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Abstract

A new q-analog of Genocchi numbers is introduced through aq-analog of Seidel’s triangle
associated with Genocchi numbers. It is then shown that theseq-Genocchi numbers have interesting
combinatorial interpretations in the classical models for Genocchi numbers such as alternating
pistols, alternating permutations, non-intersecting lattice paths and skew Young tableaux.
© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The Genocchi numbers G2n can be defined through their relation with Bernoulli
numbersG2n = 2(22n − 1)Bn or by their exponential generating function [16, p. 74–75]:

2t

et + 1
= t − t2

2! + t4

4! − 3
t6

6! + · · · + (−1)nG2n
t2n

(2n)! + · · · .

However it is not straightforward to see from the above definition thatG2n should be
integers. It was Seidel [14] who first gave a Pascal type triangle for Genocchi numbers in
the nineteenth century. Recall that theSeidel trianglefor Genocchi numbers [4,5,18] is an
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Table 1
q-analog of Seidel’s triangle(gi, j (q))i, j ≥1

array of integers(gi, j )i, j ≥1 such thatg1,1 = g2,1 = 1 and{
g2i+1, j = g2i+1, j −1 + g2i, j , for j = 1,2, . . . , i + 1,
g2i, j = g2i, j +1 + g2i−1, j , for j = i , i − 1, . . . ,1,

(1)

where gi, j = 0 if j < 0 or j > �i /2� by convention. The first values ofgi, j for
1 ≤ i , j ≤ 10 can be displayed inSeidel’s triangle for Genocchi numbersas follows:

The Genocchi numbersG2n and the so-calledmedian Genocchi numbers H2n−1 are
given by the following relations [4]:

G2n = g2n−1,n, H2n−1 = g2n−1,1.

The purpose of this paper is to show that there is aq-analog of Seidel’s algorithm and the
resultingq-Genocchi numbers inherit most of the nice results proved by Dumont and Vi-
ennot, Gessel and Viennot, and Dumont and Zeng for ordinary Genocchi numbers [4,10,6].

A q-Seidel triangle is an array(gi, j (q))i, j ≥1 of polynomials inq such thatg1,1(q) =
g2,1(q) = 1 and{

g2i+1, j (q) = g2i+1, j −1(q)+ q j −1g2i, j (q), for j = 1,2, . . . , i + 1,
g2i, j (q) = g2i, j +1(q)+ q j −1g2i−1, j (q), for j = i , i − 1, . . . ,1,

(2)

wheregi, j (q) = 0 if j < 0 or j > �i /2� by convention. The first values ofgi, j (q) are
given inTable 1.

Define theq-Genocchi numbersG2n(q) andq-median Genocchi numbers H2n−1(q) by
G2(q) = H1(q) = 1 and for alln ≥ 2:

G2n(q) = g2n−1,n(q), H2n−1(q) = qn−2g2n−1,1(q). (3)

Thus, the sequences forG2n(q) andH2n−1(q) start with 1,1,1+ q + q2 and 1,1,q + q2,
respectively.
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Fig. 1. An alternating pistolp = 11211143.

Note that using the difference operator Gandhi [8] gave another algorithm for
computing Genocchi numbers, which has inspired Dumont to give the first combinatorial
interpretation of Genocchi numbers [2,3]. Some differentq-analogs of Genocchi numbers
have been investigated from both combinatorial and algebraic points of view [11,13]
in the literature. In particular, Han and Zeng [11] have found an interestingq-analog
of Gandhi’s algorithm [8] by using theq-difference operator instead of the difference
operator and proved that the ordinary generating function of theseq-Genocchi numbers
has a remarkable continued fraction expansion. Finally other refinements of the Genocchi
numbers have been proposed by Sundaram [17] and Ehrenborg and Steingrímsson [7].

This paper is organized as follows. InSections 2and3 we generalize the combinatorial
results of Dumont and Viennot [4] by first interpretinggi, j (q) (and in particular the two
kinds of q-Genocchi numbers) in the model of alternating pistols and then derive the
interpretationG2n(q) as generating polynomials ofalternating permutations. In Section 4
we give theq-version of the results of Gessel and Viennot [10] and Dumont and Zeng [5].
In Section 4, by extending the matrix ofq-binomial coefficients tonegative indiceswe
obtain aq-analog of results of Dumont and Zeng [6]. Finally, in Section 6, we show
that there is a remarkable triangle ofq-integers containing the two kinds ofq-Genocchi
numbers and conjecture that the terms of this triangle refine the classicalq-secant numbers,
generalizing a result of Dumont and Zeng [5].

2. Alternating pistols

An alternating pistol(resp.strict alternating pistol) on [m] = {1, . . . ,m} is a mapping
p : [m] → [m] such that fori = 1,2, . . . , �m/2�:

(1) p(2i ) ≤ i and p(2i − 1) ≤ i ,

(2) p(2i − 1) ≥ p(2i ) and p(2i ) ≤ p(2i + 1) (resp.p(2i ) < p(2i + 1)).

We can illustrate an alternating pistol on[m] by an array(Ti, j )1≤i, j ≤m with a cross at
(i , j ) if p(i ) = j . For example, the alternating pistolp = p(1)p(2) . . . p(8) = 11211143
can be illustrated as inFig. 1.

For all i ≥ 1 and 1≤ j ≤ �i /2�, let APi, j (resp.SAPi, j ) be the set of alternating
pistolsp (resp. strict alternating pistols) on[i ] such thatp(i ) = j . Dumont and Viennot [4]
proved that the entrygi, j of Seidel’s triangle is the cardinality ofAPi, j . HenceG2n (resp.
H2n+1) is the number of alternating pistols (resp. strict alternating pistols) on[2n].
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To obtain aq-version of Dumont and Viennot’s result, we define thechargeof a pistol
p by

ch(p) = (p1 − 1)+ (p2 − 1)+ · · · + (pm − 1).

In other words the charge of a pistolp amounts to the number of cells below its crosses.
For example, the charge of the pistol inFig. 1 is ch(p) = 1 + 3 + 2 = 6.

Proposition 1. For i ≥ 1 and 1 ≤ j ≤ �i /2�, gi, j (q) is the generating function of
alternating pistols p on[i ] such that p(i ) = j , with respect to the charge, i.e.,

gi, j (q) =
∑

p∈APi, j

qch(p)− j +1.

Proof. We proceed by double inductions oni and j , where 1≤ j ≤ �i /2�:

• If i = 1, thenp(1) = 1 and ch(p) = 0, sog1,1(q) = 1,
• Let p ∈ AP2k+1, j and suppose the recurrence is true for all elements ofAP2k′+1, j ′

with k′ < k, or k′ = k and j ′ < j .
(1) If j > p(2k), let p′ ∈ AP2k+1, j −1 such thatp and p′ have the same restrictions to

[2k]. Then ch(p) = ch(p′),
(2) If j = p(2k) then the charge of the restriction ofp to [2k] is ch(p)− j + 1.

Summing over all elements ofAP2k+1, j , we obtain the first equation of (2).
• Let p ∈ AP2k, j and suppose the recurrence true for all elements ofAP2k′, j ′ with

k′ < k, or k′ = k and j ′ > j .
(1) If j < p(2k − 1), let p′ ∈ AP2k, j +1 such thatp and p′ have same restrictions to

[2k − 1]. Then ch(p) = ch(p′).
(2) If j = p(2k−1) then the charge of the restriction ofp to [2k−1] is ch(p)− j +1.

Summing over all elements ofAP2k, j , we obtain the second equation of (2). �

In order to interpret theq-median Genocchi numbersH2n−1(q), it is convenient to
introduce another array(hi, j (q))i, j ≥1 of polynomials inq such thath1,1(q) = h2,1(q) = 1,
h2i+1,1(q) = 0 and{

h2i+1, j (q) = h2i+1, j −1(q)+ q j −2h2i, j −1(q),
h2i, j (q) = h2i, j +1(q)+ q j −1h2i−1, j (q),

(4)

where by conventionhi, j (q) = 0 if j < 0 or j > �i /2�. The first values ofhi, j (q) are
given inTable 2. Similarly we can prove the following:

Proposition 2. For all i ≥ 1 and1 ≤ j ≤ �i /2�, we have

hi, j (q) =
∑

σ∈SAPi, j

qch(σ )− j +1.

Notice that

G2n+2(q) = g2n+1,n+1(q) =
∑

1≤k≤n

qk−1g2n,k(q),

and sinceh2n−1,n(q) = qn−2g2n−1,1(q), we have also

H2n+1(q) = h2n+1,n+1(q) =
∑

1≤k≤n

qk−1h2n,k(q).



368 J. Zeng, J. Zhou / European Journal of Combinatorics 27 (2006) 364–381

Table 2
First values ofhi, j (q)

The above observations and propositions imply immediately the following result.

Proposition 3. For all n ≥ 1, the q-Genocchi number G2n+2(q) (resp. q-median Genocchi
numbers H2n+1(q)) is the generating function of alternating pistols (resp. are the strict
alternating pistols) on[2n] with respect to the statistics charge, i.e.,

G2n+2(q) =
∑

p∈AP2n

qchp, H2n+1(q) =
∑

p∈SAP2n

qchp.

Dumont and Viennot [4, Section 3] also gave a combinatorial interpretation of Genocchi
numbers with alternating permutations. In the next section we show that one can translate
the statisticscharge through all the bijections involved in their proof and interpret the
q-Genocchi numbers as aq-counting of alternating permutations.

3. Alternating permutations

For anyσ ∈ Sn andi ∈ [n], theinversion tableof σ is a mappingfσ : [n] → [0,n − 1]
defined by

∀i ∈ [n], fσ (i ) is the number of indicesj such thatj < i andσ( j ) < σ(i ).

The mappingfσ is ansubexceedant functionon[n], that is a mappingfσ : [n] → [0,n−1]
such that 0≤ fσ (i ) < i for every i ∈ [n]. It is well known [15, p. 21] that the
correspondence	 : σ �→ Iσ is a bijection between the set of permutations of[n] and
the set of subexceedant functions on[n]. Note that in [15] the inversion tableof σ is the
mappingIσ : [n] → [n − 1] defined byIσ (i ) = i − 1 − fσ (i ) for all i ∈ [n] and the
inversion number of a permutation ofσ is defined as the following:

inv σ =
n∑

i=1

(i − 1 − fσ (i )) = n(n − 1)

2
−

n∑
i=1

fσ (i ). (5)

For example, letσ = 8 3 9 4 5 1 6 2 7∈ S9; then the inversion table isfσ = 002120416
and the inversion number is invσ = 20.

A permutationσ of [2n + 1] is said to bealternatingif

∀i ∈ [n], σ (2i − 1) > σ(2i ) and σ(2i ) < σ(2i + 1).

LetF2n+1 be the set of alternating permutations on[2n + 1] with even inversion table.
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Proposition 4. The q-Genocchi number G2n+2(q2) is the generating function ofF2n+1
with respect toinv − n, i.e.,

G2n+2(q) =
∑

σ∈F2n+1

q
1
2 (inv σ−n).

Proof. As in [4], we define the mappingα : p �→ p′ fromAP2n to AP2n+1 by

p′(1) = 1, p′(2i ) = i + 1 − p(2i − 1), p′(2i + 1) = i + 2 − p(2i ), ∀i ∈ [n].
Note that ch(p′) = n2 − ch(p). Then we can construct an even subexceedant function
φ(p′) = f on [2n + 1] via the following:

f (i ) = 2(p′(i )− 1), ∀i ∈ [2n + 1].
Let σ = 	−1( f ) be the permutation whose inversion table isf ; it is easily verified (cf. [4])
that p is an alternating pistol on[2n] if and only if σ is an alternating permutation[2n+1].
Finally, it follows from (5) that

ch(p) = 1

2
(invσ − n).

For example, for the alternating pistolp = 11211143 ∈ AP8 in Fig. 1, we have
p′ = 112133413∈ AP9, f = 002044604 andσ = 436287915∈ F9. �

4. Disjoint lattice paths

Theq-shifted factorials(x; q)n are defined by

(x; q)n = (1 − x)(1 − xq) · · · (1 − xqn−1), ∀n ≥ 0.

They can be used to define theq-binomial coefficients
[m

n

]
q as[m

n

]
q

= (qm−n+1; q)n
(q; q)n

∀m ∈ Z and n ∈ N.

Let G−1
q = ((−1)i− j ci, j (q))i, j ≥1 be the inverse matrix of

Gq =
([

i

2i − 2 j

]
q

q(i− j −1)(i− j )

)
i, j ≥1

. (6)

The first values ofci, j (q) are given inTable 3.
ck,l (q) is a polynomial inq with non-negative integer coefficients, using Gessel and

Viennot’s theory [9,10].
Let A and B be two points in the planΠ = N × N of coordinates(a,b) and(c,d),

respectively. Alattice pathfrom A to B is a sequence of points((xi , yi ))0≤i≤k such that
(x0, y0) = (a,b), (xk, yk) = (c,d) and each step is eithereastor north, i.e.,xi − xi−1 = 1
andyi − yi−1 = 0 or xi − xi−1 = 0 andyi − yi−1 = −1 for 1 ≤ i ≤ k. Clearly there is a
path fromA to B if and only if a ≤ c andb ≥ d.

Two lattice paths are said to bedisjoint if they are vertex-disjoint. With each pathw
from A to B with l vertical steps of abscissax1, x2, . . . , xl , arranged in decreasing order,
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Table 3
First values ofci, j (q)

Fig. 2. A lattice path from(a,b) to (c,d) and its associated Ferrers diagram.

we can associate a partition of integersλw = (x1 − a, x2 − a, . . . , xl − a). Actually the
Ferrers graph ofλw corresponds to the area of the region limited by the linesx = a, y = d
and the horizontal and vertical steps ofw. The weight of the partitionλw is defined by

|λw| = (x1 − a)+ (x2 − a)+ · · · + (xl − a).

For example, for the lattice pathw in Fig. 2, we have|λw| = 5 + 5 + 3 + 2 = 15. Define
the weight of an-tupleγ = (γ1, γ2, . . . , γn) of lattice paths by

ψ(γ ) = q|λγ1|+···+|λγn |.
We need the following result, which can be easily verified.

Lemma 1. Let (ai j )i, j =0,...,m be an invertible lower triangular matrix, and let(bi j )i, j =
(ai j )

−1
i, j . Then for0 ≤ k ≤ n ≤ m, we have

bn,k = (−1)n−k

ak,kak+1,k+1 · · · an,n

∣∣ak+i,k+ j −1
∣∣
i, j =1,...,n−k .

Let Γk,l be the set ofn-tuples of non-intersecting lattice pathsγ = (γ1, . . . , γn) such
that

• γi goes fromAi (i − 1,2i − 1) to Bi (2i − 1,2i − 1) for 1 ≤ i < l or k < i ≤ n and
from Ai+1(i ,2i + 1) to Bi (2i − 1,2i − 1) for l ≤ i < k.
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Theorem 1. For integers k, l ≥ 1 the coefficient ck,l (q) is the generating function ofΓk,l

with respect to the weightψ, i.e.,

ck,l (q) =
∑
γ∈Γk,l

qψ(γ ).

Proof. By Lemma 1, for 1 ≤ l ≤ k andn ≥ k, we have

ck,l (q) =
∣∣∣∣∣
[

l + i

2i − 2 j + 2

]
q

q(i− j )(i− j +1)

∣∣∣∣∣
k−l

i, j =1

=
∣∣∣∣∣
[

l + i + 1

2i − 2 j + 2

]
q

q(i− j )(i− j +1)

∣∣∣∣∣
k−l−1

i, j =0

=
∑
σ∈Sn

(−1)inv(σ )
n∏

i=1

[
l + i + 1

2i − 2σ(i )+ 2

]
q

q(i−σ(i ))(i−σ(i )+1).

For anyσ ∈ Sn denote byC(σ, k, l ) the set ofn-tuples of lattice pathsγ = (γ1, . . . , γn),
whereγi goes fromAi to Bσ(i ) for 1 ≤ i < l or k < i ≤ n, and fromAi+1 to Bσ(i ) for
l ≤ i < k.

Let f : Sn → Z be a mapping defined by

∀σ ∈ Sn, f (σ ) =
n∑

i=1

(i − σ(i ))(i − σ(i )+ 1).

Since theq-binomial coefficient has the following interpretation [1, p. 33]:[
m + n

m

]
q

=
∑
γ

q|λγ |,

where the sum is over all lattice pathsγ from (0,m) to (n,0), we derive immediately

ck,l (q) =
∑
σ∈Sn

∑
γ∈C(σ,k,l)

(−1)inv(σ )qψ(γ )+ f (σ ). (7)

For anyn-tuple of lattice paths(γ1, . . . , γn), if there is at least one intersecting point, we
can define theextreme intersecting point(i , j ) ∈ Π to be the greatest intersecting point
by the lexicographic order of their coordinates. It is easy to see that this point must be an
intersecting point of two lattice pathswi andwi+1 of consecutive indices. We apply the
Gessel–Viennot method by “switching the tails”, i.e., exchanging the parts ofwi andwi+1
starting from the extreme point. Letφ : γ �→ γ ′ be the corresponding transformation on
the n-tuple of lattice paths with at least one intersecting point. This transformation does
not keep the valueψ of intersecting paths as illustrated inFig. 3. However, it is easy to see
that f is the unique mapping onSn satisfying f (id) = 0 and

f (σ )− f (σ ◦ (i , i + 1)) = 2(σ (i )− σ(i + 1)), for anyσ ∈ Sn.

Hence, for anyσ ∈ Sn andγ ∈ C(σ, k, l ), we have

qψ(γ )+ f (σ )(−1)inv(σ ) = −qψ(φ(γ ))+ f (σ◦(i,i+1))(−1)inv(σ◦(i,i+1)).
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Fig. 3. Change of weight after switching tails.

This means thatφ is aweight-preserving–sign-reversinginvolution on the set ofn-tuples
of intersecting lattice paths in∪σ∈Sn C(σ, k, l ). γ ∈ C(σ, k, l ) is non-intersecting only
if σ is an identity permutation; that isγ ∈ C(id, k, l ). The result follows then from
Eq. (7). �

Notice that for 1≤ i < l or k < i ≤ n, there is only one lattice path fromAi to Bi ; the
others have two vertical steps. With each vertical step ofγi we can associate the number
v = x0 − i + 1 between 1 andi , wherex0 is the abscissa of the vertical step. We define the
function p : [2n − 2] −→ [0, n − 1] as follows:

p(i ) =
{

0 if there is no vertical steps between the linesy = i , y = i + 1;
v if v is the number associated with the vertical step.

For example, for the preceding configuration, we have

p(1) = · · · = p(4) = 0, p(5) = 2, p(6) = 1, p(7) = p(8) = p(10) = 3, p(9) = 5.

By construction,p(2i − 1) ≥ p(2i ) for all i ∈ [n − 1]. Now the condition of non-
intersecting paths is equivalent top(2i ) ≤ p(2i + 1) for all i ∈ [k − 2] \ [l − 1]; and
the value ofw isψ(w) = −2(n − k)+∑

i p(i ).
Then we obtain a bijection between the configurations ofProposition 5and those that

we can calltruncated alternating pistols. More precisely we have the following result:

Theorem 2. For 0 ≤ l ≤ k and n ≥ k, the coefficient ck+1,l+1(q) is the generating
function of alternating pistols of[2k], weighted bych′ and truncated at the index2l,
i.e. the weight of mappings p: [2k] −→ [0, k] satisfying the three conditions:

(1) p(2i − 1) = p(2i ) = 0 for 1 ≤ i ≤ l,
(2) p(2i − 1) ≤ i and p(2i ) ≤ i for l < i ≤ k,
(3) p(2i − 1) ≥ p(2i ) ≤ p(2i + 1) for 1 ≤ i < k.

For example, the array(g′
i, j ) with 5 ≤ i ≤ 8 and 1≤ j ≤ 4, corresponding to the

truncated alternating pistols using for counting the coefficientc5,3(q) = ∑4
k=1 qk−1g′

8,k,
is given inTable 4.
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Table 4
Computation ofc5,3(q)

In particular we recover the alternating pistol in the casel = 0, and then we obtain the
following result:

Corollary 1. For n ≥ 1, the coefficient cn,1(q) of the inverse matrix of Gq is the
q-Genocchi number G2n(q).

Now we give a last combinatorial interpretation of theq-Genocchi numbers. Some
definitions concerninginteger partitionsare needed. Aparitition λ = (λ1, λ2, . . .) is a
finite nonincreasing sequence of nonnegative integers, called thepartsof λ. Thediagram
of λ is an arrangements of squares withλi squares, left justified, in thei th row. A partition
µ = (µ1, µ2, . . .) is said tosmallerthan another partitionλ = (λ1, λ2, . . .) if and only if
all the parts ofµ are smaller than those ofλ. If µ ≤ λwe define a skew hook of shapeλ\µ
as the diagram obtained from that ofλ by removing the diagram ofµ. Finally, a row-strict
plane partitionT of λ \ µ is a skew hook of shapeλ \ µ where we associate with thej th
cell (from left to right) of thei th line (from top to bottom) a positive integerpi, j (T) such
that,∀i ∈ [k],∀ j ∈ [λi − µi ],

pi, j (T) > pi, j +1(T) and pi, j (T) ≥ pi+1, j (T). (8)

A reverse plane partition is obtained by reversing all the inequalities of (8).
Now, letγ = (γ1, . . . , γn) be one of the configuration counted byck,l (q), n ≥ k ≥ l .

Then we can associate with this configuration two partitionsλ = (λ1, . . . , λn) and
µ = (µ1, . . . , µn) defined byλi (resp.µi ) equal ton + i − 1 for i < l (resp.i < k)
andn + i + 1 otherwise. By construction,λ is larger thanµ and then we can construct a
row-strict plane partitionT where each case ofλ \ µ is labelled in the following way:

If the vertical steps ofωl+i−1 (1 ≤ i ≤ k − l ) havexi,1 andxi,2 for the abscissa from
left to right, soxi,1 ≤ xi,2, define

pi, j (T) = 2l + 2i − j − xi, j for j = 1,2.

For example, the row-strict plane partition corresponding to the configuration of five
paths inFig. 5 is

Let Tk,l be the set of row-strict plane partitions of form(k − l + 1, k − l , . . . ,2)− (k −
l −1, k− l −2, . . . ,0) such that the largest entry in rowi is at mostl + i . For anyT ∈ Tk,l
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Fig. 4. One of the 493 configurations counted byd6,3(1) and its associated truncated pistol.

define the value ofT by

|T | =
k−l∑
i=1

(pi,1(T)+ pi,2(T));

then we have the following result, which is aq-analog of a result of Gessel and Viennot [10,
Theorem 31].

Theorem 3. For k ≥ l ≥ 1, the entry ck,l (q) is the following generating function of Tk,l :

ck,l (q) =
∑

T∈Tk,l

qk2−l2−|T |.

5. Extension to negative indices and median q-Genocchi numbers

As in [6], we can extend the matrixGq to the negative indices as follows:

Hq =
([ − j

2i − 2 j

]
q

q(i− j )(2i−1)

)
i, j ≥1

=
([

2i − j − 1

j − 1

]
q

)
i, j ≥1

,

and its inverse:

H −1
q = ((−1)i− j di, j (q))i, j ≥1.
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Fig. 5. One of the 736 configurations counted byc6,3(1) and its associated truncated pistol.

Table 5
First values ofdi, j (q)

Using the result ofLemma 1, for 1 ≤ l ≤ k andn ≥ k, the coefficientdk,l (q) is equal
to

dk,l (q) =
∣∣∣∣∣
[

l + 2i − j

2i − 2 j + 2

]
q

∣∣∣∣∣
k−l

i, j =1

. (9)

The first values ofdi, j (q) are given inTable 5.
As in the previous section, we then derive from (9) the following result.

Theorem 4. For integers k, l ≥ 1 the coefficient dk,l (q) is the generating function of the
configuration of lattice pathΩ = (ω1, . . . , ωn), weighted byψ, satisfying the following
two conditions:

(1) ωi joins Ai (0,2i − 2) to Bi (i − 1,2i − 2) for 1 ≤ i < l or k < i ≤ n andωi joins
Ai+1(0,2i ) to Bi (i − 1,2i − 2) for l ≤ i < k;

(2) the pathsω1, . . . , ωn are disjoint.

Similarly to in the preceding section, remark that for 1≤ i < l or k < i ≤ n, there is
only a lattice path fromAi to Bi and the others have two vertical steps. With each of the
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Table 6
Computation ofd5,3(q)

vertical steps ofωi , we associate a numberv = x0 + 1 between 1 andi wherex0 is the
abscissa of this vertical step. Then we can define a functionp : [2n − 2] −→ [0,n − 1] as
follows:

p(i ) =
{

0 if there is no vertical steps between the linesy = i − 1, y = i ,
v if v is the number associated with the vertical step.

For example, for the preceding configuration, we havep(1) = p(2) = p(3) = p(4) =
0, p(5) = p(7) = p(8) = 3, p(6) = p(10) = 1, p(9) = 5. By construction,
p(2i − 1) ≥ p(2i ) for all i ∈ [n − 1] and the condition of non-intersecting paths
is equivalent top(2i ) < p(2i + 1) for all i ∈ [k − 2] \ [l − 1]. The value ofw is
ψ(w) = −2(n − k) + ∑

i p(i ). Then we obtain a bijection between the configurations
of Theorem 4and those that we can calltruncated alternating pistols. More precisely we
state the following result:

Proposition 5. For 0 ≤ l ≤ k and n ≥ k, the coefficient dk+1,l+1(q) is the generating
function of alternating pistols of[2k], weighted bych′ and truncated at the index2l, i.e. the
mappings p: [2k] −→ [0, k] satisfying the three conditions:

(1) p(2i − 1) = p(2i ) = 0 for 1 ≤ i ≤ l,

(2) p(2i − 1) ≤ i and p(2i ) ≤ i for l < i ≤ k,

(3) p(2i − 1) ≥ p(2i ) < p(2i + 1) for 1 ≤ i < k.

The array for the computation ofd5,3(q) is given inTable 6.
In particular we recover the alternating pistol whenl = 0, and then we obtain the

following result:

Corollary 2. For n ≥ 1, the coefficient dn,1(q) of the inverse matrix of Hq is the median
q-Genocchi number H2n+1(q).

Now, letΩ = (ω1, . . . , ωn) be one of the configurations counted bydk,l (1), n ≥ k ≥ l .
Then we can associate with this configuration two partitionsλ = (λ1, . . . , λn) and
µ = (µ1, . . . , µn) defined byλi (resp.µi ) equal ton + i − 2 for i < l (resp.i < k)
andn+ i otherwise. By construction,λ is bigger thanµ and then we can construct an array
T where each case ofλ \ µ is labelled in the following way:

If the vertical steps ofωl+i−1 (1 ≤ i ≤ k − l ) have respectivelyxi,1 andxi,2 for the
abscissa,(xi,1 ≤ xi,2), thenpi, j (T) = xi, j + 1 for j = 1,2.
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For example, the row-strict plane partition corresponding to the configuration of five
paths inFig. 4 is

Similarly we have the following:

Theorem 5. For k ≥ l ≥ 1,

dk,l (q) =
∑

T∈T̃k,l

q−2(k−l)+|T |,

whereT̃k,l is the set of column-strict reverse plane partitions of(k − l + 1, k − l , . . . ,2)−
(k − l − 1, k − l − 2, . . . ,0) with positive integer entries in which the largest entry in row
i is at most l+ i − 1.

6. A remarkable triangle of q-numbers refining q-Euler numbers

Recall that the Euler numbersE2n are the coefficients in the Taylor expansion of the
function 1

cosx :

1

cosx
=
∑
n≥0

E2n
x2n

(2n)! .

Let ci, j = ci, j (1). Then Dumont and Zeng [5] proved that there is a triangle of positive
integerskn, j (1 ≤ j ≤ n − 1) featuring the two kinds of Genocchi numbers and refining
Euler numbers as follows:

kn,1 + kn,2 + · · · + kn,n−1 = E2n−2, kn,1 = G2n and kn,n−1 = H2n−1.

Moreover,∑
j ≥0

cn+ j , j +1x j +1 = kn,1x + kn,2x2 + · · · + kn,n−1xn−1

(1 − x)2n−1
.

The first values ofkn, j (1 ≤ j ≤ n − 1) are tabulated as follows:
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We show now there is aq-analog of the above triangle. Following Jackson [12] theq-secant
numbersE2n(q) are defined by

∑
n≥0

E2n(q)
u2n

(q; q)2n
=
(∑

n≥0

(−1)n
u2n

(q; q)2n

)−1

.

Let [x] = (qx −1)/(q−1) and[x]n = [x][x−1] · · · [x −n+1] for n ≥ 0. Then([x]n)
is a basis ofC[qx]. For any integern ≥ 0 we define a linearq-difference operatorδn

q on
C[qx] as follows: Forf (x) ∈ C[qx],

δ0
q f (x) = f (x), δn+1

q f (x) = (E − qnI ) δn
q f (x). (10)

That is,

δn
q f (x) = (E − qn−1I )(E − qn−2I ) · · · (E − I ) f (x).

In view of theq-binomial formula [1, p. 36]:

(x; q)n =
n∑

k=0

(−1)k
[n

k

]
q

q

(
k
2

)
xk, (11)

we have

δn
q f (x) =

n∑
k=0

(−1)k
[n

k

]
q

q

(
k
2

)
f (x + n − k).

Lemma 2. For all non-negative integers n,m we have

δn
q[x]m =

{[m]n[x]m−nqn(x+n−m) if n ≤ m
0 if n > m.

Henceδn
q f (x) = 0 if f (x) is a polynomial inqx of degree<n. It follows from the

q-binomial identity (11) that

(x; q)2n−1

∑
j ≥0

cn+ j , j +1(q)x
j +1 =

∑
m≥0

xm+1
∑
k≥0

(−1)k
[

2n − 1

k

]
q

× q

(
k
2

)
cn+m−k,m−k+1(q),

=
∑
m≥0

xm+1δ2n−1
q f (m),

where f (m) denotes the following determinant:

f (m) =
∣∣∣∣∣
[

m − 2(n − 1)+ i

2i − 2 j + 2

]
q

q(i− j )(i− j +1)

∣∣∣∣∣
n−1

i, j =1

,

is a polynomial inqm of degree 2(n−1)whenm ≥ 2n−3. Hence the preceding expression
is a polynomial inx of degreed ≤ 2n − 1, i.e., we have∑

j ≥0

cn+ j , j +1(q)x
j +1 = α0(q)+ · · · + αd−1(q)xd

(x; q)2n−1
. (12)
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Applying a well-known result about rational functions [15, p. 202–210], we derive from
(12) that∑

j ≥1

cn− j ,− j +1(q)x
j = −α0 + α1x−1 + · · · + αd−1x−d

(1/x; q)2n−2

= −α0x2n−1 + · · · + αd−1x2n−d

(x; q)2n−2
.

But the coefficientcn− j ,− j +1(q) is null for all 1 ≤ j ≤ n because the determinant formula
of ck,l (q) contains a row with only zeros. Sod ≤ n − 1.

Summarizing all the above we get the following theorem, which is aq-analog of a result
of Dumont and Zeng [6, Proposition 7].

Theorem 6. For n ≥ 2, ∀ j ∈ [n − 1], there are polynomials kn, j (q) in q such that

∑
j ≥0

cn+ j , j +1(q)x
j +1 =

n−1∑
i=1

q(i−1)i kn,i (q)xi

(x; q)2n−1
. (13)

∑
j ≥0

dn+ j , j +1(q)x
j +1 =

n−1∑
i=1

q(i−1)i kn,n−i (q)xi

(x; q)2n−1
. (14)

Moreover, we have kn,1(q) = G2n(q), kn,n−1(q) = H2n−1(q) and

E2n−2(q) =
n−1∑
i=1

q(i−1)i kn,n−i (q).

Proof. Eqs. (13) and (14) have been proved previously. In view ofCorollaries 1and2 we
derive from (13) and (14) that

kn,1(q) = cn,1(q) = G2n(q),

kn,n−1(q) = dn,1(q) = H2n−1(q).

Recall that for any sequence(an)n in C[[q]], we have limq→1(1 − x)
∑

n≥0 anqn =
limn→∞ an, provided the latter limit exists. Hence we derive from (14) that

n−1∑
i=1

q(i−1)i kn,n−i (q) = lim
x→1

(x; q)2n−1

∑
j ≥0

dn+ j , j +1(q)x
j +1

= (q; q)2n−2 lim
j →∞ dn+ j , j +1(q).

As limn→+∞
[n

k

]
q = 1

(q;q)k it follows from (9) that

n−1∑
i=1

q(i−1)i kn,n−i (q) = (q,q)2n−2

∣∣∣∣ 1

(q; q)2i−2 j +2

∣∣∣∣n−1

i, j =1
. (15)
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Now, using the inclusion–exclusion principle we can show (see [15, p. 70]) that the right-
hand side of (15) is the enumerating polynomial of up–down permutations on[2n − 2],
i.e., whose descent set is{2,4, . . . ,2n − 4}, with respect to inversion numbers, and it is
also known (see [15, p. 148]) that this enumerating polynomial is equal to theq-Euler
polynomialE2n−2k(q). �

It is not difficult to derive fromTheorem 6the following result.

Corollary 3. For n ≥ 2, for all i ∈ [n − 1], we have

q(i−1)i kn,i (q) =
i−1∑
l=0

(−1)l q

(
k
2

) [
2n − 1

l

]
q

cn+i−l−1,i−l (q),

and

q(i−1)i kn,n−i (q) =
i−1∑
l=0

(−1)l q

(
k
2

) [
2n − 1

l

]
q

dn+i−l−1,i−l (q).

Finally, for n = 2,3, Eq. (13) reads as follows:

x

(x; q)3
= x + (1 + q + q2)x2 + (1 + q + 2q2 + q3 + q4)x3 + · · · ,

(1 + q + q2)x + q2(q + q2)x2

(x; q)5
= (1 + q + q2)x

+ (1 + 2q + 3q2 + 4q3 + 4q4 + 2q5 + q6)x2

+ · · · .
Sok3,1(q) = 1+q+q2 andk3,2(q) = q+q2, while the five up–down permutations on [4]
are

1 3 2 4, 1 4 2 3, 2 3 1 4, 2 3 1 4, 3 4 1 2.

ThereforeE4(q) = q+2q2+q3+q4 and we can check thatE4(q) = k3,2(q)+q2k3,1(q).
Forn = 4 the values ofk4, j (q), 1 ≤ j ≤ 3, are given by

k4,1(q) = 1 + 2q + 3q2 + 4q3 + 4q4 + 2q5 + q6,

k4,2(q) = q(1 + q)(1 + q2)(1 + q + q2)2,

k4,3(q) = q2(q2 + 1)(q + 1)2.

It seems that the coefficients of the polynomialkn,i (q) in q arenon-negative integers
and it would be interesting to find a combinatorial interpretation forkn,i (q) for the case
where the above conjecture is true.
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