− j

)
− s2

(
b2n+1 + a− i

)
+ s2

(
b2n+1 + a− i

)
− s2(b) + s2(j) − 1
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� s2
(
b2n+1 + a− j

)
+ s2(j) − s2(b) − 1

� s2
(
b2n+1 + a

)
− s2(b) − 1

= s2(a) − 1

as required. Hence Claim 2 is true in this case.
If 2n+1 � j � c12n, then one may let j = j12n+1 + j2 for some integers 0 � j2 < 2n+1

and j1 < 2ν2(b) since c1 < 2ν2(b)+1. If j2 = 0, i.e., j = j12n+1, then by (14) and
Lemmas 2.1–2.2, noting that a < 2n+1, one yields

ν2
(
g(i, j)

)
� ν2

(
(b2n+1 + a− i)!
(b2n+1 + a− j)!

)
+ ν2

(
S
(
c22n+ν2(b)+1, b2n+1 + a− i

))
� s2

(
b2n+1 + a− j

)
− s2

(
b2n+1 + a− i

)
+ s2

(
b2n+1 + a− i

)
− s2(b)

= s2
(
(b− j1)2n+1 + a

)
− s2(b)

= s2(b− j1) + s2(a) − s2(b)

� s2(a)

since j1 < 2ν2(b) implying that s2(b − j1) � s2(b). Hence (15) is true if j2 = 0. Now let
j2 � 1. Since j1 < 2ν2(b) � 2e, by the inductive hypothesis one has

ν2
(
S
(
c12n, j

))
= ν2

(
S
(
c12n, j12n+1 + j2

))
� s2(j2) − 1. (16)

Thus by Lemmas 2.1–2.2, (14) and (16) one obtains

ν2
(
g(i, j)

)
� ν2

(
(b2n+1 + a− i)!
(b2n+1 + a− j)!

)
+ ν2

(
S
(
c22n+ν2(b)+1, b2n+1 + a− i

))
+ S

(
c12n, j

)
� s2

(
b2n+1 + a− j

)
− s2

(
b2n+1 + a− i

)
+ s2

(
b2n+1 + a− i

)
− s2(b) + s2(j2) − 1

= s2
(
b2n+1 + a− j

)
+ s2(j2) − s2(b) − 1

= s2
(
(b− j1)2n+1 + a− j2

)
+ s2(j2) − s2(b) − 1

� s2
(
(b− j1)2n+1 + a

)
− s2(b) − 1

= s2(b− j1) + s2(a) − s2(b) − 1

� s2(a) − 1

since s2(b− j1) � s2(b). Hence Claim 2 holds if j2 � 1. So Claim 2 is proved.
This completes the proof of Theorem 1.1. �
Consequently, one turns attention to the proof of Theorem 1.2.
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Proof of Theorem 1.2. If a = 2n, then by definition of Stirling numbers of the second
kind, one has

S
(
c2n, (c− 1)2n + a

)
= S

(
c2n, c2n

)
= 1.

This implies that ν2(S(c2n, c2n)) = s2(2n) − 1. So Theorem 1.2 is true in this case.
Now let 1 � a < 2n and b = c−1

2 . Then

S
(
c2n, (c− 1)2n + a

)
= S

(
b2n+1 + 2n, b2n+1 + a

)
.

To prove Theorem 1.2, it is sufficient to show that

ν2
(
S
(
b2n+1 + 2n, b2n+1 + a

))
= s2(a) − 1. (17)

For t ∈ N, define

At :=
{
b ∈ N

∣∣ s2(b) = t
}
. (18)

Then N =
⋃∞

t=0 At. The proof is proceeded with induction on t. First one considers the
case t = 0. If b ∈ A0, then b = 0. By Lemma 2.3 one has

ν2
(
S
(
b2n+1 + 2n, b2n+1 + a

))
= ν2

(
S
(
2n, a

))
= s2(a) − 1.

So Theorem 1.2 holds if t = 0.
In the following let t � 1. Assume that Theorem 1.2 is true for the case r with r � t−1.

Then (17) holds for any positive integers b ∈ A0 ∪ A1 ∪ · · · ∪ At−1. One will prove that
Theorem 1.2 is true for the case t, which is equivalent to showing (17) for all the integers
b ∈ At.

Let b ∈ At be a given integer. One first notices that

b2n+1 + a � max
(
b2n+1 − 1, 2n − 1

)
+ 2.

Letting k1 = b2n+1 − 1, k2 = 2n − 1 and r = b2n+1 + a in Lemma 2.7 gives us that

(b2n+1 − 1)!(2n − 1)!
(b2n+1 + 2n − 1)!

(
b2n+1 + a− 1

)
!S
(
b2n+1 + 2n, b2n+1 + a

)
=

b2n+1+a−1∑
i=1

(i− 1)!
(
b2n+1 + a− i− 1

)
!S
(
2n, i

)
S
(
b2n+1, b2n+1 + a− i

)

=
2n∑ 1

i(b2n+1 + a− i) i!S
(
2n, i

)(
b2n+1 + a− i

)
!S
(
b2n+1, b2n+1 + a− i

)
.

i=a
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It follows that

(
b2n+1 + a

)
!S
(
b2n+1 + 2n, b2n+1 + a

)
= (b2n+1 + 2n − 1)!

(b2n+1 − 1)!(2n − 1)!

2n∑
i=a

l(i), (19)

where

l(i) := b2n+1 + a

i(b2n+1 + a− i) i!S
(
2n, i

)(
b2n+1 + a− i

)
!S
(
b2n+1, b2n+1 + a− i

)
.

Write b = (2b0 + 1)2ν2(b) for some b0 ∈ N. Clearly s2(b0) = s2(b) − 1 = t − 1 since
b ∈ At. Then b0 ∈ At−1. It then follows from Lemma 2.1 that

ν2

(
(b2n+1 + 2n − 1)!

(b2n+1 − 1)!(2n − 1)!

)
= ν2

((
b2n+1 + 2n − 1

)
!
)
− ν2

((
b2n+1 − 1

)
!
)
− ν2

((
2n − 1

)
!
)

= 1 − s2
(
b2n+1 + 2n − 1

)
+ s2

(
b2n+1 − 1

)
+ s2

(
2n − 1

)
= 1 − s2

(
b2n+1) + s2

(
b02n+ν2(b)+2 + 2n+ν2(b)+1 − 1

)
= 1 − s2(b) + s2(b0) + n + ν2(b) + 1

= n + ν2(b) + 1. (20)

On the other hand, one has

ν2
((
b2n+1 + a

)
!
)

=
(
b2n+1 + a

)
− s2

((
b2n+1 + a

))
= b2n+1 + a− s2(b) − s2(a). (21)

So in order to show that (17) is true, by (19)–(21) one only needs to show that

ν2

( 2n∑
i=a

l(i)
)

=
(
b2n+1 + a

)
−
(
s2(b) + ν2(b) + n + 2

)
. (22)

To do so, one discusses the 2-adic valuation of l(i) with a � i � 2n in what follows.
Since b0 ∈ At−1 and 0 < 2n+ν2(b)+1 + a− i � 2n+ν2(b)+1, by the inductive hypothesis

and Lemma 2.3, one can derive that

ν2
(
S
(
b2n+1, b2n+1 + a− i

))
= ν2

(
S
(
b02n+ν2(b)+2 + 2n+ν2(b)+1, b02n+ν2(b)+2 + 2n+ν2(b)+1 + a− i

))
= s2

(
2n+ν2(b)+1 + a− i

)
− 1

= s2
(
(2b0 + 1)2n+ν2(b)+1 + a− i

)
− s2(b0) − 1

= s2
(
b2n+1 + a− i

)
− s2(b) (23)
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since b = (2b0+1)2ν2(b) and s2(b) = s2(b0)+1. Furthermore, by Lemmas 2.1, 2.3 and (23)
one can compute that

ν2
(
i!S

(
2n, i

)(
b2n+1 + a− i

)
!S
(
b2n+1, b2n+1 + a− i

))
= i− s2(i) + s2(i) − 1 +

(
b2n+1 + a− i

)
− s2

(
b2n+1 + a− i

)
+ s2

(
b2n+1 + a− i

)
− s2(b)

=
(
b2n+1 + a

)
− s2(b) − 1. (24)

Then by (24) one has

ν2
(
l(i)

)
=

(
b2n+1 + a

)
− s2(b) − 1 + ν2

(
b2n+1 + a

)
− ν2(i) − ν2

(
b2n+1 + a− i

)
. (25)

If i = a, then by (25) and noticing that a � 2n, one gets that

ν2
(
l(a)

)
=

(
b2n+1 + a

)
− s2(b) − 1 + ν2

(
b2n+1 + a

)
− ν2(a) − ν2

(
b2n+1)

=
(
b2n+1 + a

)
−
(
s2(b) + ν2(b) + n + 2

)
. (26)

If a < i � 2n and ν2(i) � ν2(b2n+1 + a), then

ν2(i) − ν2
(
b2n+1 + a

)
+ ν2

(
b2n+1 + a− i

)
� ν2

(
b2n+1 + a− i

)
< n. (27)

It then follows from (25) and (27) that

ν2
(
l(i)

)
>

(
b2n+1 + a

)
− s2(b) − 1 − n >

(
b2n+1 + a

)
−

(
s2(b) + ν2(b) + n + 2

)
. (28)

If a < i � 2n and ν2(i) > ν2(b2n+1 + a), then one has

ν2(i) − ν2
(
b2n+1 + a

)
+ ν2

(
b2n+1 + a− i

)
= ν2(i) � n. (29)

So by (25) and (29) one has

ν2
(
l(i)

)
�

(
b2n+1 + a

)
− s2(b) − 1 − n >

(
b2n+1 + a

)
−

(
s2(b) + ν2(b) + n + 2

)
. (30)

Thus the desired result (22) follows immediately from (26), (28) and (30). So (17) holds
if b ∈ At, which implies that Theorem 1.2 is true if b ∈ At.

The proof of Theorem 1.2 is complete. �
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4. Proof of Theorem 1.4

The purpose of this section is to prove Theorem 1.4. Note that its proof is different
from the proofs of Theorems 1.1 and 1.2. So one provides the details of the proof of
Theorem 1.4. Throughout this section, one always lets a, b, c,m, n ∈ Z+, 1 � a < 2n+1,
m � n + 2 + �log2 b� and c � 1 being odd. For any integers i and j with 0 � i � j �
b2n+1 + 2n, one defines

h(i, j) :=
(
j

i

)
(b2n+2 + a− i)!
(b2n+2 + a− j)!S

(
c2m, b2n+2 + a− i

)
S
(
b2n+1 + 2n, j

)
. (31)

Let

Δ1 :=
2n∑
j=1

j∑
i=0

h(i, j), Δ2 :=
2n+1−2∑
j=2n+1

j∑
i=0

h(i, j),

Δ3 :=
2n+1−1∑

i=0
h
(
i, 2n+1 − 1

)
, Δ4 :=

b2n+1+2n∑
j=b2n+1+1

j∑
i=0

h(i, j). (32)

First one uses the lemmas in Section 2 and Theorem 1.2 to prove the following result.

Lemma 4.1. Each of the following is true:

(i) For l = 1 and 4, one has ν2(Δl)
{= s2(a) − 1, if 1 � a � 2n and s2(b) = 1,
� s2(a), otherwise;

(ii) ν2(Δ2) � s2(a);

(iii) ν2(Δ3)
{

= n, if a = 2n+1 − 1 and s2(b) = 1,
� s2(a), otherwise;

(iv) ν2(Δ1 + Δ2 + Δ3 + Δ4)
{

= n, if a = 2n+1 − 1 and s2(b) = 1,
� s2(a), otherwise.

Proof. Evidently, part (iv) follows immediately from parts (i)–(iii). So one needs only to
show parts (i)–(iii) which will be done in what follows. By Lemmas 2.1 and 2.2, one has

ν2

((
j

i

)
(b2n+2 + a− i)!
(b2n+2 + a− j)!

)
= s2(i) + s2(j − i) − s2(j) + j − i

+ s2
(
b2n+2 + a− j

)
− s2

(
b2n+2 + a− i

)
. (33)

(i) First one treats with Δ1. Let 1 � j � 2n and 0 � i � j. By Lemma 2.3

ν2
(
S
(
b2n+1 + 2n, j

))
= s2(j) − 1. (34)
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Let m > n+ 2 + �log2 b�. Since a < 2n+1 and 1 � i � 2n, one has b2n+2 + a− i < 2m.
By Lemma 2.3 one obtains ν2(S(c2m, b2n+2 + a− i)) = s2(b2n+2 + a− i)− 1. Then from
(31), (33), (34) and Lemma 2.2, one obtains that

ν2
(
h(i, j)

)
= s2(i) + s2(j − i) + j − i + s2

(
b2n+2 + a− j

)
− 2

� s2(j) + s2
(
b2n+2 + a− j

)
+ j − i− 2

� s2
(
b2n+2 + a

)
− 2

� s2(a) − 1, (35)

where equality holds if and only if j = i, s2(b) = 1 and s2(b2n+2 + a − j) + s2(j) =
s2(b2n+2 + a). So by (32) and (35) one gets that

Δ1 = 2s2(a)Δ̃1 + 2s2(a)−1
∑

(i,j)∈J̃

h̃(i, j), (36)

where Δ̃1 ∈ Z+ and J̃ := {(i, j) | h̃(i, j) is odd, 1 � i � j � 2n}. Then

J̃ =
{
(i, j)

∣∣ j = i, s2(b) = 1 and s2
(
b2n+2 + a− j

)
+ s2(j) = s2

(
b2n+2 + a

)}
=

{
(j, j)

∣∣ s2(b) = 1 and s2
(
b2n+2 + a− j

)
+ s2(j) = s2

(
b2n+2 + a

)}
=

{
1 � j � 2n

∣∣ s2(b) = 1 and s2
(
2n+2 + a− j

)
+ s2(j) = s2

(
2n+2 + a

)}
.

Thus by Lemma 2.10 one knows that |J̃ | = 2s2(a) − 1 if 1 � a � 2n and 2s2(a)−1 else.
Furthermore, by (36), one derives that ν2(Δ1) equals s2(a) − 1 if s2(b) = 1 and

1 � a � 2n, and is greater than s2(a) otherwise. So Lemma 4.1 (i) is true if l = 1 and
m > n + 2 + �log2 b�.

Now let m = n + 2 + �log2 b�. If either 2n < a < 2n+1, or 1 � a � 2n and 1 � i < a,
then one can check that the following is true:

2m � b2n+2 < b2n+2 + a− i < b2n+2 + a � 2m+1 − 1.

So Lemma 2.4 implies that

ν2
(
S
(
c2m, b2n+2 + a− i

))
� s2

(
b2n+2 + a− i

)
. (37)

Thus by Lemma 2.2, (31), (33), (34) and (37) one deduces that

ν2
(
h(i, j)

)
� s2(i) + s2(j − i) + j − i + s2

(
b2n+2 + a− j

)
− 1

� s2(j) + s2
(
b2n+2 + a− j

)
+ j − i− 1

� s2
(
b2n+2 + a

)
− 1

� s2(a). (38)
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If 1 � a � 2n and a � i � j, then b2n+2 + a− i � b2n+2 � 2m. Then by Lemma 2.3
one gets ν2(S(c2m, b2n+2 + a − i)) = s2(b2n+2 + a − i) − 1. Hence by (33), (31) and
Lemma 2.2, one has

ν2
(
h(i, j)

)
= s2(i) + s2(j − i) + j − i + s2

(
b2n+2 + a− j

)
− 2

� s2(j) + s2
(
b2n+2 + a− j

)
+ j − i− 2

� s2
(
b2n+2 + a

)
− 2

� s2(a) − 1, (39)

with equality holding if and only if

j = i, s2(b) = 1 and s2
(
b2n+2 + a− j

)
+ s2(j) = s2

(
b2n+2 + a

)
. (40)

Since 1 � j � 2n and a � i � j, by Lemma 2.9 one knows that (40) holds only when
i = j = a and s2(b) = 1. It follows from (38) and (39) that ν2(h(i, j)) � s2(a) except for
i = j = a ∈ [1, 2n] and s2(b) = 1, in which case one has ν2(h(a, a)) = s2(a) − 1. Then
by (32), one has ν2(Δ1) = s2(a) − 1 if a ∈ [1, 2n] and s2(b) = 1, and ν2(Δ1) � s2(a)
otherwise. Thus Lemma 4.1 (i) is true if l = 1 and m = n+2+�log2 b�. So the statement
for Δ1 is proved.

Now one handles Δ4. Note that b2n+1 + 1 � j � b2n+1 + 2n and 0 � i � j. Let
j = b2n+1 + j0 for some integer 1 � j0 � 2n. By Theorem 1.2 one has

ν2
(
S
(
b2n+1 + 2n, j

))
= ν2

(
S
(
b2n+1 + 2n, b2n+1 + j0

))
= s2(j0) − 1. (41)

Since m � n+2+ �log2 b�, one has b2n+2 +a− j < bn+1 +a < 2m. So by Lemmas 2.3
and 2.4 one gets

ν2
(
S
(
c2m, b2n+2 + a− i

))
� s2

(
b2n+2 + a− i

)
− 1 (42)

and

ν2
(
S
(
c2m, b2n+2 + a− j

))
= s2

(
b2n+2 + a− j

)
− 1. (43)

So by (31), (33), (41)–(43) and Lemma 2.2 one obtains that

ν2
(
h(i, j)

)
� s2(i) + s2(j − i) − s2(j) + j − i + s2

(
b2n+2 + a− j

)
+ s2(j0) − 2

� s2
(
b2n+1 + a− j0

)
+ s2(j0) − 2

� s2(a) − 1, (44)

where equality holds if and only if j = i, s2(b) = 1 and s2(b2n+1 + a − j0) + s2(j0) =
s2(b2n+1 +a). It is similar to Δ1 with m � n+2+ �log2 b�, by Lemma 2.10 and (44) one
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has that ν2(Δ4) = s2(a) − 1 if a ∈ [1, 2n] and s2(b) = 1, and ν2(Δ4) � s2(a) otherwise.
So Lemma 4.1 (i) is true if l = 4.

(ii) For Δ2, noticing that 2n < j < 2n+1 − 1, 0 � i � j and m � n+2+ �log2 b�, then
by Lemmas 2.2–2.4, one gets

ν2
(
S
(
c2m, b2n+2 + a− i

)
S
(
b2n+1 + 2n, j

))
� s2

(
b2n+2 + a− i

)
− 1 + s2(j).

So by (31) and (33), one has

ν2
(
h(i, j)

)
� s2(i) + s2(j − i) + j − i + s2

(
b2n+2 + a− j

)
− 1

� s2
(
b2n+2 + a

)
− 1

� s2(a). (45)

Hence by (32) and (45), one has ν2(Δ2) � s2(a) as desired.
(iii) For Δ3, noting that j = 2n+1 − 1 and 0 � i � 2n+1 − 1, it follows from Lem-

mas 2.2–2.4, (32) and (33) that

ν2
(
h
(
i, 2n+1 − 1

))
� s2(i) + s2(j − i) + j − i + s2

(
b2n+2 + a− j

)
− 1

� s2
(
b2n+2 + a− 2n+1 + 1

)
+ s2

(
2n+1 − 1

)
− 2

= s2
(
b2n+2 + a− 2n+1 + 1

)
+ n− 1

� n, (46)

with equality holding if and only if j = i = a = 2n+1 − 1 and s2(b) = 1. Since 1 � a <

2n+1, one has n + 1 � s2(a). So by (32) and (46), Lemma 4.1 (iii) follows immediately.
This completes the proof of Lemma 4.1. �
One can now use the lemmas presented in Section 2, Theorem 1.1 and Lemma 4.1 to

show Theorem 1.3. The proof is of induction.

Proof of Theorem 1.4. By Lemma 2.6, one gets that

S
(
c2m + b2n+1 + 2n, b2n+2 + a

)
=

b2n+1+2n∑
j=1

j∑
i=0

h(i, j)

= Δ1 + Δ2 + Δ3 + Δ4 + Δ, (47)

where h(i, j) and Δl (l = 1, 2, 3, 4) are defined in (31) and (32), respectively, and

Δ :=
b2n+1∑
j=2n+1

j∑
i=0

h(i, j). (48)

First one deals with the 2-adic valuation of h(i, j) with 2n+1 � j � b2n+1 and 0 � i � j.
Let j = j12n+1 + j2 for some integers 1 � j1 � b and 0 � j2 < 2n+1.
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If j2 = 0, then j = j12n+1. So by Lemmas 2.2–2.4 and (31), one has

ν2
(
h(i, j)

)
� ν2

(
(b2n+2 + a− i)!
(b2n+2 + a− j)!

)
+ ν2

(
S
(
c2m, b2n+2 + a− i

))
� j − i + s2

(
b2n+2 + a− j

)
− s2

(
b2n+2 + a− i

)
+ s2

(
b2n+2 + a− i

)
− 1

� s2
(
b2n+2 + a− j

)
− 1

= s2
(
(2b− j1)2n+1 + a

)
− 1

� s2(a) (49)

since s2(2b− j1) � 1 and a < 2n+1.
If 0 < j2 < 2n+1, by Theorem 1.1 one has

ν2
(
S
(
b2n+1 + 2n, j

))
= ν2

(
S
(
b2n+1 + 2n, j12n+1 + j2

))
� s2(j2) − 1. (50)

Thus by Lemmas 2.2–2.3, (31), (33) and (50) one deduces

ν2
(
h(i, j)

)
� ν2

(
(b2n+2 + a− i)!
(b2n+2 + a− j)!

)
+ ν2

(
S
(
c2m, b2n+2 + a− i

))
+ ν2

(
S
(
b2n+1 + 2n, j

))
� j − i + s2

(
b2n+2 + a− j

)
+ s2(j2) − 2

� s2(j2) + s2
(
(2b− j1)2n+1 + a− j2

)
− 2

� s2
(
(2b− j1)2n+1 + a

)
− 2

= s2(2b− j1) + s2(a) − 2. (51)

Let At be defined as in (18). Then Z+ =
⋃∞

t=1 At. One proves Theorem 1.4 by in-
duction on t. First one considers that the case t = 1. Let b ∈ A1. Then s2(b) = 1.
If 0 < j2 < 2n+1, then 1 � j1 < b. So s2(2b − j1) � 2. Thus by (51) one has that
ν2(h(i, j)) � s2(a) if 0 < j2 < 2n+1. Furthermore, by (48) and (49) one gets

ν2(Δ) � s2(a). (52)

By Lemma 4.1 (iv), (47) and (52), Theorem 1.4 for the case s2(b) = 1 follows immediately.
That is, Theorem 1.4 is proved if t = 1.

Now let t � 2. Assume that Theorem 1.4 is true for any integers b ∈ A1 ∪ · · · ∪At−1.
In what follows one proves that Theorem 1.4 is true for the case t, namely, for the case
that b ∈ At.

For b ∈ At, let b = 2r1 + 2r2 + · · ·+ 2rt be the 2-adic expansion of b, where r1 > r2 >

· · · > rt. Claim that if 1 � j1 < b, then s2(2b− j1) = 1 if and only if b = 2r1 + j1
2 . One

first notices that if 1 � j1 < b, then

2r1+2 > 2b > 2b− j1 > 2r1 .
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So s2(2b− j1) = 1 if and only if 2b− j1 = 2r1+1, i.e., b = 2r1 + j1
2 . The claim is proved. In

the following one handles Δ. For this purpose, one needs to treat with h(i, j). Consider
the following cases.

If 0 < j2 < 2n+1 and s2(2b− j1) � 2, then by (51) one derives that

ν2
(
h(i, j)

)
� s2(a). (53)

If 0 < j2 < 2n+1 and s2(2b− j1) = 1, then by the claim one has b = 2r1 + j1
2 . It then

follows that

S
(
b2n+1 + 2n, j12n+1 + j2

)
= S

(
2r1+n+1 + j1

2 2n+1 + 2n, j12 2n+2 + j2

)
. (54)

Since 2b− j1 = 2r1+1, one has j1 = 2r2+1 + · · ·+2rt+1, which implies that s2( j12 ) = t− 1
and so j1

2 ∈ At−1. Hence the inductive hypothesis applied to (54) gives us that

ν2
(
S
(
b2n+1 + 2n, j12n+1 + j2

)){= s2(j2) − 1 = n, if j2 = 2n+1 − 1,
� s2(j2), if 0 < j2 < 2n+1 − 1.

(55)

For 0 < j2 < 2n+1 − 1, it follows from Lemmas 2.2–2.4, (31), (33) and (55) that

ν2
(
h(i, j)

)
� j − i + s2

(
b2n+2 + a− j

)
+ s2(j2) − 1

� s2(j2) + s2
(
b2n+2 − j12n+1 + a− j2

)
− 1

� s2
(
(2b− j1)2n+1 + a

)
− 1

= s2(a). (56)

For j2 = 2n+1 − 1, since m � n + 2 + �log2 b� = n + 2 + r1, one has

b2n+2 + a− j = (2b− j1)2n+1 + a− j2 = 2n+2+r1 + a− j2 � 2n+r1+2 � 2m. (57)

Then by Lemma 2.3 and (57) one deduces that

S
(
c2m, b2n+2 + a− j

)
= s2

(
b2n+2 + a− j

)
− 1. (58)

It then follows from 1 � a < 2n+1, Lemmas 2.2–2.4, (31), (33), (55) and (58) that

ν2
(
h(i, j)

)
� s2

(
b2n+2 + a− j

)
− 1 + s2(j2) − 1 + j − i

� s2
(
(2b− j1)2n+1 + a− j2

)
+ s2(j2) − 2

= s2
(
(2b− j1)2n+1 + a− 2n+1 + 1

)
+ n− 1

� n, (59)

with equality holding if and only if j = i, s2(2b− j1) = 1 and a = 2n+1 − 1.



342 J. Zhao et al. / Journal of Number Theory 140 (2014) 324–348
Finally, by (49), (53), (56) and (59) one obtains that if b ∈ At, then

ν2(Δ)
{

= n if a = 2n+1 − 1,
� s2(a) if a < 2n+1 − 1.

(60)

Hence Lemma 4.1 (iv) together with (47) and (60) concludes that Theorem 1.4 is true
if b ∈ At.

The proof of Theorem 1.4 is complete. �
5. Proof of Theorem 1.3

For any positive integer k, one defines θ(k) to be the largest integer l with 1 � l � s2(k)
such that {ml,ml−1, . . . ,m1} is a set of consecutive integers, where k = 2m1 +2m2 + · · ·+
2ms2(k) is the 2-adic expansion of k and m1 > m2 > · · · > ms2(k). Then �log2 k� = m1+1.
First Theorems 1.1 and 1.4 are used to show the following lemma.

Lemma 5.1. Let n, k, a, c ∈ Z+ be such that 3 � k � 2n, s2(k) � 2 and 1 � a � �k
2 � − 1.

Suppose that k is neither a power of 2 nor a power of 2 minus 1. Then one has

ν2
(
S
(
c2n − a, k − 2a

))
= s2(k) − �log2 k� + ν2(a)

if either a =
∑m1

i=mθ(k)
2i−1 with θ(k) < s2(k) or a =

∑m1
i=mθ(k)+1 2i−1 with θ(k) = s2(k),

and

ν2
(
S
(
c2n − a, k − 2a

))
> s2(k) − �log2 k� + ν2(a)

otherwise.

Proof. First, one writes

k =
m1∑

i=mθ(k)

2i +
s2(k)∑

j=θ(k)+1

2mj . (61)

Note that the second sum in (61) vanishes if θ(k) = s2(k). Obviously, m1 = ml + l − 1
if 1 � l � θ(k) and mθ(k) � mθ(k)+1 + 2 if θ(k) < s2(k).

If a =
∑m1

i=mθ(k)
2i−1 with θ(k) < s2(k), then by (61) one infers that k − 2a =∑s2(k)

j=θ(k)+1 2mj and ν2(c2n − a) = ν2(a) = mθ(k) − 1 = m1 − θ(k). It then follows from
�log2 k� = m1 + 1 that

s2(k − 2a) = s2(k) − θ(k) (62)

and

θ(k) = m1 − ν2(a) = �log2 k� − 1 − ν2(a). (63)
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Since mθ(k) � mθ(k)+1 + 2, one has k − 2a < 2mθ(k)−1 = 2ν2(c2n−a). It follows from
Lemma 2.3, (62) and (63) that

ν2
(
S
(
c2n − a, k − 2a

))
= s2(k − 2a) − 1 = s2(k) − �log2 k� + ν2(a)

as required. Hence Lemma 5.1 is proved if a =
∑m1

i=mθ(k)
2i−1 with θ(k) < s2(k).

If a =
∑m1

i=mθ(k)+1 2i−1 with θ(k) = s2(k), then by (61) one deduces that k − 2a =
2mθ(k) and ν2(c2n − a) = ν2(a) = mθ(k) = m1 + 1 − θ(k) = �log2 k� − s2(k) since
�log2 k� = m1 + 1. Hence s2(k) − �log2 k� + ν2(a) = 0. It then follows from Lemma 2.3
that

ν2
(
S
(
c2n − a, k − 2a

))
= s2

(
2mθ(k)

)
− 1 = 0 = s2(k) − �log2 k� + ν2(a).

Thus Lemma 5.1 is proved if a =
∑m1

i=mθ(k)+1 2i−1 with θ(k) = s2(k).
Now one treats the remaining case that neither a =

∑m1
i=mθ(k)

2i−1 with θ(k) < s2(k)
nor a =

∑m1
i=mθ(k)+1 2i−1 with θ(k) = s2(k). For this remaining case, one claims that

ν2
(
S
(
c2n − a, k − 2a

))
� s2(k) −m1 + ν2(a). (64)

From the claim (64) and noting that �log2 k� = m1 + 1, one derives that

ν2
(
S
(
c2n − a, k − 2a

))
> s2(k) − �log2 k� + ν2(a).

So Lemma 5.1 holds for the remaining case that neither a =
∑m1

i=mθ(k)
2i−1 with θ(k) <

s2(k) nor a =
∑m1

i=mθ(k)+1 2i−1 with θ(k) = s2(k). Thus one needs only to prove that the
claim (64) is true, which will be done in what follows.

If ν2(a) < ms2(k), then s2(k) − (m1 − ν2(a)) � s2(k) − (m1 − ms2(k) + 1) � 0 since
s2(k) � m1 −ms2(k) + 1. This concludes that the claim (64) is true if ν2(a) < ms2(k).

If ms2(k) � ν2(a) < mθ(k) − 1, then θ(k) < s2(k) and there is exactly one integer t

with θ(k) < t � s2(k) such that mt � ν2(a) < mt−1. Then by the definition of θ(k)
one knows that {ν2(a),mt−1, . . . ,mθ(k), . . . ,m1} is not consisting of consecutive integers.
This implies that s2(2m1 +· · ·+2mt−1 +2mt) = s2(2m1 +· · ·+2mt−1 +2ν2(a)) � m1−ν2(a).
Therefore

s2
(
2mt + · · · + 2ms2(k)

)
= s2(k) − s2

(
2m1 + · · · + 2mt−1 + 2mt

)
+ 1

� s2(k) −
(
m1 − ν2(a)

)
+ 1. (65)

Since ν2(c2n − a) = ν2(a) and mt � ν2(a) < mt−1, one may write c2n − a = c12ν2(a)

and k − 2a = c22ν2(a)+1 + 2mt + · · · + 2ms2(k) with c1 and c2 being integers. Then by
Theorem 1.1 and (65) one deduces that
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ν2
(
S
(
c2n − a, k − 2a

))
= ν2

(
S
(
c12ν2(a), c22ν2(a)+1 + 2mt + · · · + 2ms2(k)

))
� s2

(
2mt + · · · + 2ms2(k)

)
− 1

� s2(k) −m1 + ν2(a)

as desired. Hence the claim (64) is proved if ms2(k) � ν2(a) < mθ(k) − 1.
If mθ(k) − 1 � ν2(a) � m1 − 1, then by (61) one can write

k − 2a =
m1∑

i=ν2(a)+1

2i − 2a + u = b2ν2(a)+2 + u (66)

and

c2n − a = c32m1 +
m1−1∑
i=ν2(a)

2i + 2ν2(a) − a = c32m1 + b2ν2(a)+1 + 2ν2(a), (67)

where c3 ∈ Z+ and u and b are defined as follows:

u :=
ν2(a)∑

i=mθ(k)

2i +
s2(k)∑

j=θ(k)+1

2mj , b :=
(

m1−1∑
i=ν2(a)

2i − a

)/
2ν2(a)+1. (68)

Note that the first sum of u vanishes if ν2(a) = mθ(k) − 1 and the second sum of u

vanishes if θ(k) = s2(k). By (61), one has

s2(u) = s2(k) − s2

(
m1∑

i=ν2(a)+1

2i
)

= s2(k) −m1 + ν2(a). (69)

In the following one shows that u < 2ν2(a)+1 − 1. If θ(k) = s2(k), then by (61) one has
k =

∑m1
i=mθ(k)

2i. But k is not a power of 2 minus 1. So mθ(k) � 1. Thus by (68) one
knows that u =

∑ν2(a)
i=mθ(k)

2i < 2ν2(a)+1 − 1. If θ(k) < s2(k), then mθ(k) � mθ(k)+1 + 2.
Hence by (68) one yields that u < 2ν2(a)+1 − 1. Suppose that b < 0. Then from (66) one
deduces that

k − 2a � −2ν2(a)+2 + u < −2ν2(a)+2 + 2ν2(a)+1 − 1 < 0,

which is impossible. So b � 0.
If b > 0, then by (68) one has m1 � ν2(a) + 2 + �log2 b�. Since u < 2ν2(a)+1 − 1, it

then follows from (66)–(69) and Theorem 1.4 that

ν2
(
S
(
c2n − a, k − 2a

))
= ν2

(
S
(
c32m1 + b2ν2(a)+1 + 2ν2(a), b2ν2(a)+2 + u

))
� s2(u) = s2(k) −m1 + ν2(a).

The claim (64) is proved if mθ(k) − 1 � ν2(a) � m1 − 1 with b > 0.
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If b = 0, then by (66) one has u > 0 since k− 2a > 0. In what follows one shows that
u > 2ν2(a). Suppose that 0 < u � 2ν2(a). From (68) one infers that either θ(k) < s2(k)
with ν2(a) = mθ(k) −1, or θ(k) = s2(k) with ν2(a) = mθ(k). If θ(k) < s2(k) with ν2(a) =
mθ(k) − 1, then by (68) one gets a =

∑m1−1
i=mθ(k)−1 2i since b = 0. It contradicts with the

assumption that a 	=
∑m1

i=mθ(k)
2i−1 if θ(k) < s2(k). If θ(k) = s2(k) with ν2(a) = mθ(k),

it then follows from (68) and b = 0 that a =
∑m1−1

i=mθ(k)
2i, which contradicts with the

assumption that a 	=
∑m1

i=mθ(k)+1 2i−1 if θ(k) < s2(k). Hence u > 2ν2(a). Note that
u < 2ν2(a)+1 − 1. Now by (66)–(69) and Lemma 2.4 one deduces that

ν2
(
S
(
c2n − a, k − 2a

))
= ν2

(
S
(
c32m1 + 2ν2(a), u

))
� s2(u) = s2(k) −m1 + ν2(a)

as desired. The claim (64) is proved if mθ(k) − 1 � ν2(a) � m1 − 1 with b = 0.
This concludes the proof of Lemma 5.1. �
One is now in a position to show Theorem 1.3.

Proof of Theorem 1.3. Suppose that (3) is true. Then using (3) with a = 2c and b = c,
one can easily derive that (4) holds. So one only needs to show that (3) is true, which
will be done in the following.

To prove (3), one uses (5) and (6) with p = 2, m = (2b− a)2n, v = 1 and n replaced
by (a− b)2n, and considers the coefficients of xk:

S
(
a2n, k

)
≡

(a−b)2n∑
j=0

(
(a− b)2n

j

)
S
(
j + (2b− a)2n, k − 2

(
(a− b)2n − j

))

= S
(
b2n, k

)
+

(a−b)2n−1∑
j=(a−b)2n−� k

2 �+1

(
(a− b)2n

j

)
S
(
j + (2b− a)2n, k − 2

(
(a− b)2n − j

))

= S
(
b2n, k

)
+

� k
2 �−1∑
i=1

(
(a− b)2n

i

)
S
(
b2n − i, k − 2i

)
mod 2n+ν2(a−b). (70)

It then follows from (70) that

S
(
a2n, k

)
− S

(
b2n, k

)
≡

� k
2 �−1∑
i=1

(
(a− b)2n

i

)
S
(
b2n − i, k − 2i

)
mod 2n+ν2(a−b). (71)

In what follows one discusses the 2-adic valuation of a general term of (71) with
1 � i � �k

2 � − 1. Let a − b = c02ν2(a−b) with c0 � 1 being odd. One first notices that
i � �k

2 � − 1 < 2n. So by Lemma 2.11 one infers that

s2
(
c02n+ν2(a−b) − i

)
= s2(c0) + n + ν2(a− b) − ν2(i) − s2(i). (72)
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It then follows from Lemma 2.2 and (72) that

ν2

((
(a− b)2n

i

)
S
(
b2n − i, k − 2i

))
= s2(i) + s2

(
c02n+ν2(a−b) − i

)
− s2

(
c02n+ν2(a−b)) + ν2

(
S
(
b2n − i, k − 2i

))
= n + ν2(a− b) − ν2(i) + ν2

(
S
(
b2n − i, k − 2i

))
. (73)

One considers the following two cases.
Case 1. s2(k) = 1. Then one may write k = 2m. If m = 2, then by (1) one has

ν2
(
S
(
a2n, 4

)
− S

(
b2n, 4

))
= ν2

(
1
6
(
4a2n−1 − 3a2n

+ 3 · 2a2n−1 − 1
)
− 1

6
(
4b2

n−1 − 3b2
n

+ 3 · 2b2n−1 − 1
))

= ν2
(
3b2

n(
3(a−b)2n − 1

))
− 1.

By Lemma 2.12, one has ν2(3(a−b)2n − 1) = n + ν2(a− b) + 2. It follows that

ν2
(
S
(
a2n, 4

)
− S

(
b2n, 4

))
= n + ν2(a− b) − �log2 4� + s2(4) + δ(4)

since δ(4) = 2. Namely, Theorem 1.3 holds if m = 2.
Now let m � 3. So 1 � i � 2m−1 − 1. If i = 2m−2, then by Lemma 2.5

ν2
(
S
(
b2n − i, 2m − 2i

))
= ν2

(
S
(
b2n − 2m−2, 2m−1)) = 0. (74)

Thus by (73) and (74) one obtains that

ν2

((
(a− b)2n

i

)
S
(
b2n − i, 2m − 2i

))
= n + ν2(a− b) − (m− 2). (75)

If i 	= 2m−2, then ν2(i) < 2m−2 since i � 2m−1 − 1. It then follows from (73) that

ν2

((
(a− b)2n

i

)
S
(
b2n − i, 2m − 2i

))
> n + ν2(a− b) − (m− 2) + ν2

(
S
(
b2n − i, 2m − 2i

))
� n + ν2(a− b) − (m− 2). (76)

Hence by (71), (75) and (76) one derives that

ν2
(
S
(
a2n, 2m

)
− S

(
b2n, 2m

))
= n + ν2(a− b) −m + 2

= n + ν2(a− b) −
⌈
log2 2m

⌉
+ s2

(
2m

)
+ δ

(
2m

)
since δ(2m) = 1. So (3) is true if s2(k) = 1.
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Case 2. s2(k) � 2. Since k is neither a power of 2 nor a power of 2 minus 1 and
1 � i � �k2 � − 1, by Lemma 5.1, (71) and (73) one obtains that

ν2
(
S
(
a2n, k

)
− S

(
b2n, k

))
= n + ν2(a− b) − �log2 k� + s2(k)

= n + ν2(a− b) − �log2 k� + s2(k) + δ(k),

since δ(k) = 0. Hence (3) holds in this case.
The proof of Theorem 1.3 is complete. �

Remark 5.1. By Theorem 1.3, one knows that Conjecture 1.1 is true if k is not a power
of 2 minus 1. Theorem 1.3 tells us that ν2(S(a2n+1, k) − S(b2n+1, k)) < n + ν2(a − b)
if k 	= 2m − 1 and k 	= 4. In fact, in the proof of Theorem 1.3, to handle the case that
k 	= 2m − 1 and k 	= 4, one makes use of the Junod congruence (5). However, for the
remaining case k = 2m − 1, numerical experimentation (see [18]) suggests that

ν2
(
S
(
a2n+1, 2m − 1

)
− S

(
b2n+1, 2m − 1

))
= n + 1 + ν2(a− b) > n + ν2(a− b).

Thus, to get such result, the modulus in Lemma 2.8 (and so (71) above) is not enough.
Hence one has to find a congruence stronger than (5). Unfortunately, one encounters
difficulties in strengthening congruence (5). Maybe one needs some new approaches to
attack Conjecture 1.1 for the remaining case k = 2m − 1.
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