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Abstract 

We give a simple proof of the continued fraction expansions of the ordinary generating functions of the q-Stirling 
numbers of both kinds. By generalizing the method of Touchard (1956) and Milne (1978), we obtain the explicit formulas 
and measure of one set of the polynomials whose moments are the q-Stirling numbers. 
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1. In troduc t ion  

F o r  q ~ R such tha t  [q[ < 1 define 

q X  1 
[x]  - q _  1 " 

F o r  n >i 0 let [X]o = 1, [x]n = [x]  [ x -  1] .-. [ x -  n + 1] and  [n]!  = [n]n. Also for n > /k  > /0  
define 

[ k ] ! [ n  - k ] ! "  

Recall  tha t  the two re la ted q-Stirl ing numb er s  of  the second kind [8, 17] m a y  be def ined by  
recurrence:  

Sq(n + 1,k + 1) = Sq(n,k) + [k + 1]Sq(n,k + 1), (1.1) 

Sq(O,k) = 6Ok, Sq(n,O) = 6,,o 
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and 

Sq(n + 1, k + 1) = qk - ' Sq (n , k )+  [k + 1]Sq(n,k + 1), 
(1.2) 

Sq(O,k)=6Ok, Sq(n,0) = 6,0. 

Note that Sq(n, k) = qtbSq(n, k). 
Similarly, the q-Stirling numbers of the first kind cq(n, k) [8] can be defined by 

cq(n + 1,k + 1) = cq(n,k) + [n]cq(n,k + 1), 
(1.3) 

cq(O,k) = 6Ok,  cq(n,O) = 6,0. 

For convenience, we shall take sq(n, k) = q,-k  cq(n, k) as our q-Stifling numbers of the first kind. 
Our  first purpose is to give a short proof of the continued fraction expansions of the ordinary 

generating functions of the forementioned three q-Stifling numbers. 

Theorem 1. 

l+E  
n~>lk=l 

In the rin9 of formal power series of x, the following identities hold: 

1 
Sq [n, k] a kx" = 

aqx 2 
1 -- ax -- 

. . .  

/~k+l x2 
1 - bkX 

(1.4) 

where bk = aq k + [k], 2k+X = aqk+ l[k  + 1] for k >>. O; 

1 + ~ ~ Sq[n,k]akx"= 1 
n >11 k = 1 1 -- ax -- a(1 + a(q - -  1))x 2' 

'~'k+ 1 X2 
1 - -  b k X  

. . .  

(1.5) 

where bk = aq 2k + [k](1 + aqk-X(q -- 1)), 2k+1 = aq2k[k + 1](1 + aqk(q -- 1))for k >i O; 

1 +  ~ ~ Sq[n ,k]a  k x " =  1 
aq x 2 

n~>lk=l 1 - - a x - -  

~k+l X2 
1 - b k X  

(1.6) 

where bk = (a + q[k])q k + qk[k], 2k+1 = (a + q[k])[k + 1]q2k+ l for k >10. 

We should point out that all the above formulas are valid only in the formal sense (cf. [5]). 
Actually the Hamburger  moment  problems associated with the orthogonal polynomials corres- 
ponding to the above continued fractions are not always determinate, see for example [2, pp. 
197-198] or [10]. We refer the reader to [2, pp. 6-10] for the formal definition of orthogonality. 
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It is well known [2, p. 85] that Theorem i can be restated in terms of orthogonal polynomials as 
follows. 

Theorem 2. (a) The  polynomials U~)(x; q) orthogonal to the moments  #~X)(q), 

#~l)(q) = ~ Sq[n , k ]a  k, 
k = l  

are defined by U~a)(x;q) = 1, U~a)(x;q) = x -- a and for  n >1 1 by 

u(a) t~. n + 1 ~', q) = (X -- aq n -- [n] ) U ((a)(x; q) -- aq" - 1 [n] U (a) 1 (x; q). 

(b) The  polynomials v(,a) (x; q) orthogonal to the moments  #(2)(q), 

#(2)(q) = ~ gq[n ,k]a  k, 
k = l  

are defined by V(oa)(x;q) = 1, v]a)(x;q) = X -- a and for  n >~ 1 by 

(a) . 
Vn+X(x,q) = (X -- bn)V(fl)(x;q) 2n V~)_x(x;q), 

where bn = aq 2n + [n](1 + aqn- l(q - 1)), and 2n+1 = aq2n[n + 1](1 + aqn(q -- 1)). 
(c) The  polynomials w(,aJ(x; q) orthogonal to the moments  Vn(q), 

Vn(q) = ~ sq(n,k)a k, 
k = l  

are defined by wba)(x; q) = 1, w(la)(x; q) = x -- a and for  n >~ 1 by 

w(a! n+~(x;q) = (X bn)W(,a)(x;q)--  2nW~)_~(x;q), 

where bn = (a + q + ... + qn)qn + qn[n], and 2n = (a + q + ... + qn-1)[nJq2n-1 .  

(1.7) 

(1.8) 

(1.9) 

We note that if q = 1, the polynomials in (a) and (b) reduce to the Charlier polynomials, and the 
polynomials in (c) reduce to the Laguerre polynomials [2]. The polynomials in (a) and (b) can then 
be regarded as two q-analogs of the Charlier polynomials, while the polynomials in (c) as q-analogs 
of the Laguerre polynomials. 

Conversely, if we first establish Theorem 2, we automatically get Theorem 1. Actually, Ismail and 
Stanton [14] have earlier noticed that the polynomials in part (a) are a rescaled version of the 
A1-Salam-Carlitz polynomials [2, pp. 197-198]. So we can also prove part (a) by using the 
moments of the latter polynomials. 

Parts (b) and (c) have been presented by the author at the 27th session of the S6minaire 
Lotharingien in 1991. Part (b) was proved by using the methods developed in this paper, while part 
(c) was derived from a more general result in [18]. 

Recently, De M6dicis and Viennot [3] have given a bijective proof of part (c) and noticed that the 
polynomials in part (c) are a special case of the "little" q-Jacobi polynomials introduced by Hahn 
(see [6, p. 166] ). Hence part (c) can also be derived from the known measure of the "little q-Jacobi" 
polynomials as the q-Charlier polynomials. Finally, after seeing an earlier version of this paper, 
Stanton [14] informed us that the polynomials in (b) are a rescaled version of the classical 
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q-Charlier polynomials (see [6, p. 187]). So part (b) can also be derived from the explicit measure of 
the classical q-Charlier polynomials. 

In contrast with the other proofs, the three expansions of Theorem 1 are proved from scratch by 
means of the same method, inspired by the work of Rogers [13]. The continued fraction method 
used to proving Theorem 2 has the merit to be short and elementary. 

In Section 2 we shall first prove Theorems 1 and 2 from scratch. In Section 3 we comment on the 
combinatorial interpretations of the q-Stirling numbers. In Section 4 we give an explicit formula 
and measure of the polynomials v(na)(x; q) by generalizing the method of Touchard [15] and Milne 
[11]. These polynomials turn out to be a rescaled version of the classical q-Charlier polynomials [6, 
p. 187]. 

2. Continued fractions expansions 

We first expand the ordinary generating functions of the q-Stirling numbers as Stieltjes con- 
tinued fractions. 

Lemma 3. The  fol lowing identities hold: 

1 
1 +  ~ Sq(n,k)akx " =  

a ' x  n,k >1 1 1 - 
I ' X  

1 

2. " X 
1 - - - -  

(2.1) 

w h e r e  22n-1 = aq"-1 ,  22 n ~--. I n ]  f o r  n ~ 1; 

1 
1 + • 7Sq(n,k)akx " =  

a ' x  n,k>~l 1 - -  
(1 + a(q -- l))-x 

1--  
. o .  

2 n " X 
1 - - - -  

(2.2) 

where 22.-1 = aq 2", 22n = [n](1 + a q " - l ( q  -- 1))for n >>, 1; 

1 
1 +  ~, sq(n,k)akx " =  

a ' x  n,k>~l 1 

1 - - -  q ' x  

1 2 . ' x  
. o .  

(2.3) 

where 2 2 n -  1 ~- (a + q + ... + q , - 1 ) q . - S ,  22" = [n]q" for  n >1 1. 
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Proof.  L e t f ( a ,  x) be the lef t -hand side of (2.1). It then  follows f rom (1.1) that  
a k X k 

f ( a , x ) =  ~ 1 
k~>o ( - E l - l x ) ( 1  - [ 2 I x )  ... (1 - [ k ] x )  

1-x ,qa'¢ _/a = 1 + - - J / - ,  1 

Assume that  

(2.4) 

1 -- (cx(a) + c2(a))x - 

1 --(ca(a) + c 4 ( a ) ) x - -  

and  

f (a, x) = 

Therefore  

cx(a)c2(a)x 2 
1 -- q ( a ) x  

C3 (a)ca(a) x z 
1 -- (c2(a) + c3(a))x -- 

N o w  substi tute (2.6) and  (2.8) in the funct ional  equa t ion  (2.4) and  identify the cor responding  
terms. We successively obta in  that  

cl (a) = a, 

q ( a )  + c2(a) = 1 + qcl(a/q) =, c2(a) = 1, 

(I) c2(a)ca(a) = q (a/q)c2(a/q)q 2 =*. c3(a ) ---- aq, 

ca(a) + c4(a) = 1 + qc2(a/q) + qc3(a/q) =~ c4(a) = 1 + q, 

ax _[ qx "~ 
1-_ x f ~ a ' ~ _  x )  

1 -- (1 + qcl(a))x  -- 

a x  

cl (a)c2 (a) q2 x 2 

c3(a)c4(a) q2 x 2 
1 - -  (1 + qcz(a) + qc3(a))x 

c4(a)cs(a) x 2 

(2.7) 

(2.8) 

1 
f (a, x) = cl (a) x (2.5) 

1 -  
1 c2(a)x 

1 ca (a) x 

Cont rac t ing  the con t inued  fraction (2.5) s tar t ing f rom the first row and  the second row yields, 
respectively, 

f ( a , x )  = 1 + q ( a ) x  
c2 (a) c3 (a) x 2 (2.6) 
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One  can show by  induct ion  

C 2 n - l ( a )  = aq", C2n(a) = [n], n >/ 1. (2.9) 

Put t ing  the above  values in (2.5) yields formula  (2.1). N o w  let g(a, x) be the left-hand side of (2.2). It 
then follows f rom (1.2) that  

a k q~b x k 
g(a,x) 

k~0(1 -- [1Ix)(1 -- [2]X) ... (1 -- [k ]x)  

= 1 + 1 - - ~ g  a, . (2.10) 

If  we rep lace f (a ,x )  by g(a,x) in (2.5)-(2.8), we get f rom (2.10) that  

(II) 

cx(a)=a, 

c l ( a ) + c z ( a ) =  1 +qc l (a )  =¢" 

c2(a)ca(a) = cl(a)c2(a/q)q 2 =~ 

c2(a) = 1 + a ( q -  1), 

ca(a) = aq 2, 

and more  generally 

c2. -1(a)  = aq 2~-1), 

c3(a  ) -4- c4(a  ) = 1 + qc2(a) + qc3(a) =~ c4(a) = (1 + q)(1 + aq(q -- 1)), 

c2,(a) = In](1 + aq"- l (q  _ 1)), n >~ 1. 

Finally, it follows from (1.3) that  

sq(n,k)a k = a(a + q) ... (a + q + ... + q,-1) .  
k=O 

Therefore,  if we let h(a, x) be the left-hand side of  (2.3), we have 

h(a,x) = 1 + ax + a(a + q)x 2 + a(a + q)(a + q + q2)x3 + ... 

= 1 + ax(1 + (1 + a/q)(qx) + (1 + a/q)(1 + a/q + q)(qx) 2) 

= 1 + axh(1 + a/q, qx). 

Similarly, if we r e p l a c e f ( a ,  x) by h(a, x) in (2.5)-(2.7), we get f rom (2.12) that  

cl (a) = a, 

el(a) + c2(a) = c1(1 + a/q)q ~ ca(a) =- q, 

( I I I )  c2(a)ca(a) = cx(1 + a / q ) c 2 ( 1  + a / q ) q  2 ~ c 3 ( a )  = (a + q)q, 

ca(a) + c4(a) = qc2(1 + a/q) + qc3(1 + a/q) =~ c4(a) = (1 + q)q2, 

(2.11) 

(2.12) 
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and more  generally 

C2n_l(a ) = (a + q + ... + q . - l ) q . - X ,  C2n(a ) = In]q", 

Thus  we have completed the proof  of the lemma. []  

n 1> 1. (2.13) 

Remark. Rogers [13] seems to be the first to have used the "contract ing" and "functional 
equat ion"  techniques to derive cont inued fraction expansions of power series. In the case q = 1, 
D u m o n t  [4] has proved Lemma  3 in a similar manner.  

By contract ion of the cont inued fractions in L e m m a  3 (cf. (2.7)) we get immediately Theorem 1. 

3. Remarks on the combinatorial interpretations of  the moments 

Let ~ ,  be the set of permuta t ions  of {1,2, ... ,n}. For  any permuta t ion  a = a(1)a(2) ... a(n), 
a left-right maximum is a a(i) such that  a(i) > a(j) for a l l j  < i and an inversion is a pair (a(i), a(j)) 
where a(i) > a(j) for all pairs (i,j) such that  I ~< i < j ~< n. Denote  by lrm a and inv a the numbers  of 
the left-right maxima and inversions of a. F r o m  the inversion table we immediately obtain 

alrm°q inv~ = a(a + q) ... (a + q + ... + q,-1).  (3.1) 
a ~  ~n  

Thus  from (1.9) 

sq(n,k)= ~ qinW, (3.2) 
a e G . ( k )  

where ~, (k)  denotes the set of permuta t ions  of {1,2, . . . ,n}  with k left-right maxima. The 
interpretat ion (3.1) seems to appear  first in [7]. 

Let 1-I,(k) be the set of ordered parti t ions into k blocks of {1,2 . . . . .  n}, i.e., the blocks of each 
part i t ion are arranged in increasing order of their minima. Let ~ = (BI ,B2,  ... ,Bk) be such a 
partit ion. An inversion of ~ is a pair (bi,Bj) such that  b ie  Bi where i < j  and bi > minBj .  A dual 
mverszon of  Tz is a pair (Bi, b i) such that  b; ~ B i where i < j and min Bi < bj. Let my tr and lnv o- be 
the number  of inversions and dual  inversions of a. It is easy to see, by verifying the recursions (1.7) 
and (1.8), that  

Sq(n,k)= ~ qinvn,  (3.3) 
~ H . ( k )  

73q(n,k)= ~ q 'n~'~. (3.4) 
;~ e I I . (k)  

These inv interpretat ions are due to Milne [12]. As pointed out by Wachs and White [17], but 
calling inv(n) = lbOz) and inv n = ls(n), the above combinator ial  interpretations of the q-Stirling 
numbers  of the second kind are "easy" and there are also some "hard" statistics on the set of 
partit ions, which also have the q-Stifling numbers  of the second kind as their generating functions. 
However  it is not  easy to verify this fact. S tanton raised the question how this "hard" statistics 
could be the same as the easy ones, and Wachs and White [17] proved it by construct ing an explicit 
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bijection between these "hard" statistics and the easy ones. Once established Theorem 1, we can 
also derive this result as follows. According to a theorem due to Flajolet [5] we can rewrite the 
left-hand side of (1.4) as the generating functions of certain Motzk in  paths with respect to some 
weights. This leads to the rs statistics of partitions of [17] via a classical bijection due to Flajolet 
[5], Franqon and Viennot (see [16, 11-14] or [5]). Similarly, a combinatorial interpretation of (1.6) 
in terms of Motzkin paths also leads to hard interpretations of the q-Stirling numbers of the first 
kind on permutations, see [3]. Note that one of the motivations of this paper is due to these "hard" 
statistics. 

4. The classical q-analog of Charlier polynomials 

The classical q-Charlier polynomials [6, p. 187] are defined by 

C.(x; a, q) 2 q~l q -  = ;q, (4.1) 

and satisfy the orthogonality 

a x 
- ) _ _ q t ~  Cm(q-X;a 'q)C"(q-X;a 'q  (q; q)x 

x = 0  

= ( -- a; q) oo ( -- qa-  1; q).(q; q). q - ,  6,... (4.2) 

Although it is possible to verify directly that the polynomials V~a)(x; q) are actually a rescaled 
version of C.(x; a,q) by checking the three terms recurrence satisfied by these polynomials, we 
prefer to give an alternative argument to derive naturally the explicit expression and measure from 
the q-Stifling numbers as Touchard [15] and Milne [11] did in some special cases. 

We define the linear function ~o on the vector space C [qX] by 

~0([x]") = ~ g~(n,k)a k. (4.3) 
k = O  

It is easy to see that the q-Stirling numbers gq(n, k) satisfy 

[ x ] " =  ~, g,(n,k)Ex]k 
k = O  

and gq(n,n)= 1. Since {[x].}.~0 and {[x]"}.~>0 are two bases of the vector space CEqX], if we 
define 

[x]. = ~ s* (n, k) [x] k, 
k = O  

we should have 

S~(n, k)s*(k, m) = 6m, for m, n e N. 
k = O  
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It follows that  

n n k 

~([x]n) = Z s*(n,k)tp([x]k) = ~., s*(n,k) ~., S q ( k , l ) a t = a  n. 
k=O k=O 1 = 0  

Recall that  the two classical q-analogs of the exponential  e x [1, 6] are defined by 

~, xk m q(~)X k 
eq(x) = and Eq(x) = 

k = o [ k ]  w • k = O  [k]! 

Note  that  (eq(X))-1 = E q ( -  x). Hence 

(4.4) 

1 o0 an+k 1 ~ [k] .  k 
(P([X]n) = a n -- e qT-Z" k a J = o ~ -- e q-~) k ~= O - ~ .  a . (4.5) 

Since { IX]n} is a basis of C[q  ~'] and ~p linear, we obtain the following result. 

Proposition 4. For any polynomial P(x) of  qX, we have 

1 ~ P(k) k 
~p(P(x) ) = eq-~ k~o ~ .  a . 

Setting P(x) = [x] n in Proposi t ion 4 we get then a q-analog of Touchard ' s  formula [15]. 

Corollary 5. W e  have 

Bq.n(a)= L Sq(n,k) ak- 
k = O  

1 ~ [k]nak" 
eq(a)k:o . 

Note  that  the above formula generalizes Milne's q-analog of Dobinski 's  identity [11], which 
corresponds to the a = 1 case. 

Lemma 6. Let  P(x) be a polynomial o f  q x and k >>- O, then 

¢P([X]k P(x)) = ak ~o(P(x + k)). 

Proof. We first remark  that  t p ( [ x ] [ x -  1 ] , ) =  a " + l =  acp([x],). So ¢ p ( [ x ] P ( x -  1) )=  a~p(P(x)) 
for any polynomial  P(x) of qX. Therefore ~P([X]k P(x)) = ¢p([x] [x -- 1]k- 1P(x)) = 
a~p([X]k-1P(x)), and the proof  is complete  by induction. []  

We need the following version of the q-binomial theorem (see [1, p. 225] for a combinator ia l  
p roof  using vector spaces over a finite field). 

n l  E:]k 1 
11 ( X -  Zq  i) = I-I ( Y -  Zq  J) H ( x -  Yq'). (4.6) 

i = 0  k = O  j = O  / = 0  
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Putting X = qX, y = 1 and Z = 0 in (4.6) yields 

Applying ~o to (4.7) and then applying (4.6) with X = 1, Y = 0 and Z = (q - 1)a leads to 

(°((qX)") = k=O~I~l (q-1)kq(~'ak=(a(q-1);q)"" (4.8) 

As usual we define, for any functionf(x) of x, the shift operator E: Ef(x)  = f ( x  + 1), the identity 
operator I: I f(x) = f ( x )  and the q-difference operator by means of 

A°f(x) =f(x) ,  d~+l f (x )  = (E - q"I)A~f(x) = A"f(x + 1) - q~A~f(x). 

Note that 

A~f(x) = (E - q"-l I)(E - q , - 2 i )  ... (E - I)f(x). (4.9) 

It follows from (4.6) that 

A~f(x)= k=0~( - -1 )k [~ lq t~ ' f (x+n- -k ' "  (4.10) 

We require the following easily verified formula: 

~!m].[x], ,_.q "'x+"-") if n ~< m, (4.11) A~ [x],. 
otherwise. 

Theorem 7. Let 

n,(qX;a,q) = ~ ( -  a)k~nlqk~k-1)/2[X]._k. (4.12) 
LkJ 

We have the orthogonality 

q~(H,.(qX; a, q)H.(q"; a, q)) = a"[n] !(a(1 - q); q).6,,.. (4.13) 

Proof. Assume that m ~< n, then (4.11) reduces to A~[x],. = [n]! q"X6,... By Lemma 6 and (4.10) we 
have 

¢p([x],,H.(q~';a,q)) = ~ (--a)k~n]qk'k-')/2a "-k ¢p([X + n - k ] m )  
k = O  LkJ 

= a" ~o(A~ I x ] , . )  = a"[n]! q~(q"~')6,... 
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Therefore 

tP(Hm(qX; a, q)Hn(qX; a, q)) = q~([x]mHn(qX; a, q)) = a n [n] ! tp(qnX)bmn. 

The proof is complete in virtue of (4.8). [] 

Remark. The special cases of Theorem 7 have been proved, respectively, by Touchard [15] for 
q = 1 and Milne [11] for a -- 1 by similar methods. Note that our right-hand side of (4.13) is 
simpler than that of Milne [11] even in the case a -- 1. 

In (4.12) if we set z = [x] then we get the explicit expression for V~a)(x;q): 

E V~")(z;q) = q(~)Hn((q - 1)z + 1;a,q) = (-- aqn k - 1)n-k (z --  [ i]) .  (4.14) 
k = 0  i =  

The polynomials Hn(q~; a, q) may also be written in terms of hypergeometric functions as 

Hn(q~;a,q) (q-X;q)'~-n~-~) ( ) = 1¢Pl q~-n+x;q, aqn( 1 -- q) • (4.15) 

If we replace q by 1/q and then q-X by x in the above formula, we obtain the classical q-Charlier 
polynomials [6, p. 187], that is 

( a ~)( -T_~_aq)  ~ (q-~ qg__~ ~ ) 
= ;q' -- a " Hn X ; l _  q, q_(~)2~01 ,X (4.16) 
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