THE AKIYAMA-TANIGAWA ALGORITHM FOR CARLITZ'S q-BERNOULLI NUMBERS

Jiang Zeng
Institut Camille Jordan, Université Claude Bernard (Lyon I), 69622 Villeurbanne Cedex, France zeng@math.univ-lyon1.fr

Received: 9/9/05, Accepted: 2/4/06, Published: 2/22/06

Abstract

We show that the Akiyama-Tanigawa algorithm and Chen's variant for computing Bernoulli numbers can be generalized to Carlitz's q-Bernoulli numbers. We also put these algorithms in the larger context of generalized Euler-Seidel matrices.

1. Introduction

Carlitz [?] introduced the q-Bernoulli numbers $\beta_{n}(n \geq 1)$ by the recurrence:

$$
q(q \beta+1)^{n}-\beta_{n}= \begin{cases}1, & \text { if } n=1 \tag{1}\\ 0, & \text { if } n>1\end{cases}
$$

where $\beta_{0}=1$ and $\beta_{k}=\beta^{k}$ after expansion. The first few values of β_{n} are

$$
\beta_{0}=1, \quad \beta_{1}=-\frac{1}{[2]}, \quad \beta_{2}=\frac{q}{[2][3]}, \quad \beta_{3}=-\frac{(q-1) q}{[3][4]},
$$

where $[n]=\left(1-q^{n}\right) /(1-q)$ and $[n]!=[1][2] \ldots[n]$ for $n \geq 0$. More generally we have the following explicit formula (see [?]):

$$
(q-1)^{n} \beta_{n}=\sum_{i=0}^{n}(-1)^{n-i}\binom{n}{i} \frac{i+1}{[i+1]} .
$$

Recently, Akiyama and Tanigawa's amazing algorithm for computing Bernoulli numbers [?] has attracted the attention of several authors [?, ?, ?]. One of our aims is to show that there is an analogue algorithm for Carlitz's q-Bernoulli numbers as follows: start with the 0 -th row $1, \frac{1}{[2]}, \frac{1}{[3]}, \frac{1}{[4]}, \frac{1}{[5]}, \ldots$ and define the first row by

$$
1 \cdot\left(1-\frac{1}{[2]}\right), \quad[2] \cdot\left(\frac{1}{[2]}-\frac{1}{[3]}\right), \quad[3] \cdot\left(\frac{1}{[3]}-\frac{1}{[4]}\right), \ldots
$$

which produces the sequence $\frac{q}{[2]}, \frac{q^{2}}{[3]}, \frac{q^{3}}{[4]}, \ldots$ Then define the next row by

$$
1 \cdot\left(\frac{q}{[2]}-\frac{q^{2}}{[3]}\right), \quad[2] \cdot\left(\frac{q^{2}}{[3]}-\frac{q^{3}}{[4]}\right), \quad[3] \cdot\left(\frac{q^{3}}{[4]}-\frac{q^{4}}{[5]}\right), \ldots
$$

thus giving $\frac{q}{[2][3]}, \frac{[2] q^{2}}{[3][4]}, \frac{[3] q^{3}}{[4][5]}, \ldots$ as the second row. In general, denoting the m-th $(m=$ $0,1,2, \ldots)$ coefficient in the n-th $(n=0,1,2, \ldots)$ row by $a_{n, m}$, then the following recurrence relation holds:

$$
\begin{equation*}
a_{n, m}=[m+1] \cdot\left(a_{n-1, m}-a_{n-1, m+1}\right) \quad(m \geq 0, n \geq 1) . \tag{2}
\end{equation*}
$$

We claim that the 0 -th component $a_{n, 0}$ of each row is just the n-th q-Bernoulli number β_{n} for $n \geq 2$.

Chen [?] gave a variant of the Akiyama and Tanigawa algorithm, which generates the Bernoulli numbers starting from $n=1$. We have also a q-version of Chen's algorithm for q-Bernoulli numbers as follows: if we replace (??) by the following equation

$$
\begin{equation*}
a_{n, m}=[m] a_{n-1, m}-[m+1] a_{n-1, m+1} \quad(m \geq 0, \quad n \geq 1) \tag{3}
\end{equation*}
$$

then the 0 -th component $a_{n, 0}$ of each row is just the n-th q-Bernoulli number β_{n} for $n \geq 1$.
The validity of these algorithms is based on two facts: the first one (Theorem 1) relates the 0 -th component $a_{n, 0}$ of each row to the initial sequence $a_{0, m}$ by means of q-Stirling numbers of second kind, and the second one gives two explicit formulae (Theorem 2) of the q-Bernoulli numbers in terms of q-Stirling numbers of second kind.

Recall [?] that the q-Stirling numbers of second $\operatorname{kind}\left\{\begin{array}{l}n \\ k\end{array}\right\}_{q}$ are defined by the recurrence:

$$
\left\{\begin{array}{l}
n \tag{4}\\
k
\end{array}\right\}_{q}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{q}+[k]\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{q} \quad \text { for } \quad n \geq k \geq 1
$$

where $\left\{\begin{array}{l}n \\ 0\end{array}\right\}_{q}=\left\{\begin{array}{l}0 \\ k\end{array}\right\}_{q}=0$ except $\left\{\begin{array}{l}0 \\ 0\end{array}\right\}_{q}=1$.
Theorem 1. Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence in a commutative ring. If we define the array $\left(a_{n, m}\right)_{m, n \geq 0}$ by $a_{0, m}=a_{m}$ for $m \geq 0$ and the recurrence (??), then

$$
a_{n, 0}=\sum_{k=0}^{n}(-1)^{k}[k]!\left\{\begin{array}{l}
n+1 \tag{5}\\
k+1
\end{array}\right\}_{q} a_{0, k} \quad(n \geq 0)
$$

and if we use the recurrence (??) instead of (??), then

$$
a_{n, 0}=\sum_{k=0}^{n}(-1)^{k}[k]!\left\{\begin{array}{l}
n \tag{6}\\
k
\end{array}\right\}_{q} a_{0, k} \quad(n \geq 0)
$$

We shall give the first proof of Theorem 1 in Section 2 by using q-differential operator and generating functions, and the second one in Section 4 by applying Theorem 3 in Section 4.

Theorem 2. We have

$$
\beta_{n}=\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n \tag{7}\\
k
\end{array}\right\}_{q} \frac{[k]!}{[k+1]} \quad(n \geq 1)
$$

and

$$
\beta_{n}=\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n+1 \tag{8}\\
k+1
\end{array}\right\}_{q} \frac{[k]!}{[k+1]} \quad(n \geq 2)
$$

Note that Eq. (??) was already given by Carlitz [?]. For the sake of completeness we shall include a proof of Theorem 2 in Section 3, which is essentially due to Carlitz [?].

The definition of the Akiyama-Tanigawa algorithm is reminiscent of the so-called EulerSeidel matrix, a term coined by Dumont [?]. Recall that the Euler-Seidel matrix associated to a sequence $\left(a_{n}\right)$ is an infinite matrix $\left(a_{n, m}\right)(n \geq 0, m \geq 0)$ given by the recurrence $a_{n, 0}=a_{n}(n \geq 0)$ and

$$
a_{n, m}=a_{n-1, m}+a_{n-1, m+1} \quad(m \geq 0, n \geq 1)
$$

The sequence $\left(a_{0, m}\right)$, first row of the matrix, is called initial sequence, while the sequence $\left(a_{n, 0}\right)$, first column of the matrix, is called the final sequence. Note that the Euler-Seidel matrix may be used as a simple device for computing its initial and final sequences quickly, see Arnold [?, ?] and Dumont [?].

In the following theorem we shall unify the Akiyama-Tanigawa type algorithms and the classical Euler-Seidel matrices and prove a general formula about the corresponding coefficients.
Theorem 3. Let $\left(x_{m}\right),\left(y_{m}\right)$ and $\left(z_{m}\right)(m \geq 0)$ be three sequences in a commutative ring. The generalized Euler-Seidel matrix $\left(a_{n, m}\right)(n, m \geq 0)$ associated to $\left(x_{m}\right)$ is defined by $a_{0, m}=$ $x_{m}(m \geq 0)$ and

$$
\begin{equation*}
a_{n, m}=y_{m} a_{n-1, m}+z_{m} a_{n-1, m+1} \quad(m \geq 0, n \geq 1) \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
a_{n, m}=\sum_{k=0}^{n} x_{m+k}\left(\prod_{j=0}^{k-1} z_{m+j}\right) h_{n-k}\left(y_{m}, y_{m+1}, \ldots, y_{m+k}\right) \tag{10}
\end{equation*}
$$

where $h_{n}\left(z_{1}, \ldots, z_{r}\right)$ is the n-th complete symmetric function of z_{1}, \ldots, z_{r} defined by

$$
\sum_{n \geq 0} h_{n}\left(z_{1}, \ldots, z_{r}\right) t^{n}=\frac{1}{\left(1-z_{1} t\right)\left(1-z_{2} t\right) \cdots\left(1-z_{r} t\right)}
$$

In particular, we have

$$
\begin{equation*}
a_{n, 0}=\sum_{k=0}^{n} x_{k}\left(\prod_{j=0}^{k-1} z_{j}\right) h_{n-k}\left(y_{0}, y_{1}, \ldots, y_{k}\right) . \tag{11}
\end{equation*}
$$

We will prove Theorem 3 and give some applications in Section 4. In particular, we shall derive an alternative proof of Theorem 1.

2. Proof of Theorem 1

For any formal power series $f(x)$ denote by D_{q} the q-derivative operator:

$$
D_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x} .
$$

We will need the two associated operators:

$$
\begin{aligned}
\Delta_{q} & =1-(1-x q) D_{q} \\
\delta_{q} & =(x-1) D_{q}
\end{aligned}
$$

For $n \geq 0$ define $(x ; q)_{0}=1$ and $(x ; q)_{n}=(1-x)(1-x q) \ldots\left(1-x q^{n-1}\right)$. The following formulas are easy to prove once discovered.

Lemma 1. For $n \geq 1$ we have

$$
\begin{align*}
\Delta_{q}^{n} & =\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}_{q}(x q ; q)_{k} D_{q}^{k}, \tag{12}\\
\delta_{q}^{n} & =\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q}(x ; q)_{k} D_{q}^{k} . \tag{13}
\end{align*}
$$

Proof. We proceed by induction on $n \geq 1$. It is easy to check (??) and (??) for $n=1$. For example we have

$$
\Delta_{q}=1-(1-x q) D_{q}=\left\{\begin{array}{l}
2 \\
1
\end{array}\right\}_{q}-\left\{\begin{array}{l}
2 \\
2
\end{array}\right\}_{q}(1-x q) D_{q}=1-(1-x q) D_{q}
$$

Note that $D_{q}\left(x^{n}\right)=[n] x^{n-1}$ and

$$
\begin{aligned}
D_{q}\left((x q ; q)_{n}\right) & =-q[n]_{q}\left(x q^{2} ; q\right)_{n-1} \\
D_{q}\left((x ; q)_{n}\right) & =-[n]_{q}(x q ; q)_{n-1}
\end{aligned}
$$

Suppose the formulas are true for n. Then, using the rule

$$
D_{q}(f(x) g(x))=f(x) D_{q}(g(x))+g(q x) D_{q}(f(x))
$$

and the induction hypothesis we have

$$
\begin{aligned}
\Delta_{q}^{n+1}= & \left.\left(1-(1-x q) D_{q}\right)\right) \sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}_{q}(x q ; q)_{k} D_{q}^{k} \\
= & \sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}_{q}[k+1]_{q}(x q ; q)_{k} D_{q}^{k} \\
& -\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}_{q}(x q ; q)_{k+1} D_{q}^{k+1} \\
= & \left\{\begin{array}{c}
n+1 \\
1
\end{array}\right\}_{q}+\sum_{k=1}^{n}(-1)^{k}\left([k+1]\left\{\begin{array}{c}
n+1 \\
k+1
\end{array}\right\}_{q}+\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}_{q}\right)(x q ; q)_{k} D_{q}^{k} \\
& \quad+(-1)^{n+1}\left\{\begin{array}{l}
n+1 \\
n+1
\end{array}\right\}_{q}(x q ; q)_{n+1} D_{q}^{n+1}
\end{aligned} \quad \begin{aligned}
= & \sum_{k=1}^{n+1}(-1)^{k}\left\{\begin{array}{c}
n+2 \\
k+1
\end{array}\right\}_{q}(x q ; q)_{k} D_{q}^{k}
\end{aligned}
$$

and

$$
\begin{aligned}
\delta_{q}^{n+1}= & (x-1) D_{q} \sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q}(x-1)(x q-1) \ldots\left(x q^{k-1}-1\right) D_{q}^{k} \\
= & \sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q}[k](x-1)(x q-1) \ldots\left(x q^{k-1}-1\right) D_{q}^{k} \\
& +(x-1) \sum_{k=1}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q}(x q-1)\left(x q^{2}-1\right) \ldots\left(x q^{k}-1\right) D_{q}^{k+1} \\
= & \sum_{k=0}^{n+1}\left\{\begin{array}{c}
n+1 \\
k
\end{array}\right\}_{q}(x-1)(x q-1) \ldots\left(x q^{k-1}-1\right) D_{q}^{k}
\end{aligned}
$$

This completes the proof.

Remark: A q-analogue of $\left(x \frac{d}{d x}\right)^{n}=\sum_{k=0}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\} x^{k}\left(\frac{d}{d x}\right)^{k}$ is the following formula:

$$
\left(x D_{q}\right)^{n}=\sum_{k=0}^{n} q^{\binom{k}{2}}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q} x^{k} D_{q}^{k},
$$

which can be verified easily by induction on n.

We are now ready to prove Theorem 1 . For fixed $n \geq 0$, consider the generating function of $a_{n, k}(k \geq 0)$ defined by (??):

$$
\begin{aligned}
g_{n}(x)=\sum_{k=0}^{\infty} a_{n, k} x^{k} & =\sum_{k=0}^{\infty}[k+1]\left(a_{n-1, k}-a_{n-1, k+1}\right) x^{k} \\
& =D_{q}\left(\sum_{k=0}^{\infty} a_{n-1, k} x^{k+1}\right)-D_{q}\left(\sum_{k=0}^{\infty} a_{n-1, k+1} x^{k+1}\right) \\
& =D_{q}\left(x g_{n-1}(x)\right)-D_{q}\left(g_{n-1}(x)-a_{n-1,0}\right) \\
& =g_{n-1}(x)+(x q-1) D_{q}\left(g_{n-1}(x)\right) \\
& =\Delta_{q}\left(g_{n-1}(x)\right)
\end{aligned}
$$

By iteration $g_{n}(x)=\Delta_{q}^{n}\left(g_{0}(x)\right)$ and Lemma 1 implies that

$$
g_{n}(x)=\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}_{q}(1-x q)\left(1-x q^{2}\right) \ldots\left(1-x q^{k}\right) D_{q}^{k}\left(g_{0}(x)\right)
$$

Putting $x=0$ in the above equation yields (??).
Similarly, we consider the generating function of $a_{n, k}(k \geq 0)$ defined by (??):

$$
\begin{aligned}
h_{n}(x)=\sum_{k=0}^{\infty} a_{n, k} x^{k} & =\sum_{k=0}^{\infty}\left([k] a_{n-1, k}-[k+1] a_{n-1, k+1}\right) x^{k} \\
& =x D_{q}\left(\sum_{k=0}^{\infty} a_{n-1, k} x^{k}\right)-D_{q}\left(\sum_{k=0}^{\infty} a_{n-1, k+1} x^{k+1}\right) \\
& =x D_{q}\left(h_{n-1}(x)\right)-D_{q}\left(h_{n-1}(x)-a_{n-1,0}\right) \\
& =\delta_{q}\left(h_{n-1}(x)\right) .
\end{aligned}
$$

Thus $h_{n}(x)=\delta_{q}^{n}\left(h_{0}(x)\right)$ and Lemma 1 implies that

$$
h_{n}(x)=\sum_{k=0}^{n}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q}(x-1)(x q-1) \ldots\left(x q^{k-1}-1\right) D_{q}^{k}\left(h_{0}(x)\right) .
$$

Putting $x=0$ in the last equation yields (??).
Now, if we take $a_{0, m}=1 /[m+1]$ in Theorem 1 and apply algorithm (??), then it follows from (??) and (??) that $a_{n, 0}=\beta_{n}$ for $n \geq 2$; while applying algorithm (??) will yield that $a_{n, 0}=\beta_{n}$ for $n \geq 1$ by (??) and (??).

3. Proof of Theorem 2

Let $[x]=\left(q^{x}-1\right) /(q-1)$. For integer $s \geq 0$ define $[x]_{s}=[x][x-1] \cdots[x-s+1]$ and the q-binomial coefficient $\left[\begin{array}{l}x \\ s\end{array}\right]=[x]_{s} /[s]$!.

Let $\eta_{0}, \eta_{1}, \eta_{2}, \ldots$ be a sequence such that by $\eta_{0}=1, \eta_{1}=0$ and

$$
\begin{equation*}
\sum_{i=0}^{m}\binom{m}{i} q^{i} \eta_{i}=\eta_{m} \quad(m>1) \tag{14}
\end{equation*}
$$

We define the polynomials $\eta_{m}(x)(m \geq 0)$ in q^{x} by

$$
\begin{equation*}
\eta_{m}(x)=\sum_{i=0}^{m}\binom{m}{i} \eta_{i}[x]^{m-i} q^{i x} \tag{15}
\end{equation*}
$$

Then $\eta_{m}(0)=\eta_{m}$ and

$$
\begin{equation*}
\eta_{m}(x+y)=\sum_{i=0}^{m}\binom{m}{i} \eta_{i}(y)[x]^{m-i} q^{i x} \tag{16}
\end{equation*}
$$

Indeed, substituting $\eta_{i}(y)$ by (??) and exchanging the order of summations in the right-hand side of (??) yields

$$
\begin{aligned}
\sum_{j=0}^{m} \sum_{i=j}^{m}\binom{m}{i}\binom{i}{j}[x]^{m-i}[y]^{i-j} q^{i x+j y} & =\sum_{j=0}^{m}\binom{m}{j} \eta_{j} q^{j(x+y)} \sum_{i=0}^{m-j}\binom{m-j}{i}[x]^{m-j-i}\left(q^{x}[y]\right)^{i} \\
& =\sum_{j=0}^{m}\binom{m}{j} \eta_{j} q^{j(x+y)}\left([x]+q^{x}[y]\right)^{m-j} \\
& =\sum_{j=0}^{m}\binom{m}{j} \eta_{j}[x+y]^{m-j} q^{j(x+y)}
\end{aligned}
$$

which is equal to $\eta_{m}(x+y)$ by (??).
Setting $x=1$ in (??) we see that $\eta_{m}(1)=\eta_{m}$ for $m>1$. It follows from (??) with $y=1$ that for $m \geq 0$,

$$
\begin{equation*}
\eta_{m}(x+1)-\eta_{m}(x)=\sum_{i=0}^{m}\binom{m}{i}\left(\eta_{i}(1)-\eta_{i}\right)[x]^{m-i} q^{i x}=m q^{x}[x]^{m-1} \tag{17}
\end{equation*}
$$

It follows that for $k \geq 1$,

$$
\begin{align*}
\sum_{i=0}^{k-1} q^{i}[i]^{m} & =\frac{1}{m+1} \sum_{i=0}^{k-1}\left(\eta_{m}(i+1)-\eta_{m}(i)\right) \\
& =\frac{1}{m+1}\left(\eta_{m+1}(k)-\eta_{m+1}\right) \\
& =\frac{1}{m+1} \sum_{i=1}^{m+1}\binom{m+1}{i}[k]^{i} q^{(m+1-i) k} \eta_{m+1-i}+\left(q^{(m+1) k}-1\right) \frac{\eta_{m+1}}{m+1} \tag{18}
\end{align*}
$$

On the other hand, it is readily seen by induction on $n \geq 1$ that

$$
x^{n}=\sum_{k=1}^{n}\left\{\begin{array}{l}
n \tag{19}\\
k
\end{array}\right\}_{q} x(x-[1]) \ldots(x-[k-1])
$$

which, by substitution $x \rightarrow[x]$, yields

$$
[x]^{n}=\sum_{k=1}^{n} q^{k(k-1) / 2}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q}[x]_{k} .
$$

Therefore

$$
\sum_{i=0}^{k-1} q^{i}[i]^{m}=\sum_{i=0}^{k-1} q^{i} \sum_{s=1}^{m} q^{s(s-1) / 2}\left\{\begin{array}{c}
m \tag{20}\\
s
\end{array}\right\}_{q}[i]_{s}=\sum_{s=0}^{m} q^{s(s+1) / 2}\left\{\begin{array}{c}
m \\
s
\end{array}\right\}_{q} \frac{[k]_{s+1}}{[s+1]}
$$

where we used the identity for q-binomial coefficients:

$$
\sum_{i=s}^{k-1} q^{i-s}\left[\begin{array}{l}
i \\
s
\end{array}\right]=\left[\begin{array}{c}
k \\
s+1
\end{array}\right]
$$

Combining (??) and (??) we obtain a polynomial identity on q^{k}. Dividing both sides by $[k]$ and setting $k=0$ leads to

$$
\eta_{m}+(q-1) \eta_{m+1}=\sum_{s=0}^{m} q^{s(s+1) / 2}\left\{\begin{array}{l}
n \\
s
\end{array}\right\}_{q} \frac{[-1]_{s}}{[s+1]}
$$

Now, it remains to prove $\beta_{m}=\eta_{m}+(q-1) \eta_{m+1}$. Indeed, the sequence $\eta_{n}+(q-1) \eta_{n+1}$ satisfies the recurrence (??) for $n>1$:

$$
\begin{aligned}
q \sum_{i=0}^{n}\binom{n}{i} q^{i}\left(\eta_{i}+(q-1) \eta_{i+1}\right) & =q \sum_{i=0}^{n}\binom{n}{i} q^{i} \eta_{i}+(q-1) \sum_{i=1}^{n+1}\binom{n}{i-1} q^{i} \eta_{i} \\
& =q \eta_{n}+(q-1) \sum_{i=1}^{n+1}\left(\binom{n+1}{i}-\binom{n}{i}\right) q^{i} \eta_{i} \\
& =q \eta_{n}+(q-1)\left(\eta_{n+1}-\eta_{n}\right) \\
& =\eta_{n}+(q-1) \eta_{n+1}
\end{aligned}
$$

This completes the proof of (??).
For $n \geq 2$, simplifying x in (??) and setting $x=0$ we get

$$
0=\sum_{m=1}^{n}(-1)^{m}\left\{\begin{array}{c}
n \tag{21}\\
m
\end{array}\right\}_{q}[m-1]!.
$$

Now, using (??) we have

$$
\begin{aligned}
\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}_{q} \frac{[k]!}{[k+1]} & =\sum_{k=0}^{n}(-1)^{k}\left(\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q}+[k+1]\left\{\begin{array}{c}
n \\
k+1
\end{array}\right\}_{q}\right) \frac{[k]!}{[k+1]} \\
& =\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q} \frac{[k]!}{[k+1]}+\sum_{k=0}^{n}(-1)^{k}\left\{\begin{array}{c}
n \\
k+1
\end{array}\right\}_{q}[k]!.
\end{aligned}
$$

Formula (??) follows then from (??) and (??).

4. Proof of Theorem 3 and applications

By induction on $n \geq 0$. The formula is clear for $n=0$ and $n=1$. Suppose that the formula is true until $n \geq 1$. Then

$$
\begin{aligned}
a_{n+1, m} & =y_{m} a_{n, m}+z_{m} a_{n, m+1} \\
& =y_{m} \sum_{k=0}^{n} x_{m+k} z_{m} \ldots z_{m+k-1} h_{n-k}\left(y_{m}, \ldots, y_{m+k}\right) \\
& +z_{m} \sum_{k=0}^{n} x_{m+k+1} z_{m+1} \ldots z_{m+k} h_{n-k}\left(y_{m+1}, \ldots, y_{m+k+1}\right) \\
& =x_{m} y_{m}^{n+1}+\sum_{k=1}^{n} x_{m+k} z_{m} \ldots z_{m+k-1}\left(y_{m} h_{n-k}\left(y_{m}, \ldots, y_{m+k}\right)+h_{n-k+1}\left(y_{m+1}, \ldots, y_{m+k}\right)\right) \\
& +x_{m+n+1} z_{m} \ldots z_{m+n} .
\end{aligned}
$$

Since $y_{m} h_{n-k}\left(y_{m}, \ldots, y_{m+k}\right)+h_{n-k+1}\left(y_{m+1}, \ldots, y_{m+k}\right)=h_{n+k-1}\left(y_{m}, \ldots, y_{m+k}\right)$, we are done.
The following examples are special cases of Theorem 3:

- if $y_{m}=z_{m}=1$, we recover the so-called Euler-Seidel matrix (see [?]) associated to the initial sequence $x_{m}(m \geq 0)$.
- if $z_{m}=x q^{m}$ and $y_{m}=1$, then we recover the q-Seidel matrix introduced by Clarke, Han and Zeng [?].
- if $z_{m}=-y_{m}$, then Theorem 3 reduces to a result of Lascoux [?].
- if $y_{m}=-z_{m}=[m+1]$ and $x_{m}=1 /[m+1]$, then this is our q-analogue of the Akiyama-Tanigawa algorithm. Indeed, it is readily seen that

$$
\sum_{n \geq k}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{q} t^{n}=\frac{t^{k}}{(1-[1] t)(1-[2] t) \ldots(1-[k] t)}
$$

which yields the explicit formula: $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{q}=h_{n-k}([1], \ldots,[k])$, so

$$
\left\{\begin{array}{l}
n+1 \\
k+1
\end{array}\right\}_{q}=h_{n-k}([1], \ldots,[k+1])
$$

Eq. (??) follows then from (??) with the above specializations.

- if $y_{m}=[m]$ and $z_{m}=-[m+1]$ and $x_{m}=1 /[m+1]$, this is our q-analogue of Chen's algorithm and (??) follows directly from (??).

It may be worth pointing out that it is possible to write explicitly the general coefficients $a_{n, m}$ in Theorem 1, because

$$
\begin{equation*}
h_{n-k}([m], \ldots,[m+k])=\sum_{i=0}^{k}(-1)^{k-i} q^{-k(m+i)+\binom{i+1}{2}} \frac{[m+i]^{n}}{[i]![k-i]!} . \tag{22}
\end{equation*}
$$

Indeed, there holds

$$
\frac{1}{\left(1-z_{0} t\right)\left(1-z_{1} t\right) \ldots\left(1-z_{k} t\right)}=\sum_{i=0}^{k} \frac{\prod_{j=0, j \neq i}^{k}\left(1-z_{j} / z_{i}\right)^{-1}}{1-z_{i} t}
$$

Equating the coefficients of $t^{n}(n \geq 0)$ in the two sides yields

$$
h_{n}\left(z_{0}, \ldots, z_{k}\right)=\sum_{i=0}^{k} \prod_{j=0, j \neq i}^{k}\left(1-z_{j} / z_{i}\right)^{-1} z_{i}^{n}
$$

which gives (??) by taking $z_{i}=[m+i]$ for $i=0, \ldots, k$.

References

[1] V.I. Arnold, Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics, Duke Math. Jour., 63(1991), 1537-1555.
[2] V.I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Russian Math. Surveys, 47 (1)(1992), 1-51.
[3] S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), no. 4, 327-351.
[4] L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. 15, 1948, p. 987-1000.
[5] K.W. Chen, Algorithms for Bernoulli numbers and Euler numbers, Journal of Integer Sequences, Vol. 4 (2001), Article 01.1.6
[6] R. Clarke, G.N. Han and J. Zeng, A combinatorial interpretation of the Seidel generation of q derangement numbers, Annals of Combinatorics, 1 (1997), 313-327.
[7] D. Dumont, Matrices d'Euler-Seidel, Séminaire Lotharingien de Combinatoire, B05c (1981).
[8] M. Kaneko, The Akiyama-Tanigawa algorithm for Bernoulli numbers, Journal of Integer Sequences, Vol. 3 (2000) Article 00.2.9.
[9] A. Lascoux, Private communication, 2005.
[10] D. Merlini, R. Sprugnoli and M. C. Verri, The Akiyama-Tanigawa transformation, Integers: Electron. J. of Combinatorial Number Theory 5 (2005), \#A05.

