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Abstract

We show that the Akiyama-Tanigawa algorithm and Chen’s variant for computing Bernoulli
numbers can be generalized to Carlitz’s q-Bernoulli numbers. We also put these algorithms
in the larger context of generalized Euler-Seidel matrices.

1. Introduction

Carlitz [?] introduced the q-Bernoulli numbers βn (n ≥ 1) by the recurrence:

q(qβ + 1)n − βn =

{
1, if n = 1;
0, if n > 1;

(1)

where β0 = 1 and βk = βk after expansion. The first few values of βn are

β0 = 1, β1 = − 1

[2]
, β2 =

q

[2][3]
, β3 = −(q − 1)q

[3][4]
,

where [n] = (1 − qn)/(1 − q) and [n]! = [1][2] . . . [n] for n ≥ 0. More generally we have the
following explicit formula (see [?]):

(q − 1)nβn =
n∑

i=0

(−1)n−i

(
n

i

)
i + 1

[i + 1]
.

Recently, Akiyama and Tanigawa’s amazing algorithm for computing Bernoulli num-
bers [?] has attracted the attention of several authors [?, ?, ?]. One of our aims is to show
that there is an analogue algorithm for Carlitz’s q-Bernoulli numbers as follows: start with
the 0-th row 1, 1

[2] ,
1
[3] ,

1
[4] ,

1
[5] , . . . and define the first row by

1 ·
(

1 − 1

[2]

)
, [2] ·

(
1

[2]
− 1

[3]

)
, [3] ·

(
1

[3]
− 1

[4]

)
, . . .
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which produces the sequence q
[2] ,

q2

[3] ,
q3

[4] , . . . . Then define the next row by

1 ·
(

q

[2]
− q2

[3]

)
, [2] ·

(
q2

[3]
− q3

[4]

)
, [3] ·

(
q3

[4]
− q4

[5]

)
, . . .

thus giving q
[2][3] ,

[2]q2

[3][4] ,
[3]q3

[4][5] , . . . as the second row. In general, denoting the m-th (m =

0, 1, 2, . . . ) coefficient in the n-th (n = 0, 1, 2, . . . ) row by an,m, then the following recurrence
relation holds:

an,m = [m + 1] · (an−1,m − an−1,m+1) (m ≥ 0, n ≥ 1). (2)

We claim that the 0-th component an,0 of each row is just the n-th q-Bernoulli number βn

for n ≥ 2.

Chen [?] gave a variant of the Akiyama and Tanigawa algorithm, which generates the
Bernoulli numbers starting from n = 1. We have also a q-version of Chen’s algorithm for
q-Bernoulli numbers as follows: if we replace (??) by the following equation

an,m = [m]an−1,m − [m + 1]an−1,m+1 (m ≥ 0, n ≥ 1), (3)

then the 0-th component an,0 of each row is just the n-th q-Bernoulli number βn for n ≥ 1.

The validity of these algorithms is based on two facts: the first one (Theorem 1) relates
the 0-th component an,0 of each row to the initial sequence a0,m by means of q-Stirling
numbers of second kind, and the second one gives two explicit formulae (Theorem 2) of the
q-Bernoulli numbers in terms of q-Stirling numbers of second kind.

Recall [?] that the q-Stirling numbers of second kind
{

n
k

}
q

are defined by the recurrence:

{n

k

}

q
=

{
n − 1

k − 1

}

q

+ [k]

{
n − 1

k

}

q

for n ≥ k ≥ 1, (4)

where
{

n
0

}
q

=
{

0
k

}
q

= 0 except
{

0
0

}
q

= 1.

Theorem 1. Let (an)n≥0 be a sequence in a commutative ring. If we define the array
(an,m)m,n≥0 by a0,m = am for m ≥ 0 and the recurrence (??), then

an,0 =
n∑

k=0

(−1)k[k]!

{
n + 1

k + 1

}

q

a0,k (n ≥ 0), (5)

and if we use the recurrence (??) instead of (??), then

an,0 =
n∑

k=0

(−1)k[k]!
{n

k

}

q
a0,k (n ≥ 0). (6)

We shall give the first proof of Theorem 1 in Section 2 by using q-differential operator and
generating functions, and the second one in Section 4 by applying Theorem 3 in Section 4.
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Theorem 2. We have

βn =
n∑

k=0

(−1)k
{n

k

}

q

[k]!

[k + 1]
(n ≥ 1), (7)

and

βn =
n∑

k=0

(−1)k

{
n + 1

k + 1

}

q

[k]!

[k + 1]
(n ≥ 2). (8)

Note that Eq. (??) was already given by Carlitz [?]. For the sake of completeness we
shall include a proof of Theorem 2 in Section 3, which is essentially due to Carlitz [?].

The definition of the Akiyama-Tanigawa algorithm is reminiscent of the so-called Euler-
Seidel matrix, a term coined by Dumont [?]. Recall that the Euler-Seidel matrix associated
to a sequence (an) is an infinite matrix (an,m) (n ≥ 0, m ≥ 0) given by the recurrence
an,0 = an (n ≥ 0) and

an,m = an−1,m + an−1,m+1 (m ≥ 0, n ≥ 1).

The sequence (a0,m), first row of the matrix, is called initial sequence, while the sequence
(an,0), first column of the matrix, is called the final sequence. Note that the Euler-Seidel
matrix may be used as a simple device for computing its initial and final sequences quickly,
see Arnold [?, ?] and Dumont [?].

In the following theorem we shall unify the Akiyama-Tanigawa type algorithms and
the classical Euler-Seidel matrices and prove a general formula about the corresponding
coefficients.

Theorem 3. Let (xm), (ym) and (zm) (m ≥ 0) be three sequences in a commutative ring.
The generalized Euler-Seidel matrix (an,m) (n, m ≥ 0) associated to (xm) is defined by a0,m =
xm (m ≥ 0) and

an,m = yman−1,m + zman−1,m+1 (m ≥ 0, n ≥ 1). (9)

Then

an,m =
n∑

k=0

xm+k

(
k−1∏

j=0

zm+j

)
hn−k(ym, ym+1, . . . , ym+k), (10)

where hn(z1, . . . , zr) is the n-th complete symmetric function of z1, . . . , zr defined by
∑

n≥0

hn(z1, . . . , zr)t
n =

1

(1 − z1t)(1 − z2t) · · · (1 − zrt)
.

In particular, we have

an,0 =
n∑

k=0

xk

(
k−1∏

j=0

zj

)
hn−k(y0, y1, . . . , yk). (11)

We will prove Theorem 3 and give some applications in Section 4. In particular, we shall
derive an alternative proof of Theorem 1.
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2. Proof of Theorem 1

For any formal power series f(x) denote by Dq the q-derivative operator:

Dqf(x) =
f(qx) − f(x)

(q − 1)x
.

We will need the two associated operators:

∆q = 1 − (1 − xq)Dq,

δq = (x − 1)Dq.

For n ≥ 0 define (x; q)0 = 1 and (x; q)n = (1 − x)(1 − xq) . . . (1 − xqn−1). The following
formulas are easy to prove once discovered.

Lemma 1. For n ≥ 1 we have

∆n
q =

n∑

k=0

(−1)k

{
n + 1

k + 1

}

q

(xq; q)kD
k
q , (12)

δn
q =

n∑

k=0

(−1)k
{n

k

}

q
(x; q)kD

k
q . (13)

Proof. We proceed by induction on n ≥ 1. It is easy to check (??) and (??) for n = 1. For
example we have

∆q = 1 − (1 − xq)Dq =

{
2

1

}

q

−
{

2

2

}

q

(1 − xq)Dq = 1 − (1 − xq)Dq.

Note that Dq(xn) = [n]xn−1 and

Dq ((xq; q)n) = −q[n]q(xq2; q)n−1,

Dq ((x; q)n) = −[n]q(xq; q)n−1.

Suppose the formulas are true for n. Then, using the rule

Dq(f(x)g(x)) = f(x)Dq(g(x)) + g(qx)Dq(f(x)),
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and the induction hypothesis we have

∆n+1
q = (1 − (1 − xq)Dq))

n∑

k=0

(−1)k

{
n + 1

k + 1

}

q

(xq; q)kD
k
q

=
n∑

k=0

(−1)k

{
n + 1

k + 1

}

q

[k + 1]q(xq; q)kD
k
q

−
n∑

k=0

(−1)k

{
n + 1

k + 1

}

q

(xq; q)k+1D
k+1
q

=

{
n + 1

1

}

q

+
n∑

k=1

(−1)k

(
[k + 1]

{
n + 1

k + 1

}

q

+

{
n + 1

k

}

q

)
(xq; q)kD

k
q

+(−1)n+1

{
n + 1

n + 1

}

q

(xq; q)n+1D
n+1
q

=
n+1∑

k=1

(−1)k

{
n + 2

k + 1

}

q

(xq; q)kD
k
q ,

and

δn+1
q = (x − 1)Dq

n∑

k=0

{n

k

}

q
(x − 1)(xq − 1) . . . (xqk−1 − 1)Dk

q

=
n∑

k=0

{n

k

}

q
[k](x − 1)(xq − 1) . . . (xqk−1 − 1)Dk

q

+(x − 1)
n∑

k=1

{n

k

}

q
(xq − 1)(xq2 − 1) . . . (xqk − 1)Dk+1

q

=
n+1∑

k=0

{
n + 1

k

}

q

(x − 1)(xq − 1) . . . (xqk−1 − 1)Dk
q .

This completes the proof.

Remark: A q-analogue of (x d
dx)n =

∑n
k=0

{
n
k

}
xk

(
d
dx

)k
is the following formula:

(xDq)
n =

n∑

k=0

q(
k
2)

{n

k

}

q
xkDk

q ,

which can be verified easily by induction on n.
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We are now ready to prove Theorem 1. For fixed n ≥ 0, consider the generating function
of an,k (k ≥ 0) defined by (??):

gn(x) =
∞∑

k=0

an,kx
k =

∞∑

k=0

[k + 1](an−1,k − an−1,k+1)x
k

= Dq

( ∞∑

k=0

an−1,kx
k+1

)
− Dq

( ∞∑

k=0

an−1,k+1x
k+1

)

= Dq(xgn−1(x)) − Dq(gn−1(x) − an−1,0)

= gn−1(x) + (xq − 1)Dq(gn−1(x))

= ∆q(gn−1(x)).

By iteration gn(x) = ∆n
q (g0(x)) and Lemma 1 implies that

gn(x) =
n∑

k=0

(−1)k

{
n + 1

k + 1

}

q

(1 − xq)(1 − xq2) . . . (1 − xqk)Dk
q (g0(x)).

Putting x = 0 in the above equation yields (??).

Similarly, we consider the generating function of an,k (k ≥ 0) defined by (??):

hn(x) =
∞∑

k=0

an,kx
k =

∞∑

k=0

([k]an−1,k − [k + 1]an−1,k+1)x
k

= xDq

( ∞∑

k=0

an−1,kx
k

)
− Dq

( ∞∑

k=0

an−1,k+1x
k+1

)

= xDq(hn−1(x)) − Dq(hn−1(x) − an−1,0)

= δq(hn−1(x)).

Thus hn(x) = δn
q (h0(x)) and Lemma 1 implies that

hn(x) =
n∑

k=0

{n

k

}

q
(x − 1)(xq − 1) . . . (xqk−1 − 1)Dk

q (h0(x)).

Putting x = 0 in the last equation yields (??).

Now, if we take a0,m = 1/[m + 1] in Theorem 1 and apply algorithm (??), then it follows
from (??) and (??) that an,0 = βn for n ≥ 2; while applying algorithm (??) will yield that
an,0 = βn for n ≥ 1 by (??) and (??).

3. Proof of Theorem 2

Let [x] = (qx − 1)/(q − 1). For integer s ≥ 0 define [x]s = [x][x − 1] · · · [x − s + 1] and the
q-binomial coefficient

[
x
s

]
= [x]s/[s]!.
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Let η0, η1, η2, . . . be a sequence such that by η0 = 1, η1 = 0 and

m∑

i=0

(
m

i

)
qiηi = ηm (m > 1). (14)

We define the polynomials ηm(x) (m ≥ 0) in qx by

ηm(x) =
m∑

i=0

(
m

i

)
ηi[x]m−iqix. (15)

Then ηm(0) = ηm and

ηm(x + y) =
m∑

i=0

(
m

i

)
ηi(y)[x]m−iqix. (16)

Indeed, substituting ηi(y) by (??) and exchanging the order of summations in the right-hand
side of (??) yields

m∑

j=0

m∑

i=j

(
m

i

)(
i

j

)
[x]m−i[y]i−jqix+jy =

m∑

j=0

(
m

j

)
ηjq

j(x+y)
m−j∑

i=0

(
m − j

i

)
[x]m−j−i(qx[y])i

=
m∑

j=0

(
m

j

)
ηjq

j(x+y) ([x] + qx[y])m−j

=
m∑

j=0

(
m

j

)
ηj[x + y]m−jqj(x+y),

which is equal to ηm(x + y) by (??).

Setting x = 1 in (??) we see that ηm(1) = ηm for m > 1. It follows from (??) with y = 1
that for m ≥ 0,

ηm(x + 1) − ηm(x) =
m∑

i=0

(
m

i

)
(ηi(1) − ηi)[x]m−iqix = mqx[x]m−1. (17)

It follows that for k ≥ 1,

k−1∑

i=0

qi[i]m =
1

m + 1

k−1∑

i=0

(ηm(i + 1) − ηm(i))

=
1

m + 1
(ηm+1(k) − ηm+1)

=
1

m + 1

m+1∑

i=1

(
m + 1

i

)
[k]iq(m+1−i)kηm+1−i + (q(m+1)k − 1)

ηm+1

m + 1
. (18)
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On the other hand, it is readily seen by induction on n ≥ 1 that

xn =
n∑

k=1

{n

k

}

q
x(x − [1]) . . . (x − [k − 1]), (19)

which, by substitution x → [x], yields

[x]n =
n∑

k=1

qk(k−1)/2
{n

k

}

q
[x]k.

Therefore

k−1∑

i=0

qi[i]m =
k−1∑

i=0

qi
m∑

s=1

qs(s−1)/2
{m

s

}

q
[i]s =

m∑

s=0

qs(s+1)/2
{m

s

}

q

[k]s+1

[s + 1]
, (20)

where we used the identity for q-binomial coefficients:

k−1∑

i=s

qi−s

[
i

s

]
=

[
k

s + 1

]
.

Combining (??) and (??) we obtain a polynomial identity on qk. Dividing both sides by [k]
and setting k = 0 leads to

ηm + (q − 1)ηm+1 =
m∑

s=0

qs(s+1)/2
{n

s

}

q

[−1]s
[s + 1]

.

Now, it remains to prove βm = ηm + (q − 1)ηm+1. Indeed, the sequence ηn + (q − 1)ηn+1

satisfies the recurrence (??) for n > 1:

q
n∑

i=0

(
n

i

)
qi(ηi + (q − 1)ηi+1) = q

n∑

i=0

(
n

i

)
qiηi + (q − 1)

n+1∑

i=1

(
n

i − 1

)
qiηi

= qηn + (q − 1)
n+1∑

i=1

((
n + 1

i

)
−

(
n

i

))
qiηi

= qηn + (q − 1) (ηn+1 − ηn)

= ηn + (q − 1)ηn+1.

This completes the proof of (??).

For n ≥ 2, simplifying x in (??) and setting x = 0 we get

0 =
n∑

m=1

(−1)m
{ n

m

}

q
[m − 1]!. (21)
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Now, using (??) we have

n∑

k=0

(−1)k

{
n + 1

k + 1

}

q

[k]!

[k + 1]
=

n∑

k=0

(−1)k

({n

k

}

q
+ [k + 1]

{
n

k + 1

}

q

)
[k]!

[k + 1]

=
n∑

k=0

(−1)k
{n

k

}

q

[k]!

[k + 1]
+

n∑

k=0

(−1)k

{
n

k + 1

}

q

[k]!.

Formula (??) follows then from (??) and (??).

4. Proof of Theorem 3 and applications

By induction on n ≥ 0. The formula is clear for n = 0 and n = 1. Suppose that the formula
is true until n ≥ 1. Then

an+1,m = yman,m + zman,m+1

= ym

n∑

k=0

xm+kzm . . . zm+k−1hn−k(ym, . . . , ym+k)

+ zm

n∑

k=0

xm+k+1zm+1 . . . zm+khn−k(ym+1, . . . , ym+k+1)

= xmyn+1
m +

n∑

k=1

xm+kzm . . . zm+k−1(ymhn−k(ym, . . . , ym+k) + hn−k+1(ym+1, . . . , ym+k))

+ xm+n+1zm . . . zm+n.

Since ymhn−k(ym, . . . , ym+k)+hn−k+1(ym+1, . . . , ym+k) = hn+k−1(ym, . . . , ym+k), we are done.

The following examples are special cases of Theorem 3:

• if ym = zm = 1, we recover the so-called Euler-Seidel matrix (see [?]) associated to the
initial sequence xm (m ≥ 0).

• if zm = xqm and ym = 1, then we recover the q-Seidel matrix introduced by Clarke,
Han and Zeng [?].

• if zm = −ym, then Theorem 3 reduces to a result of Lascoux [?].

• if ym = −zm = [m + 1] and xm = 1/[m + 1], then this is our q-analogue of the
Akiyama-Tanigawa algorithm. Indeed, it is readily seen that

∑

n≥k

{n

k

}

q
tn =

tk

(1 − [1]t)(1 − [2]t) . . . (1 − [k]t)
,
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which yields the explicit formula:
{

n
k

}
q

= hn−k([1], . . . , [k]), so
{

n + 1

k + 1

}

q

= hn−k([1], . . . , [k + 1]).

Eq. (??) follows then from (??) with the above specializations.

• if ym = [m] and zm = −[m + 1] and xm = 1/[m + 1], this is our q-analogue of Chen’s
algorithm and (??) follows directly from (??).

It may be worth pointing out that it is possible to write explicitly the general coefficients
an,m in Theorem 1, because

hn−k([m], . . . , [m + k]) =
k∑

i=0

(−1)k−iq−k(m+i)+(i+1
2 ) [m + i]n

[i]![k − i]!
. (22)

Indeed, there holds

1

(1 − z0t)(1 − z1t) . . . (1 − zkt)
=

k∑

i=0

∏k
j=0,j $=i(1 − zj/zi)−1

1 − zit
.

Equating the coefficients of tn (n ≥ 0) in the two sides yields

hn(z0, . . . , zk) =
k∑

i=0

k∏

j=0,j $=i

(1 − zj/zi)
−1 zn

i ,

which gives (??) by taking zi = [m + i] for i = 0, . . . , k.
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