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1. Introduction

In the theory of orthogonal polynomials, it is known that we could calculate the
determinants of some Hankel matrices once we know the three term recurrence
relation for the associated orthogonal polynomials and vice versa. It is also known
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that the kernel polynomials of the orthogonal polynomials encode important
information about the Hankel matrices. In this note we present a method to invert
some Hankel matrices associated with orthogonal polynomials. To illustrate this
method, we compute some examples using the classical orthogonal polynomials
and Wilson orthogonal polynomials. As a consequence of these calculations, we
find the explicit determinants and inverses of certain matrices that generalize the
well-known Hilbert matrices.

Theorem 1. Given a probability measure u on Q with a support of infinite points, let
us consider the Hilbert space of u-measurable functions

Xi= 0| [ 10 dul) < o0} (1)
Q
with the inner product defined as
(f.8) = /f g(X)du(x), figeX. (1.2)

Assume that {w,(x)},_, is a sequence of linearly independent functions in X with
wo(x) =1

U = / wi(xX)we(x)du(x), Jj,k=0,1..., (1.3)
o
and
Qoo %1 .- Oon
o G11 ... Op
4, = . . . R (14)
0o %1 - oo Opp

Forn=0,1,..., the matrix II, = (o) is positive definite, consequently, A, > 0. The
nth orthonormal function with positive coefficients in w,(x) is given by the formula

%oo o1 e Con
10 o11 ce O1n
1
X)=—— 1.5
%pn—10 Op—11 o Up—1n
wo(x)  wi(x) ... wy(x)

forn=1,2,... with
Po(x) = wo(x) = L. (1.6)
Furthermore, the coefficient of p,(x) in w,(x) is
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An—l
1.7
An ’ ( )

and

e

The theorem is well-known in the theory of orthogonal polynomials, you may
find it in Ismail (2005), Szeg (1975).

:m"—‘

(1.8)

Lemma 2. Let us assume that {p;(x)};—, are the orthonormal functions defined in
Theorem 1. For each nonnegative integer n, the kernel function

ka(x, ) Zpk )pe(y (1.9)

has the reproducing property
[ ARG ) = () (1.10)
for m(x) in the linear span of wi(x) for k = 0,1, ... n. Furthermore, there is only one

kernel function with reproducing property (1.10) in the space generated by wy(x) for
k=0,1,...,n

Proof. To see (1.10), just expand 7n(x) in {p,(x)},_,. If there is another kernel
h,(x,y) with the same reproducing property, then for each fixed y € Q,

0< th(7y) ( )” (h ( ) kn('ay)ahn('ay) _kﬂ('7y))
:(hn('ay)_kn('ay) ( )) ( (’y)_kn("y)>kn('vy)):07 (111)

which is a contradiction. [

Theorem 3. For each nonnegative integer n, let (By)oc;ic, be the inverse of
H” = (ajk)ogj,kgn’ then

X)) =Y Bw(v)wi(x). (1.12)
J k=0
Proof. Let
:Zukm)k(x)a (113)
k=0

then,
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g

jkO

By Lemma 2 we have

Z ﬁjkw, We(x

J,k=0

an

E I/lm Wi

m=0

Zum Zﬁkwj

m=0 J.k=0

n

> 3w

m=0 j=0

Wm W )

Z ﬁ]k %kem :

(1.14)

(1.15)

Theorem 4. Let {w,(x)},~, be the sequence as in Theorem 1, then the kernel is also

given by
0 1
1 oo
1
kn(xay) = -0 Wl(x) %10
4, '
Wwa(X) oo
forn=0,1,...

Proof. Since

Z ﬁ}kwj W]‘

k=0
where
H;l - (ﬁjk)0<l;<n
Then,
By = ,(k.j) _ n(k,j),
det I1, A4,

1

OC)‘I}’I

where I1,(k,j) is the (k,j)th co-factor. Therefore,

ZH kjw

n/ko

Wi ().

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)
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It is clear that

i:nn(k,j)ka(x) = —‘W? ) (ngy)) : (1.21)
J,k=0 X n
by direct expansion, where
1
wi(x)
W)= . | (1.22)
Wu(X)

and

W) = (1007, w09). (1.23)
Then

1

kn(xay) = _A_

0 (W'

weo o | (1.24)

which is (1.16). O
Remarks 5. Theorems 3 and 4 are known for wy(x) = x* (see Akhiezer, 1965).
Corollary 6. Given a sequence {w,(x)},~, as in Theorem 1. Let us assume that there

exists two families of linear functionals {u; };, and {vi},_, over the linear space gen-
erated by {w,(x)},—, with the properties

uj(we) = O (1.25)
and

() = 03 (1.26)
Sorj.k=0,1,... Then, the elements of the inverse matrix IT," = (ﬁjk)og,kgn of Gram

matrix I, = (o) x<, are given by the formula

jk Z Uk (pm 7/I m)7 (1 27)

m=0

where {p,(x)},, is the associated orthonormal functions defined via Eq. (1.5).

Proof. From Theorem 3, we have

Zﬂ_/kwl Wl\ me pm (128)

J.k=0 m=0
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Then we apply the functional u; and v both sides of the above equation, the cor-
ollary follows. [

The Barnes G-function is defined as

— z/2 —[:(z+1)+yzz]/2 = 1 E " 7Z+22/(2n) 1.29
G(z) == (2n)" e nl_[l( +n> e ) (1.29)
where
. "~ 1
y:= lim < —— lnn> (1.30)
n—00 k
The Barnes G-function is an entire function with the property
G(z+1)=T(2)G(z). (1.31)
Consequently,
G(z+n+1)
I'(z+k) 1.32
H k) == (132)
and
- Gla+n+1
[, ~Glatnt 1) )
k=0 G(a)I'(a)
It is also known that
0 n=0,—1,-2,...
G(n) = oo Ty 1.34
() {Hf_ozi! n=102,... (1.34)

2. Examples

2.1. Classical polynomials

2.1.1. The Hermite polynomials {H,(x)}~,
The Hermite polynomials {H,(x)}, 0 < n < oo are defined as (Andrews et al.,
1999; Ismail, 2005)

—o _ng 1 1
mupqmmm< 22*%—;> (2.1)
forn = 0 and
H_(x)=0. (2.2)
They satisfy the differential difference equation
dH,(x)

= DnH, 1 (¥) (2.3)
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forn=0,1...

Hermite polynomials are orthogonal with respect to the measure du(x) =

exp(—x?)dx,
/ H m eXp( )dx = 2’1n!ﬁ5inn

for n,m =0,1,... Thus, the orthonormal polynomials
H,
hy(x) == 7()6)
Vn2"'\/n
have leading coefficients
L 211
/n - n'ﬁ
The moments of Hermite measure could be calculated

X 1+ (-1)" (n+1
—= L }2 — F
U, / Ve dy 5 < 5 )

[o¢]

Then the (i,j)th entry of the matrix IT, = (o)}, i
1+ (—1)"*-’F<i+j+ 1>

) 2
for i,j=0,1,...,n, thus, the determinant of the matrix is
L+ (=)™ fitj+1\) o)yt 7
- — !
det( 5 r(—3 =2 2n2Hk.,
k=0 k=0
or

L+ (=)™ _fiti+1\) wtl)
det( +(2 ) r<’+12+ >> — 2 G+ 2)
k=0

forn=0,1,...
In this case we use functionals defined by

w(p() = np(x)) = 5 [JZ)(;)} -

The (i,/)th entry of the inverse matrix IT,' = (Bi)ineo i

5, E L s

" k=max(i,j)

E )

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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R (3 [ A

iy

or

fori,j=0,1,...,n.

Theorem 7. For n=0,1,..., the matrix
14 (=1)" <i+j+l>>
r (2.14)
( 2\/;% 2 0<ij<n
has the determinant
L+ (D™ fitj+1\) _nto)
d r =2"7G 2 2.15
el( 2v/m 2 - +2) .
INES

and its inverse matrix is

S 4 (3)mof{(;)mo) , 2.16)

K12k

k=max (i)
0<ij<n

2.1.2. The Laguerre polynomials {L%(x)},-, with a > —1
The Laguerre polynomials {L?(x)},~, may be defined as (Andrews et al., 1999;
Ismail, 2005)

(4 1) —n
LY(x) = " F ; 2.17
2 (X) Bl (2.17)
for n > 0, and we assume that
L* (x)=0. (2.18)
We also have
dL,(x) .
- —Li"(x) (2.19)
for n = 0. For « > —1, we have
*© r 1
| m@nove a1 220
0 .
for n,m =0,1,... Thus the orthonormal polynomials are
" n! ,
(X)) = (D" 5oL (), (2.21)

I'o+n+1)"
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and the leading coefficients are

1
Vn = (2.22)
Voll'(a+n+1)
for n =0,1,... The moments of the Laguerre measure are
W, = / X'"e ™ dx =T(a+n+1) (2.23)
0
forn=0,1,... Then (i,j)th entry of the matrix I, = (ijk);k:o is
ay=T(+i+j+1) (2.24)
fori,j=0,1,...,n, the determinant of the matrix is
det (F(oe+i+j+ 1)y = [[{kT @+ &+ 1)}, (2.25)
k=0
or
Gn+2)G(a+n+2)

det (F(a+i+j+1)),_ =

Ga+ 1) (226)

In this case we use the functionals defined in (2.11) and let IT,' = (8 i)ix—o » then,

J
1 Z k! [d"LZ(X) dx,} VLZ(_«V)]
)1 : I'o+k+1) ol Ay ]

* k=max(i,j
_ly K 1)'L# 1YL 2.27
Tﬂk 2:(“) m[(— ) k—i(x)]x:() [(— ) kfj(y)} 0’ (2.27)
=max(i,/ -

or

L k\ [k
. e " 1) noo (9(+'1)l(< >< >
(_ 1) + n k‘th[(O)thj(O) _ ( ) Zk—mdx(l;]) k! i ]
il I'o+k+1) (e + 1) (e + 1), (e +1)
(2.28)

ﬂij:

k=max(i,j)

for jk=0,1,...,n.

Theorem 8. For n=0,1,..., the matrix
((oc +1), +./> . (2.29)
has the determinant

n Gn+2)Ga+n+2)
det <(a + 1)"”):',/:0 © Gla+ DI(a+ 1) (230
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it is invertible for —o ¢ N, its inverse is given by

ZZmaﬁf{) i (f) (f) | (231)
(=)™ (o + 1), (x+ 1)

0<iyj<n

2.2. The ultraspherical polynomials {C,(x)}, with > —4, 150

The ultraspherical polynomials (or Genenbauer polynomials) {C%(x)}>, are de-
fined as a hypergeometric series (Ismail, 2005)

i (24), —n,22 + nl—x
C(x) == 7 F ( ipl o (2.32)
for n = 0, and we assume that
C*(x) = 0. (2.33)
We have
dCy(x) _ .
= 2,.CH(x) (2.34)

forn > 0. For 2> —1and 1 # 0, we also have

: - (2
[ e eyt = B (235)
1 27 nl(A+n)[I'(4)]
for n,m =0,1,... Thus the orthonormal polynomials are
2 nl(Z 4 m)[F(D)
= C :
Pu() \/ ) (236)
forn =0,1,... and the leading coefficients are
;u 22Aﬂ+2nfll—v 2
) = (A+n) (A+n) . (237)
!l (22 + n)
The moments of the ultraspherical measure are
: - 1+ (=1)" 1 1
Mn:/ x"(l—x2)4_7dx: +( ) B nt ,/1—|—— y (238)
1 2 2 2

forn=0,1,..., where B(p, ¢q) is the beta integral

B(p,q) = /O W1 =)y, R(p), R(q) > 0. (2.39)



Matrix inversion using orthogonal polynomials 21

Then (i,)th entry of the matrix IT, = (o)}, is

L+ (=) fivj+1 1
i = B A+= 2.4
% 2 ) (2:40)
for i,j=0,1,...,n, and the determinant of the matrix is

1+ (=1)"¥ <i—|—j+ 1, 1> ! k!l (22 + k)
det B A= = i
( 2 2 2 g (l + k)224+2k711—v(j~ + k)2

or (2.41)

L+ (=) (ivj+1 1
det( 5 B D 7/L+§

G +2) GQRAI+n+1)G(A)’
= D(nt2/—1) 1 ‘ 2 (2.42)
p(mh)e (), GRAG(A+n+1)

It is clear that the matrix I1,, is invertible for 24 # 0, —1, ..., we use the function-
als defined in (2.11) to find the (i,j)th entry of the inverse matrix IT,' = (Bi)} ko>

I & 2K+ )T [JC?C(X)} {a”ci(y)]

n+1

ﬁlfi

2 T2+ dx' dy’
27NN &~ KOHK) o [\ i
w2 TR PG 2acnw]
(i
_ w Z k(4 + k) CiEi(0)C(0) (2.43)
']‘\/_F A + k=max(i,) 22)1‘ .
fori,j=0,1,...,n.
Theorem 9. For all n=0,1,... the matrix (o)<, ;<, With entries
1+ (-D)"Y [i+j+1 , 1
L : - 2.44
O(U 2 B 2 7/L + 2 ( )
has determinant
14+ (VY /itis] 1 n 1r(2
ot + (1) B(z—i—]—i— 7/1_'__> _ nk2 (Zk/11+k>
2 2 2 0o (A+ k)2 r (a4 k)
(2.45)

When 22 # 0, —1, =2, ..., it is invertible and the inverse matrix (BU)Oéi,jgn has entries
29T I KA+ k) CE0)C(0)

—]
TN D o),

fori,j=0,1,...,n.

(2.46)

i)
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2.2.1. The Jacobi polynomials gP Bx)yoe, with o, p> —1
The Jacobi polynomials {P*#)(x)}>°, may be defined as (Andrews et al., 1999;
Ismail, 2005)

+1) —mn+o+pf+11—-x
pes iy = 2t Dy g : 2.47
) = o (TR (247)
forn > 0, and
PP (x) =0. (2.48)
We also have
dP*P) 1
R ! (2.49)
and consequently
dPP(x) (m+a+p+1),
:zx"( ) _ 7 b pUAilHi () (2.50)
for k € N. For o, f > —1, we have
1
[ PP w0 = i 251
-1
forn,m=0,1,... with
w(x) == (1 —x)*(1 + x)*, (2.52)
and
2 o+ n+ DI(B+n+1) (2.53)
" ntoa+ B+ D)+ p+n+ 1)l ’
Thus, the orthonormal polynomials
2n+o+p+ DI (a+p+n+1)n!
pa() = L2t P DI P ) (2.54)
2 IF'(a+n+1)I(f+n+1)
have leading coefficients
R () 255
tonnl e+ B+n+ DI(e+n+ D)I(B+n+1) '
forn=0,1,...

We take the polynomial sequence
wa(x) = (x — 1), (2.56)
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and associated functionals

1 [df(x)
wi(f) = vi(f) =5 { o | (2.57)
for j=0,1,..., then the (i,j)th entry of the matrix II, = (ijk);k:o is
1
;= / (x — D)™ w(x)dx, (2.58)
-1
or
pxthri P i+j+ 1) 1
2y — iﬂw+l+rf)(ﬁ+) (2.59)
(=D T (e+p+i+j+2)
fori,j=0,1,...,n, and its determinant is given by
det IT. — Glo+n+1)G(f+n+1)G(a+p+n+1)
TGy + DGR+ 1)G(a+ f+ 1)
n+l g NG atpt1 2G ot f42)2
n (l’l+ ) ( 2 ) ( 2 ) (260)

(“+g+ 1 ) n+l1

G(a+/23+1 4+ 1)2G(a+§+2 +n+ 1)2’
its inverse matrix has entries
1 Z 2k + o+ p+ DI (a+ f+k+ 1)k!

ilft 2P+ k+ DI+ k+1)

ij:

k=max (i)
dP ()| 4P )
dx' dy
x=1 y=I

- Z Rk +oa+ B+ D) (a+ p+k+ 1Dk
B 2o+ k+ D)I(B+k+1)

k=max(i,j)
y w+a+ﬁ+nfﬁmmu1 m+a+ﬂ+gmﬁwww]
10! i1/ ’
2 . J,2 -
(2.61)
or
g = Z 2k+o+p+ DI (a+p+k+1)k!
Uoisy Ttk DI(B+k+1)
(Gt ot B+ DPETTOHE+ et p )PSO
* 11 B (2:62)
fori,j=0,1,...,n.
Since
Ay (2.63)

n!



24 R. Zhang, L.-C. Chen

then
g — Fla+p+D(e+p+1)(a+p+1)
P g 1) (a4 1), (e 4+ DB+ 1)

(k4 Bt D)ot 1),
o> {k!(a+ﬁ+1)k<ﬁ+1)k}

k=max(i,)
k\ [k . .
X i (o+p+i+1)(a+p+j+1), (2.64)
fori,j=0,1,...,n.
Theorem 10. For n=0,1,..., the determinant of the matrix
o+ 1), .
(o) v
(o4 f+ )”j 0<iyj<n
Is
n o 2 ia 2
dor[ @t Dy GG
(x+B+2),, o G+ 1)G(B+1)G(a+B+1)

< nl (o + B +2) >”+‘
2211+2a+2ﬁ+lr(a+1)1—v(ﬂ+1)
><G(n—i—Z)G(oc—i—n—i—1)G([H—n+1)G(oH—ﬁ+n—|—1)
(a+g+1)n+lG(a+g+1+n+1)2G(a+g+2+n+1)2
(2.66)

For —a,—B ¢ N, the matrix (2.57) is invertible and its inverse matrix (y;) has

elements

DT D ), I [k et B (et 1),
BT T A D D B D) an%:‘(i.ﬂ{ k!(“+’3+l)k(ﬁ+l)k}

SO (BYar s, oo

1

0<ij<n

Remarks 11. When o = § = 0, matrix (2.57) reduces to the famous Hilbert matrix.

2.3. Wilson polynomials

In this subsection, we will compute some examples using a subset of Wilson
orthogonal polynomials. Because the polynomials we choose, give similar matrices



Matrix inversion using orthogonal polynomials 25

as in the classical polynomials cases. It suggests that there exists some transforma-
tion mapping these polynomials to the corresponding set of classical polynomials.
Given a polynomial f(x?), the Wilson operator W is defined as

_ M +4)) A =5

2.68
W) = - (268)
For any fixed complex number «a, we let
w, (X% a) := (a+ ix,a — ix), (2.69)
for n=0,1,... The polynomial sequence {w,(x*a)},., forms a basis for all the
polynomials in x?>. Furthermore,
1
Ww,(x*;a)) = nw,_, <x2; a+ 5), (2.70)
consequently, we have
[W"wn(xz; a)] ) = 1!, (2.71)
: Tk
where
o\ 2
xi(a) == — <a + 5) . (2.72)
For the polynomial sequence {w,(x*a)},,, we let
1 i
w(f) = 00 = 2 [OVNCD] o (2.73)

2.3.1. The continuous dual Hahn polynomials {S,(x?;a,a,a)},-,
We consider a special form of dual Hahn polynomials {S,(x* a,a,a)}, .. For sim-
plicity, we let

S,(x*a) == S,(x*;a,a,q). (2.74)
these polynomials are defined by the hypergeometric series
S, (x?;a) (—n, a+ix, a—ix )
= F i1, 2.75
(2a),(2a), 2 2a, 2a (275)
forn=0,1,... and we assume that
S_1(x*a) =0. (2.76)

For the sake of simplicity, we only consider the case a > 0. It is known that they
satisfy the following orthogonality

/ S @) S, (% @)y (6% @)dx = 27nll (2 + 1) Sy, (2.77)
0

where
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2

I'(a+ix)’
2, —
wi(x%a,b) = T2xi) (2.78)
and the orthonormal polynomials are
-1 n . 2.
sn(XZ) — ( ) S ()C ’a) (279)

2nnI'(2a + n)’

with leading coefficients

1
R S — 2.80
’ 2an!T"(2a + n)’ (2:80)

The polynomials S, (x*; a) satisfy the following relation

1
WS, (x*a) = (—-n)S,_ <x2; a+ 5), (2.81)
consequently, for any k € N
k
WES,(x%a) = (—n), Sy i (xz; a—+ 5) (2.82)

The matrix ITy associated with polynomial sequence {¢,(x*;a)}
the measure w;(x*; @) has entries

= [ B0 (s a)ds
0

o, With respect

nz

2

_/"C I'(a+ix)I'(a+j+ix)['(a+ k + ix) I
) I'(2xi)
=2nl'(2a + )" 2a+ k)I'(2a+j+ k) (2.83)
or
aje = 20l (2a +j)I'(2a + k)I'(2a +j + k) (2.84)
for j,k=0,1,... The matrix ITy has determinant
N
det My = 2m)"*' [[ I'(2a + n)’, (2.85)
n=0
which is simplified to
N N
— !
det ((Za)j%)j,k:o 11 nl(2a),. (2.86)

Therefore, for N =0,1,..., we have
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det (2 j+,€)fk_0 =TI ,]. (2.87)

n=0

The entries of IT,' = (B, )o<; ey are

v () (= VS a)] o V.07 0)] o)

B = : : (2.88)
’ n_r;xuk) 2k I (2a + n)’
Since
k

[WkSn(y25 a)]yzzxi(a) = (=) Su-x (x,f(a); a+ 5) ) (2.89)

and
2 k 2

Su—i| xp(a);a+ 5) = (2a+ k), 4, (2.90)

Thus, the matrix
N

(), (291)

has an inverse matrix
o (1 n
Zrivzmax(j,k) (2;1!)’] ( > <k>
J : (2.92)

(=1)**(2a),(2a),

they are the same matrices as in Theorem 8.
2.3.2. The Wilson polynomials W,(x’;a,a,a,b)
In this section, we will look at the inverse of the matrices associated with the Wil-

son polynomials { W,(x* a,a,a,b)},-, respect to the polynomial sequence {¢, (x%;
a)},s,- For the simplicity, we let

W,(x* a,b) == W,(x*;a,a,a,b) (2.93)
forn=0,1,... Then

W,.(x*a,b) —n,n+3a+b—1,a+ix,a—ix
=4[ i1, (2.94)
(2a,2a,a +b), 2a,2a,a+ b

forn=0,1,... We always assume that
W_i(x*;a,b) = 0. (2.95)

In this section, we are only interested in the special case that a,b > 0. Then, the
Wilson polynomials W, (x?) := W,(x?;a, b) satisfy the following orthogonality
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/ Wo( X )w(x*;a,b)dx = 2nn!(n+3a+b — 1), H,Spm, (2.96)
where
2
I'(a+ ix)’I'(b + ix)
2, = 2.97
w(x“;a,b,c) T (2xi) (2.97)
and
I'2a+n)’r(a+b+n)’
H, = 2.98
I'(3a+ b+ 2n) (298)
Thus, the associated orthonormal polynomials
1
2 2
= 2.
() \/27m!(n +3a+b-1),H, ey (299)
have leading coefficients
2l (3a+b+n—1)I(2a+n)’T(a+b+n) (2.100)
n= T(3a+b+2n— 1) (3a+b+2n) '
The polynomials { W, (x* a,b)} -, also satisfy the following relation
1 1
WW,(x%a,b) = —n(n+3a+b—1)W, <x a+2,b+2> (2.101)
and for any integer k € N, we have
k k
WW, (X% a,b) = (—n) (n+3a+b— 1), W, (x*;a+ E’b + E)' (2.102)
For a;,ay, as,as > 0, The Wilson integral evaluates
. 2
1 /OO Hj:lr(aj + ixx) _ [Tijereal (a; + ax) (2.103)
2n I'(2xi) F(Zleaf)

Therefore, the matrix Ty = (o )4y associated with polynomial sequence
{¢,(x*;a)},~, with respect the Wilson measure has entries

I'(a+ix)’T'(b+ ix) ’

I (2xi) dx

= / " (% @) b a)

B /OC Ia+j+ix)I(a+k+ ix)I(a+ ix)T(b + ix)|*
0 I'(2xi)
=TI'2a+ )l a+b+j)I(2a+k)[(a+ b+ k)
2nl'(2a+j+ k)I'(a+ b)
IBa+b+j+k)

dx

(2.104)
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or
o _T'QRa+j)I'(a+b+j)I2a+ k) (a+ b+ k)I'(2a+j+k)
2nl(a+b) Ir(3a+b+j+k) '
(2.105)
for j,k=0,1,...,N. Then we have the determinant evaluation
(2a),,4 Nonl(2a) (a+b),(3a+b—1),
det | —5— , 2.106
e(@a+mﬁk L! 3a+b—UM@a+m% (2.106)

which is essentially (2.58).
The entries of ITy' = (B;) o< ey are

1 N :
ﬁjk = l_k' Z [W}W” (X)] x2=x2 [ka)” (y)]y:x%
SR n=max(j,k) / k

1 N (=n)(-n)(n+3a+b—1)(n+3a+b—1),
- 2mjlk! Z nl(n+3a+b—1),I2a+n)I(a+b+n)

n=max(j,k)
W j(xa+4,b+9OW, i(xsa+5, b+ 5T Ba+b+2n
W D (xdiath b+ 9T ) on
r2a+n)’r(a+b+n)’
for j,k=0,1,... From
.k k
W,k xk;a+§,b —1—5 =Q2a+k2a+ka+b+k), ,, (2.108)
we have
ZN (=n);(—n)y(n+3a+b—1)(n+3a+b—1), I (2a+n)I'(3a+b+2n)
ﬂjk _ n=max (j,k) nl(n+3a+b—1),I'(a+b-+n) (2109)

2\ (2a + )T (a+ b+ ) 2a+ k) (a+b+k)
Thus, the matrix (o4 )y« has entries
_2rl(a+b)IQa+ ) (a+b+j))I2a+k)[(a+b+k)['(2a+j+ k)

-"k I'Ba+b+j+k) ’
(2.110)
its inverse (f3;;) has entries
S (=m);(—n) (4+3a-+b—1);(n+3a+b—1), T (2a+n)T (3a-+b+2n)
ﬁjk _ n=max (k) 2k nt (n+3a+b—1), T (a+b+n) (2.111)

I*Qa+)HI'(a+b+)I*Q2a+k)Ia+b+k)

Thus the matrix

(2a);4
Gat b (2.112)
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has inverse matrix

N (2a),Ba-+b+2n—1)(3a+b+)),Ba+b+k), [\ [ 7
(361 + b— 1)/(361 + b— l)an:max(j,k) ) n!((1(+b)n s ) (]) <k>

(—1Y*(2a),(2a),(3a+b—1)

(2.113)

they are essentially the matrices in Theorem 10.
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