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ABSTRACT

The extended generalized Pascal matrix can be represented in two different ways:
as a lower triangular matrix ®,[x, y] or as a symmetric ¥ [x, y]. These matrices
generalize P[x], Q,[x], and R,[x], which are defined by Zhang and by Call and
Velleman. A product formula for @,[x, y] has been found which generalizes the
result of Call and Velleman. It is shown that not only can ®,[x, y] be factorized by
special summation, but also ¥,[x, y] as Q. [xy1®Ty, 1/x] or ®[x, ylP [y/x]
Finally, the inverse of ¥,[x,y] and the values of det ®,[x, y], det ®; '[x, y],
det ¥,[x, y], and det Wl x, y] are given. © 1998 Elsevier Science Inc.

Let x, 4 be any two nonzero real numbers. The extended generalized
Pascal matrix ®, [x, y]is defined as

i

s i,i=0,1...,n,
]) J

®,(x,y;5i,j) = x"“fy“"(
with
(’) =0 if §>i
j S
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By this definition, then
@,[x,1] = P[],
@,[1, y]=0Q.[y].
where P,[x] and Q[ y] are defined in [1, 2], respectively.

THEOREM 1.  For any four real numbers x\, y,, x,, y,, we have

x)
D[, yl]q)n[xZ’ yz] =®, y_ + x5y, ylyZ]'
2

Proof. Let ®,[x,, y,1®,[x,, y,] = (C,(x,, y,, x5, yy; i, j)). Then
£ ()t}
k=0 k J

= - gi~kg itk k—J k+j i—j
kgo v gz (J)(k_]')

Co(x1, Yy» X5, Yg3 1, )

It

This completes the proof. [

If we take y; =y, = 1 in Theorem 1, then we can get the following
results of G. S. Call and D. J. Velleman [2]:

CoroLLARY. P [x]P[y] = P,[x + yl

Now we list several definitions and results found in [1, 2] which will be
required in the development of this paper.
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The (n + 1) X (n + 1) matrices I,, S,[x], and D,[x] are defined by
I, = diag (1,1,...,1),
O
D,(x;i,i) =1
D,(x;i+1,i)=—-x  for
D,(x;i,j) =0 for j>iorj<i-1,

and we also define the matrices

OT

) —_ 1 (k+2)X (k+2)
P [x] [o P[] €R , k=0,

e Rin+t DX+ D k=1,2,....n—1

! S 0
Gil =] ‘[ 0 Szl

G,[x]=s8,[x],
S.[x] =D [x].

Again, we need the (n + 1 X (n + 1) matrices W,[x, y], Ulx, y], J.[yl:

. Tyttt if <,

U"(x,y;i,i)=y"2i for i=0,1,...,n,

x
U(x,y;i+1,i) = ——5 for i=0,1,...,n—1,
Y
U(x,y;i,j) =0 for j>iorj<i-—-1,
[ ] diael 1 1 1 1 ( 1)" 1
Ayl =diag|l, ——, —5. — .- - -
Jaly yz y4 ye yz
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It is easy to see that
THEOREM 2.

Q,[—x,y] =[x, —y],

T e R

n X, = n—x,— = nx,——,
y y y

W x, y] = Ul y].

ExXAMPLE.
1
UNES y]<I>3 -x, ';

e e

1 0 0
x 1 0
1 02 0 0 y yZ
_ xy y 0 0 2 1
xzy2 2xy° y* 0 ? ‘—2? *yq
303 3x2p%  3xyS 6
xy X'y ooy 3 sz 5 x
y? y* y
W3[x,y]U3[x,y]
1 0 0
x 1 0
1 0 0 - —
: o0 o y oy
_| Yy x 1
?y* oyt 0fl 0 —— =
Syt xS P y y
x
0 0 -= =
Yy Yy
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LEMMA 1.
— X
Wk[x’y]Pk—l[;] =®,[x,y] for k>1.

Proof. Let Wilx, y1P,_ \[x/y]l = (Cix, y; i, ). Obviously, C,(x, y;
i,00=x'y' (i=0,1,...,n) and Ci(x, y; i,j) = 0 (i <j). When i >j we
have

noo \J 1
PO et A & ) i
Y (J)
This completes the proof. [ |
EXAMPLE.
1 0 0 0
1 0 0 01]0 1 0 0
2 x
~[x Wy 0 OJlo — 1 o0
Wolx, y|P,|— | =
AR 2[?/] xzyz xy3 y4 0 y2
x3y3 x2y4 xy5 y6 0 x_2 Zi .
) Y
1 0 0 0
2
xy y 0
= x2y2 2xy3 y4 0 —@S[x,y].
x3y3 3x2y4 3xy5 y6

By Lemma 1 and the definition of G;[x], we get the following result:
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THEOREM 3. The extended generalized Pascal matrix ®,[x, y] can be
factorized by the summations G [x/y] and W[ x, y]:

% Lx. y] = WL, y1Gu| 2G| ] - 8

) )
EXAMPLE.
q)s[x,y]
1 0 0 0
xy y? 0 0
= x2y2 2xy3 y4 0
x3y3 3x2y4 3xy5 y6
1 0 0 0
1 0 0 0 0 1 o olf{lL 0O O O
= s 2 5 5 y 0o 0 1 0],
x“y xy y 0 \ o o x
- 1
x3y3 x2y4 xy5 ys 0 x f . v
y y

For the inverse of the extended generalized Pascal matrix ®,[x, y], by
applying Theorem 2 and 3, we get

THEOREM 4.

where

Rlx] = Gil[x] = (I"‘g” o]

and F[x] = G '[x] = D,[x].
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In particular

Q% y] = Llyl®.[x y]1].[y]
We define the extended generalized symmetric Pascal matrix ¥,[x, y] as

i+j)
il

i+j

V(x, ysi.j) ==y

THEOREM 5. One has

x

Fl[;]ﬂ[;] ...Fn_l[ﬂu,,[x, 1[5, 4] = Pf[%],

P 0 I O S 2 e P Oy, x]
l[g] 2[;]“‘ n—l[;] n ;’y n ;J/ =9, 1Y,.%x},
and the Cholesky factorization [4] of ¥,[x, y] is given by

0z 41 = 0,[10] . 1]

=[x, y]P"T[%]-

Proof. Let Q[xyl®I[y,1/x] = (C,(x, y; i, j)). Then

i ] i—j, it] , .
k)(k)" vt
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(Vandermonde identities). Thus, we have

Similarly

EXAMPLE.

W[ x, yl =

2,2

Yy

3,3

Yy

xy
12y’
3,3

Yy

xy
2y’
3,3

'y

¥ 1= 0.l107 4. 1|

'y
2x3y3
3x4y4

2,4

4,4
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3x5y5
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=21
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[ e N e

<

Wz ] = 0[x y127| 2],
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By using Theorems 2 and 5, we have

THEOREM 6.

L P LA B P S

Applying Theorem 4 and 5, we get

THEOREM 7.

¥ xy] = L0 [ 2[00 1L y)
A AR AR A e TA !

For the previous two kinds of extended generalized Pascal matrices, we
also can get

THEOREM 8.
det (I)n[x, y] = yn(n+1)’
det @, '[x, y] =y "+,
det \I’n[x, y] = yn(n+l)’
det ¥, '[x, y] =y "+ V.
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