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Abstract: In this paper, we obtain several general identity involving general-
ized harmonic polynomials and the power. From these identities, we also deduce
some particular identities involving interestingly the number of combinations.
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1. Introduction and Preliminaries

In Combinatorics, harmonic numbers not only form an important class of combi-
natorial objects, but also play an important role in many areas of mathematics,
including combinatorial analysis, graph theory, number theory, statistics and
probability and so on.

In this paper, we will give a basic definition of the generalized harmonic
polynomials, and some identities involving generalized harmonic polynomials
and generalized harmonic number, the identities of this type might not have
been presented before.
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Definition 1. Let n, k, r ∈ Z, γ ∈ R+(γ 6= 1) , α, β are complex numbers,
then we have

∞
∑

n=0

Hn,k,r(α, β, γ)(x)t
n =

γxt

(1− βt)k
· (− ln(1− αt))r ,

where, Hn,k,r(α, β, γ)(x) is called generalized harmonic polynomial about x with
γ parameters, when x = 0 is called generalized harmonic number (see [2]).

Definition 2. (see [1], [6]) Let k be a positive integer, then the expression
of operator Tk is

f =
∑

n≥0

ant
n → Tkf =

∑

n≥0

nkant
n

where, T = tD(D is Differential operator), {an} is a sequence.

2. Some Main Results

In this section, we will give some Theorems involving Generalized Harmonic
polynomial Hn,k,r(α, β, γ)(x) and other famous number sequences. such as,
Stirling number and noncentral Stirling number, and so on.

Lemma. (see [1], [6]) Let k be a positive integer, then we have

∑

n≥0

nkant
n =

k
∑

h=1

S(k, h)thDhf

where, S(n, k) (see [1]) is the Stirling number of the second kind.

Theorem 1. Let n, k be a nonnegative integer, and α ∈ C, then we have

∑

n≥0

nktn =

k
∑

h=1

S(k, h)
th

(1 − t)h+1
(1)

∑

n≥0

nk t
n

n!
= et

k
∑

h=1

S(k, h)th (2)

∑

n≥0

nk〈α〉n
tn

n!
=

k
∑

h=1

S(k, h)〈α〉h
th

(1− t)α+h
(3)
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∑

n≥0

nk(α)n
tn

n!
=

k
∑

h=1

S(k, h)(α)h(1 + t)α−h (4)

where, S(n,k) is the Stirling number of the second kind.

Proof. Let an = 1, then f =
∑

n≥0 t
n = 1

1−t
, by the definition(2) and the

Lemma, we have

Tkf =
∑

n≥0

nktn =

k
∑

h=1

S(k, h)thDh 1

1− t

hence

∑

n≥0

nktn =
k
∑

h=1

S(k, h)
th

(1 − t)h+1

Similarly, we suppose an = 1
n! ,

〈α〉n
n! ,

(α)n
n! , then using the same method in the

definition(2) and the Lemma, we can get (2),(3),(4) respectively.

Theorem 2. Let n, k, r be a nonnegative integer, γ ∈ R+(γ 6= 1) and
α, β ∈ C, then we have

n
∑

i=0

Hi,k,r(α, β, γ)(x)(n − i)kβn−i =

k
∑

h=1

Hn−h,k+h+1,r(α, β, γ)(x)S(k, h)h!β
h

where, S(n, k) (see [4], [5]) is the second kind of Stirling number.

Proof. Let n, k, r be a nonnegative integer, γ ∈ R+(γ 6= 1) and α, β ∈ C,
since

∑

n≥0

Hn,k,r(α, β, γ)(x)t
n =

γxt

(1− βt)k
· (− ln(1− αt))r

and

∑

n≥0

nktn =

k
∑

h=1

h!S(k, h)
th

(1 − t)h+1
,

so,

∑

n≥0

nkβntn =
k
∑

h=1

βhS(k, h)
h!th

(1 − βt)h+1
,
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hence,

∑

n≥0

Hn,k,r(α, β, γ)(x)t
n ·
∑

n≥0

nkβntn =
∑

n≥0

(

n
∑

i=0

Hi,k,r(α, β, γ)(x)(n − i)kβn−i

)

tn

=
k
∑

h=1

S(k, h)βh h!γxtth

(1− βt)k
· (− ln(1− αt))r

=
∑

n≥0

(

k
∑

h=1

Hn−h,k+h+1,r(α, β, γ)(x)h!S(k, h)β
h

)

tn ,

then by compared coefficient both sides of above the formula, we can got the
desired result.

Corollary 1.1. Let x = 0 in Theorem(1), we can obtain

n
∑

m=0

Hm,k,r(α, β)
(n −m)k

βm
=

k
∑

h=1

h!Hn−h,k+h+1,r(α, β)
S(k, h)

βn−h
,

where, Hn,k,r(α, β, γ)(0) = Hn,k,r(α, β) (see [2]).

When α = β = 1 in the above formulas, we have

n
∑

m=0

Hm,k,r(n −m)k =

k
∑

h=1

h!Hn−h,k+h+1,rS(k, h) ,

and

Hn,k,r = (−1)n+r k!

n!
s(n, r; k) ,

hence

n
∑

m=0

(−1)m+rs(m, r; k)
(n −m)k

n!
=

k
∑

h=1

Hn−h,k+h+1,r
h!S(k, h)

k!
,

where, s(n, r; k) (see [1]) is the noncentral Stirling number of the first kind,
Hn,k,r(1, 1) = Hn,k,r (see [2]).

and k = r = 1 in the above formulas, have

n
∑

m=0

Hm(n−m) = Hn−1,3,1 ,
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where, Hn,1,1 = Hn (see [2]).

Corollary 1.2. Let γ = e, α = β = 1 in Theorem1, we can obtain

n
∑

m=0

Hm,k,r(x)(n −m)k =

k
∑

h=1

Hn−h,k+h+1,r(x)S(k, h)h! ,

when, k = r = 1 in the above formulas, we have

n
∑

m=0

Hm(x)(n −m) = Hn−1,3,1(x) ,

Therefore, we get the desired result.

Theorem 2. Let n,m, k, r be a nonnegative integer, γ ∈ R+(γ 6= 1) and
a, α, β ∈ C, then

n
∑

m=0

Hm,k,r(α, β, γ)(x)
〈a〉n−m(n−m)k

(n−m)!

=

k
∑

h=1

Hn−h,k+h+1,r(α, β, γ)(x)S(k, h)〈a〉hβ
h .

Proof. Since

∑

n≥0

nk〈a〉n
tn

n!
=

k
∑

h=1

S(k, h)
〈a〉ht

h

(1 − t)α+h
,

so we have

∑

n≥0

Hn,k,r(α, β, γ)(x)t
n ·
∑

n≥0

nk 〈a〉nt
n

n!

=
∑

n≥0

(

n
∑

m=0

Hm,k,r(α, β, γ)(x)
〈a〉n−m(n−m)k

(n−m)!

)

tn

=

k
∑

h=1

S(k, h)βh 〈a〉hγ
xtth

(1− βt)k
· (− ln(1− αt))r

=
∑

n≥0

(

h
∑

k=1

Hn−h,k+a+h,r(α, β, γ)(x)β
hS(n, k)〈a〉h

)

tn
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by compared coefficient of tn both sides of above the formula, we can get the
desired result.

Corollary. Let x = 0 in Theorem2, we obtain an identity involving gener-
alized harmonic number,

n
∑

m=0

Hm,k,r(α, β)
〈a〉n−m(n −m)k

(n−m)!
=

k
∑

h=1

Hn−h,k+h+1,r(α, β)S(k, h)〈a〉hβ
h .

where, Hn,k,r(α, β, γ)(0) = Hn,k,r(α, β) (see [3]).

Theorem 3. Let n,m, k, r be a nonnegative integer, γ ∈ R+(γ 6= 1) and
a, α, β ∈ C, then we have

n
∑

m=0

(−1)mHm,k,r(α, β, γ)(x)

(

a

n−m

)

(n−m)kβn−m

=

k
∑

h=1

(−1)nHn,k+h−a,r(α, β, γ)(x)S(k, h)(a)h .

Proof. Since

∑

n≥0

nk(a)n
tn

n!
=

k
∑

h=1

S(k, h)(a)h(1 + t)a−h ,

so,

∑

n≥0

(

a

n

)

nk(−β)ntn =
k
∑

h=1

S(k, h)(a)h
1

(1− βt)h−a

hence,

∑

n≥0

Hn,k,r(α, β, γ)(x)t
n ·
∑

n≥0

nk(a)n
tn

n!

=
∑

n≥0

(

n
∑

m=0

Hm,k,r(α, β, γ)(x)

(

a

n−m

)

(n−m)k(−β)n−m

)

tn

=
∑

n≥0

k
∑

h=1

S(k, h)
(a)hγ

xt

(1 − βt)k+h−a
· (− ln(1− αt))r
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=
∑

n≥0

(

k
∑

h=1

Hn,k+h−a,r(α, β, γ)(x)S(k, h)(a)h

)

tn

by compared coefficient of tn both sides of above the formula, we can got this
result, the proof is complete.

Corollary. Let x = 0 in Theorem3, we obtain an identity involving gener-
alized harmonic number,

n
∑

m=0

Hm,k,r(α, β)(−1)n−m

(

a

n−m

)

(n−m)kβn−m

=

k
∑

h=1

Hn,k+h−a,r(α, β)S(k, h)〈a〉h .

Theorem 4. Let n,m, k, r be a nonnegative integer, γ ∈ R+(γ 6= 1) and
α, β ∈ C, then we have

n
∑

m=0

Hm,k,r(α, β, γ)(x)
(n −m)k

(n −m)!
=

n
∑

i=0

k
∑

h=1

Hi−h,k,r(α, β, γ)(x)
S(k, h)

(n − i)!

Proof. Since

∑

n≥0

nk t
n

n!
= et

k
∑

h=1

S(k, h)th ,

hence

∑

n≥0

Hn,k,r(α, β, γ)(x)t
n ·
∑

n≥

nk t
n

n!
=
∑

n≥0

(

n
∑

m=0

Hm,k,r(α, β, γ)(x)
(n −m)k

(n −m)!

)

tn

= et
k
∑

h=1

S(k, h)th
γxt

(1− βt)k+h−a
· (− ln(1− αt))r

=
∑

n≥0

(

n
∑

i=0

k
∑

h=1

Hi−h,k,r(α, β, γ)(x)
S(k, h)

(n − i)!

)

tn ,

by compared coefficient of tn both sides of above formula, we have got the
result.
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Corollary. Let x = 0 in Theorem4, we have following the result,

n
∑

m=0

Hm,k,r(α, β)
(n −m)k

(n −m)!
=

n
∑

i=0

k
∑

h=1

Hi−h,k,r(α, β)
S(k, h)

(n − i)!
.

the proof is complete.
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