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Abstract

A new g-analog of Genocchi numbers is introduced through-analog of Seidel’s triangle
associated with Genocchi numbers. It is then shown that tiienocchi numbers have interesting
combinatorial interpretations in the classical models for Genocchi numbers such as alternating
pistols, alternating permutations, non-intersecting lattice paths and skew Young tableaux.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction
The Genocchi numbers &5 can be defined through their relation with Bernoulli
numbersGy, = 2(22" — 1) B, or by their exponential generating functiate] p. 74-75]:
2t t2 t4 t6 2n
S
el +1 2 4 6! (2n)!

However it is not straightforward to see from the above definition @Ggf should be
integers It was Seidel 14] who first gave a Pascal type triangle for Genocchi numbers in
the nineteenth century. Recall that tBeidel trianglfor Genocchi numbergl[5,18] is an
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Table 1
g-analog of Seidel's trianglég; j (A))i, j>1

14+2¢+3¢7 +4¢° +4¢* +2¢° + 45| 4
l+q'+qr2 qr2+qr3+q4 1+2qr+3c,'2-0-4qv3+4gr4+2qv5+qv6 3
1 g |1+q+¢> q+2¢*+2¢°+4* 14 2g +3¢% +4¢° + 3¢* + ¢° 2
1 1|1 1+4+¢ 1+¢ l+2q+2q2+2q3+q4 l+2q+2q2+2q3+q4 1
1 |2 3 | 4 5 | 6 7 i\ j
array of integersg; j)i,j>1 such thagy 1 = g» 1 = 1 and
Qi+1j = Q2i+1j-1+ G2 j, forj=12...,i+1, (1)
Q2i,j = Q2ij+1+ Q2i-1j, forj=i,i—-1,...,1,
wheregij = 0if j < Oorj > [i/2] by convention. The first values aj j for
1 <i, j <10 can be displayed ieidel’s triangle for Genocchi numbeas follows:
155 155 5
155 310 | 4
3 3 138 448 3
1 3 6 104 552 2
1 1 1 2 2 8 8 56 56 608| 1
1 2 3 4 5 6 17 8 9 10 [ i\J

The Genocchi number&,, and the so-callednedian Genocchi numbersyfl; are
given by the following relations4]:

Gan = O2n—1,n, Hon—1 = 0O2n—11.

The purpose of this paper is to show that theregsamalog of Seidel's algorithm and the
resultingg-Genocchi numbers inherit most of the nice results proved by Dumont and Vi-
ennot, Gessel and Viennot, and Dumont and Zeng for ordinary Genocchi nushies][

A g-Seidel triangle is an arrafg; j (0))i,j>1 of polynomials ing such thatgy 1(q) =
g2,1(q) =1 and

{92i+1,j(Q) = Gois1j-2(@ + 0 " tga (@), forj=1,2....i+1 @)
02, (@) = G2i,j+1(@) + 0’ gai—j@, forj=ii—1...,1
whereg; j(q) = 0if j < Oorj > [i/2] by convention. The first values @f j(q) are
giveninTable 1

Define theg-Genocchi numberGa, (q) andg-median Genocchi numbersil 1(q) by
G2(q) = H1(q) = 1 and for alin > 2:

Gn(@) = gan-1.n(@),  Han-1(q) = 9" ?g2n_1.1(q). ®)

Thus, the sequences G, (q) andHan_1(q) startwith 11, 1+q+qg2and 1 1, q + g2,
respectively.
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Fig. 1. An alternating pistop = 11211143.

Note that using the difference operator Gand8] flave another algorithm for
computing Genocchi numbers, which has inspired Dumont to give the first combinatorial
interpretation of Genocchi numbet33]. Some differeng-analogs of Genocchi numbers
have been investigated from both combinatorial and algebraic points of di&d/3]
in the literature. In particular, Han and Zengl] have found an interesting-analog
of Gandhi's algorithm 8] by using theq-difference operator instead of the difference
operator and proved that the ordinary generating function of theSenocchi numbers
has a remarkable continued fraction expansion. Finally other refinements of the Genocchi
numbers have been proposed by Sundarbfihgnd Ehrenborg and Steingrimssaf [

This paper is organized as follows. $ections 2and3 we generalize the combinatorial
results of Dumont and Vienno#] by first interpretingg;.j (@) (and in particular the two
kinds of g-Genocchi numbers) in the model of alternating pistols and then derive the
interpretationG2n(q) as generating polynomials afternating permutationdn Section 4
we give theg-version of the results of Gessel and Viennt][and Dumont and Zendd].

In Section 4 by extending the matrix ofi-binomial coefficients t;megative indicesve
obtain ag-analog of results of Dumont and Zen@].[ Finally, in Section 6 we show
that there is a remarkable triangle @fintegers containing the two kinds gfGenocchi
numbers and conjecture that the terms of this triangle refine the clagsieabnt numbers,
generalizing a result of Dumont and Zer&j.|

2. Alternating pistols

An alternating pistol(resp.strict alternating pistof on[m] = {1, ..., m} is a mapping
p:[m] — [m]suchthatfor =1,2,...,[m/2]:

(1) p(2) <iandp2 -1 <i,
(2) p2 —1) > p2i)yandp(2i) < p2i +1) (resp.p(2i) < p2i + 1)).

We can illustrate an alternating pistol gm] by an array(Tj j)1<i, j <m With a cross at
@, j)if p@i) = j. For example, the alternating pistol= p(1)p(2) ... p(8) = 11211143
can be illustrated as iRig. 1

Foralli > 1and 1< j < [i/2], let AP (resp.SAPi; j) be the set of alternating
pistols p (resp. strict alternating pistols) ¢ such thatp(i) = j. Dumont and Viennot4]
proved that the entrg; j of Seidel’s triangle is the cardinality odP; j. HenceGon (resp.
Hon+1) is the number of alternating pistols (resp. strict alternating pistol$2iop
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To obtain ag-version of Dumont and Viennot's result, we define targeof a pistol
p by
ch(p)=(pr—=D+(p2—D+---+(pm—1D.

In other words the charge of a pistplamounts to the number of cells below its crosses.
For example, the charge of the pistolfig. lisch(p) =1+ 3+ 2 =6.

Proposition1. Fori > landl < j < [i/2], ¢,j(q) is the generating function of

alternating pistols p orfi ] such that gi) = j, with respect to the charge, i.e.,
Gj@= ), oMP7H
peAP;

Proof. We proceed by double inductions band j, where 1< j < [i/2]:

e Ifi =1,thenp(l) = 1 andclip) =0, s0g91,1(q) = 1,
e Let p € APxy1,j and suppose the recurrence is true for all elementd B 1 j/
withk’ < k, ork’ =kandj’ < j.
(1) If j > p(2k), let p’ € APak41,j—1 such thatp and p” have the same restrictions to
[2k]. Then chip) = ch(p’),
(2) If j = p(2k) then the charge of the restriction pfto [2k] is ch(p) — j + 1.
Summing over all elements 6fPox1,j, We obtain the first equation o).
e Let p € APx j and suppose the recurrence true for all elements!Bf j with
k' <k,ork =kandj’ > j.
(1) If j < p(2k—1), let p’ € AP j+1 such thatp and p’ have same restrictions to
[2k — 1]. Then ck{p) = ch(p’).
(2) If j = p(2k—1) then the charge of the restriction pto [2k — 1] is ch(p) — j + 1.

Summing over all elements ofPy j, we obtain the second equation @.( O

In order to interpret thej-median Genocchi numbetdz,_1(q), it is convenient to
introduce another arran; j (0))i, j =1 of polynomialsing such thahy 1(q) = h2,1(q) = 1,
h2i+1,1(q) = 0 and

{h2i+1,j (@) = h2it1,j-1(9) + qj_2h2i,j71(q), @)
hai,j (@) = haij+1(a) + 9 thai_1,j (@),

where by conventioh; j(q) = 0if ] < 0 orj > [i/2]. The first values ofj j(q) are
given inTable 2 Similarly we can prove the following:

Proposition 2. Foralli > 1andl1 < j < [i/2], we have

hij@= 3 g7
o eS AP
Notice that

Gon2(@) = Gon+1nta@ = D G gon k(@)

1<k<n
and sincéhon_1.n(q) = q”*zgm,l,l(q), we have also
Han+1(@) = hans 12 (@ = D < thank(@).

1<k<n
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Table 2
First values oh; j (q)
g*+2¢% +2¢% +24° + ¢4 g% +2g% +297 +24% + ¢° 4
g+q* ¢ +4q° A +2¢° + 24 + 4° g +3¢° +49°+3¢7 + 248 + ¢° 3
gl a a*+¢+4q* ?+q+4q* 7 +2¢* +4¢° +4¢° +3¢7 + 248 + 4| 2
ﬁ 0gq 0 q2 + q'! + q4 0 q3 + 2(]4 + 4{;5 + 4q6 4 3{]"’ 4 2q8 + q9 1
1 |z 3|4 5 | 6 7 | 8 i\

The above observations and propositions imply immediately the following result.

Proposition 3. Foralln > 1, the g-Genocchi number4z2(q) (resp. g-median Genocchi
numbers Hn11(q)) is the generating function of alternating pistols (resp. are the strict
alternating pistols) ori2n] with respect to the statistics charge, i.e.,

Ganp2@ = Y. g™ Hau@= Y o™
pe AP peSAPx
Dumontand Viennot4, Section 3] also gave a combinatorial interpretation of Genocchi

numbers with alternating permutations. In the next section we show that one can translate
the statisticschargethrough all the bijections involved in their proof and interpret the
g-Genocchi numbers asgacounting of alternating permutations.

3. Alternating per mutations

For anyo € S, andi € [n], theinversion tableof o is a mappingf, : [n] — [0, n— 1]
defined by

Vi € [n], f,(i)isthe number of indiceg such thatj <i ando(j) < o(i).

The mappindf, is ansubexceedant functiam[n], that is a mappind, : [n] — [0, n—1]

such that 0< f,(i) < i for everyi e [n]. It is well known [15 p. 21] that the
correspondencé : o +— |, is a bijection between the set of permutationgmif and
the set of subexceedant functions[om. Note that in L5] the inversion tableof o is the

mappingl, : [n] — [n — 1] defined byl,(i) =i —1— f,(i) foralli € [n] and the
inversion number of a permutation efis defined as the following:
n nn—1
invo=>» (i—-1-f,()=——-— fo (). 5
; 5 ; (5)

For example, let =83945162 7% S; then the inversion table i§, = 002120416
and the inversion number is iwv = 20.
A permutatiorns of [2n + 1] is said to baalternatingif

Vieln], o2 -1 >0(2) and o(2) <o(2 +1).

Let Font1 be the set of alternating permutations[@n + 1] with even inversion table.
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Proposition 4. The g-Genocchi number 4,2(q?) is the generating function ofzn. 1
with respect tdnv — n, i.e.,

Gont2(Q) = Z q%(im’“*n).

oeFont1

Proof. As in [4], we define the mapping : p — p’ from APz, to AP2n1 by

P =1 pER)=i+1-p@ -1, pE+1=i+2-p@),Vielnl
Note that clip’) = n? — ch(p). Then we can construct an even subexceedant function
¢(p) = f on[2n + 1] via the following:

f(i)=2(p'() -1, Vi € [2n+1].

Leto = ¢~1(f) be the permutation whose inversion tabléd jst is easily verified (cf. #])
that p is an alternating pistol ofgn] if and only if o is an alternating permutatig@n+ 1].
Finally, it follows from (5) that

ch(p) = %(inwy —n).

For example, for the alternating pistgd = 11211143 ¢ APsg in Fig. 1, we have
p’ = 112133413 APg, f = 002044604 and = 436287915 Fy9. O

4. Digoint lattice paths

Theq-shifted factorialgx; q), are defined by
X Pn=A—=x)A=xq---(1—xg"™), vn > 0.

They can be used to define thebinomial coefficient{';:‘]q as

m—n+1.
[m] :u VvmeZ and neN.
q

n (Q; An
Let Gt = ((—1)'~Jci j (@))i,j=1 be the inverse matrix of

_ i (i—i-Di-j)
Gq_([zi_szqJ J) ' ©

i,j>1

The first values o€; j () are given inTable 3

ck,1(q) is a polynomial inq with non-negative integer coefficients, using Gessel and
Viennot’s theory 9,10].

Let A and B be two points in the plad/ = N x N of coordinatega, b) and(c, d),
respectively. Alattice pathfrom A to B is a sequence of point$xi, yi))o<i<k such that
(X0, Yo) = (&, b), (xk, Yk) = (c, d) and each step is eitheastor north, i.e.,x; —xj—1 = 1
andy; —yi—1 =00rx; —xj—1 =0andy; —yi_1 = —1for1<i < k. Clearly there is a
path fromAto B if and only ifa < candb > d.

Two lattice paths are said to loksjoint if they are vertex-disjoint. With each path
from Ato B with | vertical steps of abscissa, xo, .. ., X|, arranged in decreasing order,
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Table 3
First values of j (q)

i\ 1 2 3 ‘4
1 1 0 0 0
2 1 1 0 0
3 g 4q+1 2 +g+1 1 0
4 g5 +2¢° +4g* + 43 +3¢% +29 +1|q% +2¢° + 49* +49° +3¢% + 29 + 1 (q2+q+l)(q2+l) 1

a (&

X

v*

A
Y

Fig. 2. A lattice path fron{a, b) to (c, d) and its associated Ferrers diagram.

we can associate a partition of integegs = (x1 — a, X2 — a, ..., X — a). Actually the
Ferrers graph of,, corresponds to the area of the region limited by the linesa, y = d
and the horizontal and vertical stepsuef The weight of the partition,, is defined by

|Au,|:(xl—a)+(xz—a)+...+(x|—a).

For example, for the lattice path in Fig. 2, we havgix,| = 5+ 54 3+ 2 = 15. Define
the weight of n-tupley = (y1, y2, . .., yn) Of lattice paths by

Y(y) =gt thnl,
We need the following result, which can be easily verified.

Lemma 1. Let (&jj)i,j=o,...m be an invertible lower triangular matrix, and Igbjj )i j =

(aij )fjl. Then for0 < k < n < m, we have

(_1)n—k
bnx = Ak k-1 i :
T A kAELKHL - - nn [t -2l joa. 0k
Let Ik be the set oh-tuples of non-intersecting lattice paths= (y1, ..., yn) SUch

that

e ¥y goesfromAi(i — 1,2 —DHtoBi2 —1,2 —1forl<i<lork<i=<nand
from Aj;1(,2 + D toBj(2i — 1,2 — 1) forl <i <Kk.
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Theorem 1. For integers k| > 1 the coefficientig (q) is the generating function dfi
with respect to the weight, i.e.,

ai(@= Yy q'".

yelki

Proof. By Lemma lfor1l <| < kandn > k, we have
k—I

I +i i
Cl1(Q) = [ o } qt=ha=1+D
2 -2j+2], it
- k—I-1
- [ I+i+1 } qi-Di=i+D
2 -2 +2], Lico
- n I +i+4+1 e
— (_1)|nv(a) [ ) . :| q(I—U(I))(I—J(I)—i-l).
0;1 Ill 2l —20()+2 q

For anyo € §, denote byC(o, k, |) the set ofn-tuples of lattice pathg = (y1, ..., ¥n),
wherey; goes fromA; to B,y for 1 <i <1 ork <i < n, and fromA;;1 to By for
| <i <k

Let f : §, — Z be a mapping defined by

n
Vo € S, f(o) = Z(i —o()i —ol)+1).

i=1
Since theg-binomial coefficient has the following interpretatiah p. 33]:

m+ni| |
= q V’
[ m  Jq Xy:

where the sum is over all lattice pathgrom (0, m) to (n, 0), we derive immediately
ai@=y. Y (=HmOgrmntie) @

ceS yeC(ok,])

For anyn-tuple of lattice pathsy1, ..., yn), if there is at least one intersecting point, we
can define thextreme intersecting poirtt, j) € II to be the greatest intersecting point

by the lexicographic order of their coordinates. It is easy to see that this point must be an
intersecting point of two lattice paths; and wj1 of consecutive indices. We apply the
Gessel-Viennot method by “switching the tails”, i.e., exchanging the patts ahdw; 1
starting from the extreme point. Lét: y — y’ be the corresponding transformation on
the n-tuple of lattice paths with at least one intersecting point. This transformation does
not keep the valug of intersecting paths as illustratedrig. 3. However, it is easy to see

that f is the unique mapping o§, satisfyingf (id) = 0 and

f(o)— f(oo(i,i+1)=20c@G)—0c( + 1)), foranyo € S..
Hence, for any € §, andy € C(o, k, ), we have
qw(y)+f(a)(_1)inV(a) — _qtlf(¢(y))+f(UO(i,i+1))(_1)inV(00(i,i+1))_
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Fig. 3. Change of weight after switching tails.

This means thap is aweight-preserving—sign-reversinigvolution on the set of-tuples
of intersecting lattice paths i0,cs, C(o, k,I). ¥y € C(o, Kk, I) is non-intersecting only
if o is an identity permutation; that ig € C(id, k,|). The result follows then from
Eq.(7). O

Notice that for 1< i < | ork < i < n, there is only one lattice path frody to B;; the
others have two vertical steps. With each vertical step afe can associate the number
v = Xo — I + 1 between 1 antd wherexg is the abscissa of the vertical step. We define the
functionp : [2n — 2] — [0, n — 1] as follows:

0 if there is no vertical steps between the liyes i,y =i + 1;

P() = {v if v is the number associated with the vertical step.

For example, for the preceding configuration, we have

P =---=p@ =0 p®O =2 p6) =1 p7) = p@®) = pl0 =3, p(9 =5

By construction,p(2i — 1) > p(2i) for all i € [n — 1]. Now the condition of non-
intersecting paths is equivalent i{2i) < p(2i + 1) foralli € [k —2]\ [l — 1]; and
the value ofw is ¥ (w) = —2(n — k) + >_; p(i).

Then we obtain a bijection between the configurationBmiposition 5and those that
we can caltruncated alternating pistoldMore precisely we have the following result:

Theorem2. For 0 < | < k and n > k, the coefficientig.1,+1(q) is the generating
function of alternating pistols of[2k], weighted bych and truncated at the indegl,
i.e. the weight of mappings:{2k] — [0, k] satisfying the three conditions:

() p2 —1)=p@)=0forl=<i <I,
(2) p2 —1) <iand p2i) <iforl <i <k,
(3) p2i —1) > p2i) < p@i +Dforl<i <k.

For example, the arrasg{,j) with5 <i < 8and 1< j < 4, corresponding to the

truncated alternating pistols using for counting the coeffictgn(q) = Zf(‘zl qk_lgé,k'
is given inTable 4
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Table 4
Computation ofs 3(q)
1+q+2¢°+¢° +4* P +qt+2¢°+¢°+4’ 4
1 P 1+q+2¢° +¢° +¢* 7> +2¢° +3¢* +3¢° + 245+ 47 3
1 q+q* 1+q+2¢%+4° q+2g% +4g° + 4% +3¢° +2¢% + 47 2
I 1+g+4q° 1+q+q° 14+2¢+3¢2 +4¢° +4¢* +3¢° +2¢5+47 | 1
5 6 7 8 i\

In particular we recover the alternating pistol in the dase0, and then we obtain the
following result:

Corollary 1. For n > 1, the coefficient £1(q) of the inverse matrix of g is the
g-Genocchi number & (q).

Now we give a last combinatorial interpretation of theGenocchi numbers. Some
definitions concerningnteger partitionsare needed. Aparitition . = (A1, A2,...) is a
finite nonincreasing sequence of nonnegative integers, callguhtteof . Thediagram
of A is an arrangements of squares wittsquares, left justified, in thigh row. A partition
w = (1, n2, .. .) is said tosmallerthan another partitioh = (A1, A2, ...) if and only if
all the parts ofx are smaller than those af If 1 < A we define a skew hook of shap&
as the diagram obtained from thatioby removing the diagram of. Finally, a row-strict
plane partitionT of A \ u is a skew hook of shape\ 1 where we associate with thjgh
cell (from left to right) of thei th line (from top to bottom) a positive integer, j (T) such
that,vi € [K], V| € [Aj — uil,

Pii(T) > pi,j+21(T) and  pij(T) = piya,j(T). (8)

A reverse plane partition is obtained by reversing all the inequalitie®) of (
Now, lety = (y1, ..., yn) be one of the configuration counted &y (q), n > k > I.
Then we can associate with this configuration two partitians= (A1, ..., An) and

w = (U1, ..., un) defined byr; (resp.ui) equal ton+i — 1 fori < | (resp.i < K)
andn +i + 1 otherwise. By construction, is larger tharu and then we can construct a
row-strict plane partitiom where each case af\ u is labelled in the following way:

If the vertical steps of+i—1 (1 <i < k —1) havex; 1 andx; 2 for the abscissa from
left to right, soxi,1 < X; 2, define

Pi,j(T)=21+2i — ] —Xij forj=1,2

For example, the row-strict plane partition corresponding to the configuration of five
paths inFig. 5is

412 |
312
| 411
Let Tk be the set of row-strict plane partitions of fotn—1 + 1, k—1,...,2) — (k—

-1, k—1—-2,...,0) such that the largest entry in ravis at most +i. For anyT € Ty
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Fig. 4. One of the 493 configurations counteddgy;(1) and its associated truncated pistol.

ole

Y

define the value of by

k—I
ITI=2 (Pa(™) + pia(T)):

i=1

then we have the following result, which igjganalog of a result of Gessel and Viennbd[
Theorem 31].

Theorem 3. Fork > | > 1, the entry ¢, (q) is the following generating function ok T:

2_12_
k1 (Q) = Z gk 1=l
TeTk)
5. Extension to negative indices and median g-Genocchi numbers

As in [6], we can extend the matri®q to the negative indices as follows:

-] i—j)(2i—-1) 2i—j—-1
(e ) =)
( 2 —2] Jq ij>1 -1 g ij>1

and its inverse:

Het = (=)' Tdi.j (@)i,j=1.
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Fig. 5. One of the 736 configurations counteddgys(1) and its associated truncated pistol.

Table 5

First values ofd; j ()

N | | 2 ’ .
! l 0 i )
2 l ' 0 0

2 2

3 7> +q 9" +q+1 1 °
4 |1¢®+24° +2¢* +24° + 4% | % +24° +3¢* +3¢° +3¢* +¢ ((’2+q+])(qz+l) l

Using the result otemma 1 for 1 < | < k andn > k, the coefficientl(q) is equal

[ [ +2i —j }
2 -2 +2], i1
The first values ofi; j (q) are given inTable 5
As in the previous section, we then derive froBy the following result.

to
k—I

d 1 (Q) = 9

Theorem 4. For integers kI > 1 the coefficient g (q) is the generating function of the
configuration of lattice pathf? = (w1, ..., wn), weighted by, satisfying the following
two conditions:

(1) wi joins A(0,2i —2)to Bi(i —1,2i —2)forl <i <lork <i < n andw;j joins
Ai+1(0,2)to B(i — 1,2 —2)forl <i <Kk;
(2) the pathswvs, .. ., wy are disjoint.

Similarly to in the preceding section, remark that fogl < | ork < i < n, thereis
only a lattice path fromA; to B; and the others have two vertical steps. With each of the
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Table 6
Computation ofds 3(q)

14+q+24%+4° +4¢* P gt +2¢° +45+47 4
1 qz l+qv+2qz+q3 q2+2q3+3q4+3q5+q6+q7 3
1 q'+q'2 1+q'+qr2 q+2q2+3q3+3q4+3q5+q6+q7 2
1 14g+4g> 0 q+2¢2 +3¢° +3¢* +3¢5 +4°+47 | 1
5 6 7 | 8 i\J

vertical steps ofv;, we associate a number= xg + 1 between 1 and wherexg is the
abscissa of this vertical step. Then we can define a fungtiofen — 2] — [0, n — 1] as
follows:

0 if there is no vertical steps betweenthe lives i — 1,y =1,

P = {v if v is the number associated with the vertical step

For example, for the preceding configuration, we hpy® = p(2) = p(3) = p(@d) =
0, p5 = p(7) = p@B = 3, p(6) = p(10) = 1, p(9 = 5. By construction,
p2i —1) > p(2) foralli € [n— 1] and the condition of non-intersecting paths
is equivalent top(2i) < p2 + 1) foralli € [k — 2]\ [I| — 1]. The value ofw is
Y(w) = —2(n —K) + Y ; p(i). Then we obtain a bijection between the configurations
of Theorem 4and those that we can catlncated alternating pistoldVlore precisely we
state the following result:

Proposition 5. For 0 < | < k and n > k, the coefficientid.1+1(q) is the generating
function of alternating pistols 42k], weighted bgh and truncated at the inde, i.e. the
mappings p [2k] —> [0, k] satisfying the three conditions:

(1) p2 —1) =p@)=0forl<i <I,
(2) p2 —1) <iand p2i) <iforl <i <Kk,
(B) p2 —1) = p2)<p+Dforl<i <k.

The array for the computation df 3(q) is given inTable 6
In particular we recover the alternating pistol wher= 0, and then we obtain the
following result:

Corollary 2. For n > 1, the coefficient gl1(q) of the inverse matrix of jlis the median
g-Genocchi number #4+1(q).

Now, let{? = (w1, ..., wn) be one of the configurations counteddiy (1), n > k > .
Then we can associate with this configuration two partitians= (i1, ..., An) and
uw = (u1, ..., un) defined byr; (resp.ui) equal ton +i — 2 fori < | (resp.i < K)
andn+i otherwise. By construction, is bigger than: and then we can construct an array
T where each case af\ u is labelled in the following way:

If the vertical steps ofv+i—1 (1 < i < k — 1) have respectively; 1 andx; » for the
abscissa(xi 1 < Xi 2), thenp; j(T) =x,j +1forj =1,2.
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For example, the row-strict plane partition corresponding to the configuration of five
paths inFig. 4is

113]

BE

Similarly we have the following:
Theorem 5. Fork > 1 > 1,
dei(@) = Y q 2T

TE'FkJ
where'FkJ is the set of column-strict reverse plane partitionglof-1 + 1, k—1,...,2) —
(k—1-1k—-1-2,...,0) with positive integer entries in which the largest entry in row

iisatmostl+i — 1.

6. A remarkabletriangle of g-numbersrefining g-Euler numbers

Recall that the Euler numbeEs,, are the coefficients in the Taylor expansion of the

H 1 .
function ok

1 X2n
— = E .
cosx Z 2 2n)!

n>0

Letci,j = ¢ j(1). Then Dumont and Zend] proved that there is a triangle of positive
integerskn,j (1 < j < n— 1) featuring the two kinds of Genocchi numbers and refining
Euler numbers as follows:

Kn.1 +kn2+ -+ Knn—1 = Eon—2, kn,1 = Gon  and knn-1 = Hon-1.

Moreover,

j+1 kn 1X + I(n,2X2 + -+ I(n,n—lxn_:L
Y cnrp e t= o1 :
j>0 1=
The first values okn j (1 < j < n — 1) are tabulated as follows:

n 1 2 3 4 5 Zj kn,j = Ezy—
1 1
1 1

J

N B W =

3 2 5
17 36 8 61
155 678 496 56 1385
2073 15820 23576 8444 608 50521
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We show now there is@-analog of the above triangle. Following Jacksd# fhe g-secant
numbersEan (q) are defined by

y2n . y2n -1
E = -1 .
;0 20 G D (Z( '@ q)2n>

n>0

Let[x] = (q*—1)/(g—21) and[x]y = [X][Xx—1] - --[x —n+1] forn > 0. Then([x]n)
is a basis ofC[g*]. For any integen > 0 we define a lineag-difference operato&‘g on
C[g*] as follows: Forf (x) € C[g”],

st =f(x), 8T =(E—q")sgf(x). (10)
That is,
sT00=(E—-q"E=-q"?) - (E- 1) fXx).

In view of theqg-binomial formula [L, p. 36]:
. HIMON
G Dn = (=D | a'\¥/x" (11)
: k;) [k]q
we have
n
o0 =) (—1K [E]q q<5) f (X +n— k).
k=0

Lemma 2. For all non-negative integers,m we have
n _ [m]n[x]m_nqn(x+n—m) ifn<m
SqlXIm = {0 ifn>m,
Henceaa‘f(x) = 0if f(x) is a polynomial ing* of degree<n. It follows from the
g-binomial identity (L1) that

j 2n—1
(x q)Zn—lZCn_i_j!j_i_l(q)XJ'f‘l: me-i-lz(_l)k[ nk L

j>0 m>0 k>0
(5)
x g\ Cngm—k,m—k+1(0),

=Y x™sE L f(m),

m>0

where f (m) denotes the following determinant:

m—2(n—1)+| q(ifj)(i*j‘Fl)
2i-2j+2 |

n-1
f(m) =

ij=1
is a polynomial ig™ of degree 2n— 1) whenm > 2n—3. Hence the preceding expression
is a polynomial inx of degreed < 2n — 1, i.e., we have

d
oL Wi+ ao(q) + - - + ad—1(q)X _ 12
jzzo n+j,j+1(a) D (12)
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Applying a well-known result about rational functionks] p. 202—-210], we derive from
(12) that

. -1 ... —d
> onj (@ = - SO e
j>1 ' (1/X; @)2n-2

otonn_l S Otd_j_in_d
(X; P2n—2
But the coefficientn—j —j+1(q) isnull forall 1 < j < n because the determinant formula
of ¢k (q) contains a row with only zeros. $b< n — 1.

Summarizing all the above we get the following theorem, whichgjsamalog of a result
of Dumont and Zeng#, Proposition 7].

Theorem 6. Forn > 2,Vj e [n — 1], there are polynomials/; (q) in g such that

S q0-Diky, (@)x
> et jra@xitt= =L : (13)

jEO (X; Q)Zn—l
n-1 . .
> q(l_l)l Kn,n—i (@)X
Onsi jea(@xi Tl = =2 . 14
jg) n+j.j+1(Q) * Qo1 (14)

Moreover, we haverk (q) = Gan(Q), kn,n—1(0) = Hon—1(q) and

n-1
Eon—2(Q) = Z q('_l)' Kn.n—i (Q).

i=1
Proof. Egs. (L3) and (L4) have been proved previously. In view @brollaries land2 we
derive from (L3) and (L4) that

kn,1(@) = ¢n,1(q) = G2n(Q),

Kn,n—1(0) = dn,1(Q) = Han—1(Q).

Recall that for any sequenden)n in C[[q]l]l, we have ling_.1(1 — X) ano anq" =
limn- o an, provided the latter limit exists. Hence we derive frotd)(that

n—1
>0 ki (@ = im (6 @zn1 ) o ja(@x)
i=1 - 120

= (0; P2n—2 lim dnyj,j+2(a).
j—o0

As liMn_ o0 [ ], = ey it follows from (9) that

n-1 ] n—-1
> a4 Pk ni (@) = (A, D2n-2

3 (15)
i=1

(@; P2i-2j+2

ij=1
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Now, using the inclusion—exclusion principle we can show (4&egd. 70]) that the right-
hand side of 15) is the enumerating polynomial of up—down permutationg2mn— 2],
i.e., whose descent set {8, 4, ..., 2n — 4}, with respect to inversion numbers, and it is
also known (seelb, p. 148]) that this enumerating polynomial is equal to thEuler
polynomialEzn—2x(q). O

It is not difficult to derive fromTheorem &he following result.
Corollary 3. Forn > 2, foralli € [n — 1], we have

o i—1 KY[2n—-1
q('fl)'kn,i(q) _ Z(_l)lq(z) [ nl } Cnti—l—1,i—1(q),
1=0 4

and

o i~1 KY[2n—-1
q('fl)'kn,n—i Q) = Z(—l)lq(z) [ nl i| Oni—1—1,i—1 (D).
1=0 q

Finally, forn = 2, 3, Eq. (L3) reads as follows:

X
oy =X AT et @+ a+ 207+t a4
(1+a+39%)x+9%@q +g3)x*

= (1+q+g?dx

(X; Q)5
+(1+ 29+ 39% + 49> + 49% + 29° + g®)x?
+ .-,
Soks 1(q) = 1+q+q? andkz 2(q) = q+ g2, while the five up—down permutations off [
are

1324 1423 2314 2314 3412

ThereforeE4(q) = q+ 292+ q3+q* and we can check tha&t(q) = ks 2(q) +q2ks.1(q).
Forn = 4 the values ok4 j(0), 1 < j < 3, are given by

ks, 1(Q) = 1+ 29 + 392 + 49® + 49* + 2¢° + ¢°,
ka2(@) =ql+q) 1+ 9?1 +q+gd?
ka3(@) = q2(9* + 1)(q + D%

It seems that the coefficients of the polynomal (q) in g arenon-negative integers
and it would be interesting to find a combinatorial interpretationkfor(q) for the case
where the above conjecture is true.
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