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ABSTRACT 

A class Z of matrices is studied which contains, as special subclasses, p-circulant 
matrices (p > l), Toeplitz symmetric matrices and the inverses of some special 
tridiagonal matrices. We give a necessary and sufficient condition in order that 
matrices of Z commute with each other and are closed with respect to matrix 
product. 

1. INTRODUCTION 

A p-circulant matrix, as defined in [l], [4] and [6], is an n X n matrix over 
the complex field in which the ith row (i = 2,3,. . . , n) is obtained from the 
(i - 1)th row by shifting each element p columns to the right. A p-circulant, 
for p = 1, is a circulant matrix. 

The following properties are verified: if A is a p-circulant and B is a 
q-circulant, then AB is a k-circulant, where krpq module n [l]; the inverse 
of a nonsingular p-circulant A is a q-circulant B where p-q= 1 modulo n [4]. 
Also it is known that p-circulant nX n matrices can be simultaneously 
transformed to a direct sum of broken-diagonal matrices [l, 61. Moreover a 
pseudocommutativity property is satisfied: p-circulant n X n matrices, with 
(n,p) = 1, are k-commutative, where k is the index to which p belongs 
modulo n (see Theorem 3.1). 

All these properties appear as a generalization of previously stated results 
about circulant matrices: the class of circulant matrices is a monoid. The 
inverse of a nonsingular circulant matrix is circulant. Circulant matrices can 
be simultaneously transformed by unitary transformations to an explicit 
canonical form. Finally, circulant matrices commute with each other. In this 
work we wish to explore the relationship between commutativity and 
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k-commutativity and structural properties of p-circulant matrices. More 
precisely, we shall be considering in the next section a class Z of n x n 
matrices defined in terms of n different parameters in the complex field, 
which contains, as a special subclass, p-circulant matrices. Subclasses Z, c Z 
are then defined in terms of different dispositions of these parameters in the 
matrices of Z. If n is a prime integer, then we prove, in Sec. 3, that the only 
Z, whose matrices commute with each other are the spaces of matrices A 
such that A = 2’ - ‘CP, where C is circulant and P is a permutation matrix, or 
the identity. 

In the last section we prove also (if 12 =prime integer) that matrices 
P -‘Cl’, where C is n x n circulant and P is a permutation matrix or the 
identity, are the unique Z, which are closed with respect to matrix multi- 
plication within a subclass Z’ of Z. Thus, in Z’, the only subalgebra of 
dimension n is the only class of matrices which commute with each other. In 
our opinion the proof of all these properties of circulant matrices may serve 
as an introduction to a deeper investigation of the existence of not accidental 
connections of commutativity and k-commutativity with structural properties 
of classes of matrices. 

Also, not only commutativity (and k-commutativity), but also properties 
of special classes of n x n matrices which can be described as algebras of 
dimension k <n2, are relevant to the solution of algebraic-complexity prob- 
lems in which well-structured matrices are involved (see for instance [3] and 

[71)* 

2. DEFINITION AND PROPERTIES OF THE CLASS Z AND Z’ 

Let Z be the class of Nan matrices which is defined as follows: 
A=(aii)EZifandonlyifthereexistn2functions~ii,i,j=0,1,...,n-1,ofn 
complex parameters a,, a,, . . . , a,, _ 1, and choices &,, G,, . . . , & _ 1 of the param- 
eters such that 

(9 vi,i, _fii(4 = a, for some k; 
(ii) V k there is a pair of indices i, i such that fii(a) = a,; 
(iii) aii=j$j(60,ti, ,..., (?,_J. 

Z may also be described as the class of n X n matrices which have the form 

n-1 

kzo akJk, (2.1) 
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for some complex ua, . . . , a, _ 1, and some matrices Jk = ( $!,) of zeros and ones 
which satisfy 

(i’) x;:&=J, wherel=(jr,,) is such that irxS=l, (r,s=O,l,..., n-l); 
(ii’) for every k, there exist indices T, s for which i,!,$) = 1; 

The subclass Z’ cZ is then defined as follows: a matrix A of Z belongs to 2’ 
if and only if 

(iv) for every i (or i) and for every k there is an index i (or i) such that 

&(a)=% 
(v) I%> =a,, i=O,l,..., n-l. 

Thus Z’ can be described by considering matrices (2.1) where each row and 
each column contains all parameters ak (k = 0, 1, . . . , n) and just one parame- 
ter is contained by the leading diagonal. This means that the _lk must satisfy 
the following conditions: 

(iii’) Let k be given; then for every p (or 4) there is only one 4 (or p) 
such that fi:i = 1; 

(iv’) 1, = I for an index T. 

Note that (i’)-(iv’) are equivalent to the following: 

(*) & ={JoJr,..*,J,_i} is a set of nX n permutation matrices one of 
which is 1 and such that Cz;&lk = 1. 

Let E, = (0, 1,. . . , n-l},andletgbeamapofE,XE,ontoE,.Thismap 
defines a class xg c Z whose matrices A = (aii) are such that hi(a) = ak with 
k = g((i, i)). Obviously, giving a map g is the same as giving n matrices Jk 
which satisfy (i’) and (ii’). Then these matrices Jk form a base for the vector 
space Z,. In particular, if g((i,i)) = n - ip + i (mod n) and f. = ui (i,i = 
01 , , . . . ,n - l), then Z, is the space of p-circulant matrices. 

Toeplitz symmetric matrices and the inverses of some special tridiagonal 
matrices (see [2]) give other examples of spaces Z,. 

In the next section we shall prove (if n = prime integer) that the unique 
spaces Z, whose matrices commute with each other are the spaces of 
matrices of the form PTCP, where C is circulant and P is a permutation 
matrix or the identity. 

In the last section we shall prove also (if n =prime integer) that matrices 
of the form PTCP are the unique Z, cZ’ such that, if A,B EZ , then 
A-B EBg. This means that if n =prime integer, then the space f o n X n 
circulant matrices is the unique space Z, which is an algebra of commutative 
matrices within the class Z. 
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3. PROPERTY OF COMMUTATIVITY OF MATRICES OF 2 

In order to find spaces Z, such that A, B E Z, implies AB = BA, we 
proceed as follows: at first, the commutativity property of matrices of a 
space Z, is expressed in terms of commutativity of the matrices Jk which are 
related to g (Lemma 3.1). 

Moreover, the matrices Jk must satisfy the properties (iii’) and (iv’) 
(Lemma 3.2). A sufficient condition is then given in order that the matrices 
of a particular Z, have the form PTCP, where C is circulant and P is a 
permutation matrix or the identity (Lemma 3.3). Finally, this condition is 
shown to be verified by the spaces Z, of n X n matrices (with n =prime 
integer) which commute with each other (Theorem 3.2). 

LEMMA 3.1. LA A(a)=C~l,$,J, and B(b)=C:;ib,l,. Then A(a)*B(b)= 
B(b)A(a) if and only if IJ, = JJr fm every r and s. 

Proof. The condition is known to be sufficient. The condition is also 
necessary because AB - BA =Cr,,u,bs(IJs - I&r0 in the a, and b, implies 
I& -&I, = 0. n 

LEMMA 3.2. Let g be a mup of (E, X E,,) unto E,. Zf A, B EZg implies 
AB = BA, then 2, ~2’. 

Proof. Let A(a) =X~&.Z,, B(b)=C::AbsJs and A(a)B@) - B(b)A(a)=O. 
Suppose that condition (iii’) is not verified; in particuktr, suppose that one of 
the following is satisfied: 

(1) There is a k E E,, such that, for an index p E E,,, i$# 1 for every 
ZEE,. 

(2) There is a k E En such that, for an index p E E,, $1 = j$ = 1 where 
Z#l’. 

Let (1) be satisfied; then there is a q such that, for some m E E,,, $k = 1 Iby 
(i’)]; also, by (iii’), there is a k’ EE,, such that $$- 1. Thus we have 
lk_Zk’ Z&J,, but this is impossible by Lemma 3.1. If (2) ‘is true, then also (1) is 
true [by (ii’)]: th is p roves that condition (iii’) must be verified. As regard as 
condition (iv’), suppose j$j = 1 for every k, and let j:i) be the element ( p, q) 
in the product ZJ,. Now we have ipkk) = 1 for every k and, as I Jk = JkJO for 
every k, we have also Za,k *(k*o) = 1; then &‘i = 1 for every k, i.e., Jo= 1. n 
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COROLLARY 3.1. Zfg((i,j)) = n - ip+ i, p > 1 (i.e., the matrices of 2, are 
p-circulant), th en 2, is a space of matrices which commute with each other 
if and only if p=l. 

Proof. If p = 1, then the matrices of 2, are circulant and commute with 
each other. If the matrices of Z,, where g((i, j)) = n - ip + i, commute with 
each other, then, as we may suppose without loss of generality @= 1 
tlk~E,, we haveg((i,i))=O, i=O ,..., n - 1 (by the previous theorem). In the 
present case g((i,i)) = n - i( p - 1) modn implies g((i,i)) =0 if and only if 
p=l. n 

We recall that a set of matrices {A,, . . . ,A,} is said to be f-commutative 
if and only if f is the smallest integer such that all the products AP, 
APr . . . 
A 

A, commute with each other and some linear combination of 
1,. . . ,A,, is nonsingular. 

If p > 1 and (n,p) = 1, then, by the results which are described in [l], it is 
easy to prove that n X n p-circulant matrices are f-commutative for some 
integer f < G(n), where $(n) is the Euler function of n. 

THEOREM 3.1 (see [7]). Let (n,p)=l, and Jet A,,A, ,..., A, (k>2) be 
p-circulant matrices of order n. Then A,,A,, . . . ,A, are f-commutative, where 
f is the index to which p belongs module n. 

Proof. If (n, p) = 1, then we have pf r 1 module n, where f is the index 
to which p belongs module n. Thus every product Aq,Aqe. * . A, is l-circu- 
lant (see [l], Theorem 3.1) and the Aj are f-commutative. n 

From now on we shall suppose, for all Xg c Z’, that #i = 1, k = 0, 1, . . . , n 
-1. 

LEMMA 3.3. Let J,,J,,..., J,, _ 1 be n matrices which satisfy (i’), (ii’), (iii’), 
(iv’), and let (h,, h, . 
implies 

*~h,_,,)(h,=O)beapermutationofE,suchthatj~~=l 

hk + hr, = hg module n. (3.1) 

then P’r, P=C,, k=O,l,..., n- 1, where C, is circulant and P is the 
permutation matrix whose ith row is the h,th row of the identity. 

Proof. Let C, = PTJk P with pi i = $,, . Then one easily calculates that 
c@) = 1 implies hk + p = q module n. Thus C, is circulant with cAfik = 1. 

P,9 
n 
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EXAMPLE 3.1. Let n=5, and let Z, be the space of matrices A(a) = 
BUS&,./, which have the following form: 

The permutation (h,h, h, h, h4) = (0 143 2) satisfies (3.1). (For instance 

11,4 7 - *y ‘(l) = 1 i e a, is in the 2nd row and in the 5th column, corresponds to the 
identity h, + h, = h, modulo 5, i.e., 1 + 1=2.) If instead 

it is not possible to find a permutation (ho h, h, h, h4) which satisfies the 
condition (3.1). In fact we cannot find a permutation matrix P such that 
PrA(a)P is circulant. 

Let us observe that the position ho= 0 is related to the fact that Jo= I. 

LEMMA 3.4. Let Jo,J1,. . . , J,,_1 be n m&ices which sutiafy (i’), (ii’), (iii’), 
(iv’), a& let j,!fJ)=j($=jj$= 1 f 

O,l,..., n - l), ihen jS,pk) = i. 
:‘( 

or some p, q, i and k. Zf JJS = ISI, (T,S = 

Proof. By multiplying JP by J4 we find jj,$s) = 1 (i.e., the element in the 
ith row and kth column of _PP is 1). By the hypothesis Jp19 = JJ,; then we 
must have j!p;P’ = 1, that is, j:“) = 1. n 

THEOREM 3.2. Let n be prime. If & satisfies (*), and the Ji commute, 
then f~ P,,, the permutation matrix corresponding to the permutation 
(12.. . n), the folluwing holds: 

(**) For some permutation matrix P, and reindexing, 

Jk = PTP,kP, k=Ol > ,***, n - 1. 
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Proof. Let the matrices of Z, be commutative. Then we have JJ, = I,./, 

( r,s=O,l,..., h - 1). By Lemma 3.2 the Jk must satisfy (iii’) and (iv’). For 
every element IP,s ‘6) which is different from zero in the matrix Jk we can define 
the congruence hk + hp = hq modulo n, where hk, h, and h, are unknowns. 
Then we associate to the set of all matrices J, the set S of congruences 
defined below: 

h, + hp, = hq, modulo n, r=O,l,..., n-l, (3.2) 

where p,, qr E E,,, h, = 0 and h,, h,, . . . , h,_ i are unknowns. It is clear that 
( P,, qJ + ( p+ 4,) for r fr’. 

By Lemma 3.4, if lP,r 
belongs to S , that is, 

*@) = iJ,$ = ii,? = 1, then the congruence h, + h, = hq 

{h,+h,=h,ES, 

h,+h,=h,$S, (34 

h,+h,=h,~S} =+. h,+h,=h,ES. 

where we understand modulo n. Let us observe that the congruence on the 
right is an implication of the three congruences on the left (in fact, it is 
obtained from the second one by substituting h, + hp for h, and then h, for 
h,, + h,). Moreover, if we choose p = s, r = A, and p = 0 in (3.3), we have that 
if h,+h,=h,ES, then h,+h,=h,ES. 

Now, consider the n- 1 permutations II(P) (p= 1,2,. . .,n- 1) of E,, 
which are defined as follows: if $b = 1, then II[$ = r. It is clear that II(P) 
gives the exact disposition in the pth row of the parameters a,, a,, . . . , a,, _ 1. 
Every permutation II(P) can be written as a product of b disjoint cycles 
whose degrees are, respectively, rip), rip), . . . ,qr). Also, 2Fs1r/P)= n, and by 
(i’)-(iv’), rip) > 2. 

Consider the permutation II (k) k #O. We want to prove that lk = 1. Let , 
Ik > 1; then, as fl is prime, there exist indices p,,p,, . . . ,p, and q1,q2,. . . ,qs 
with r#s, r+s<n and p, =O, p, = k such that the following congruences 
belong to S : 

hpt + hk = hp,_,, i=2 )...) r,r+l, (3.4) 

hq,+h,=hq,_,> j=2 )...) s,s+l, P-5) 
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where we have put hp.,, = h, and hqs+, = h,, (we also have hp, = hJ. Let s <T; 
then by Lemma 3.4, (3.3), (3.4) and (3.5) we have the following recurrent 
relations: 

h qs_,+, + hk = hqs_i E ’ > 

i=O,l,..., s-2. (3.6) 

The top congruence in (3.6) is trivial for i = 0, and for i > 1 is obtained from 
the last congruence hp +z + hqs_, = hq, and from the fact that h, + hp = hq E S 
implies hp + h, = hq E $ . From (3.6) we infer that both congruences hpt + hq, 
= hql and hp, + hq2 = hql must belong to the system (3.2). But this is impossi- 
ble, because T#S. 

An analogous result is obtained in the case s >r. By Lemma 3.4, (3.3), 
(3.4) and (3.5) we can deduce the following recurrence relations: 

h p,-,+, + hk = hp,-i E ‘} 

i=O,l,..., r-2. (3.7) 

This implies hqr + hp;= hq, E S and hq, + hp2 = hq, E 5, which is obviously 
impossible. 

If n is prime, then we must have Zi = 1 for every k, k = 1,2, . . . , n - 1. This 
implies the existence of n indices p,,p,, . . . ,pn with p, = 0 and p,, = k such 
that the following congruences belong to S : 

hp,+hk=hp,-, i=2 ,..., n,n+l, (3.8) 
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where we put hpm+, = hpl = h,. By Lemma 3.4, (3.3) and (3.8) we have 

2<j<n, Z=O,l,... 9 ; [ 1 

h p,+,+,+hk=hp,,,ES, 

* hp,+,+,+hP _,=hpES, n r 

l<j<n-1, I=0 1 ) )...) y+]* 

(3.9) 

(3.10) 

From (3.9) and (3.10) we deduce that, if commutativity is satisfied, then all 
matrices J,, r= 0,l , . . .,n- 1, are completely defined through the con- 
gruences (3.8), i.e., through the choice of the kth row of each matrix 1, for a 
single k. As any Jk corresponds to a cyclic permutation, it is non-derogatory, 
and COmmUteS Only with pOlyUObds p&). Thus the ody permutation 
matrices commuting with Jk are the monomials J& t = 0, 1, . . . , n - 1; so the set 
{Jk}t=o,l ,...,” _-1 is the same set {Jo,JI ,..., Jn-l}, and the proof is completed. 

We note that sets & satisfying (*) do not necessarily satisfy (**): take for 
instance n = 5 and & formed by the permutation matrices corresponding to 
the permutations 1, (12)(345), (13)(524), (14)(235), (15)(423) (see Example 
3.1). 
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EXAMPLE 3.2. Let n = 7, and let the permutation IIc3) be written as the 
product of two cycles of degrees, respectively, 4 and 3: 

. . . . . . . 

. . . . . . . 

A(a)= ;l ;2 & ;O 2 ;4 ;5 . 
, . . . . . 

. . . . a, * . 

. . . . u2 . * 

If the 4th row of A(a) is [ai u2 ua a0 as u4 a,], then we have p,=O, p,= 1, 
ps=2, ~4~3, p5=0 and qi=4, q,=6, q3=5 (with r=4 and s=3), so that 
(3.4) and (3.5) are, respectively, the following: 

h, + h, = ho, 

h, + h, = h,, 

h, + h, = h,, 

ho + h, = h,; 

h, + h, = h,, 

h, + h, = h,, 

h, + h, = h, 

(3.11) 

Then, repeated applications of (3.6), for i =O, 1, lead to j,&= 1; but from 
(3.11) we infer that j& = 1, which is impossible. 

Let n=5, and let the 3rd row of A(a) be [aa us a, u4 a,] (Le., the 
permutation II(“) is a single cycle). The congruences (3.8) are then the 
following: 

h3 + h, = 0, 

h, + h, = h,, 

h, + h, = h,, 

h, + h, = h,, 

ho + h, = h,, 

(3.12) 

with p,=O, p,=3, p3=4, p,=l, p5=2. 
If commutativity is assumed, then through some repeated applications of 

(3.9) and (3.10) we can fill in the blanks exactly as shown in the matrix A(a) 
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4. CLOSURE WITH RESPECT TO PRODUCT OF THE MATRICES 
OF Z’ 

In the present section we are going to find the spaces Xg ~2' which are 
closed with respect to matrix product. Lemma 4.1 gives a necessary condi- 
tion which must be satisfied by the matrices .T, in order that AB eZg for any 
A and B which belong to Es. If R is prime, then the previous condition is 
proved to be a sufficient condition for the commutativity of the matrices J,. 
The conclusion then follows from Theorem 3.2: the only Z, c Z' which is an 
algebra, apart from transformations through permutation matrices, is the 
space of circulant matrices. Then commutativity and closure with respect to 
matrix product are the same concept within all Z, which are subclasses of 
Z’. 

LEMMA 4.1. Let 2, (& c 2:‘) be closed with respect to matrix product. 
Then for every p and q (p,q E E,,) there is a k E E,, such that JpJq = Jk. 

Proof. As we have Z, c 2' the matrices ],I, satisfy the following condi- 
tions: for every r and s we can find p and q such that jk:) = 1, for every p (or 
q) there is a unique q (or p) such that $$ = 1. Also, if $;“J = $$2) 

. . . = 

Zemust’GeJJ =J J =. 
‘(GsSk)= 1, and there are not other indices t, h such that jjf,:)= 1, then 

* . = JrJsk. In fact a proof of the impossibility of 
the existence o? &i&Szi and i, i#j, such that JJ, #_l,,Jsi can be sketched 
as follows: Let J,,J, #.JV,Js, (i#j); then i~;$#$$ for some indices p,,q,, 
p, #p and q1 fq (we may suppose j$;;,’ = 1 and j$:Ji =O). In order that 
AB ~2~ for every choice of A and B in Z,, we must have A(a)B(b) E 
Z:~&,J,, where the y, are polynomials in the a and b. Now it is clear that 
there must be an index m such that y,,, = X~=lu,bS, and $2 = 1. Also, we 
cannot find an index q2 #q, such that $;$ = 1; thus there is no index r such 
that $;;“I) = ik% = . - ’ = jk;,?) = 1; this means that i~“‘~ = 0 for every s, which 
is an absurdity. 
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Now suppose &Is, = lr2.1s, = . * . 
i(‘) = 1. We can find a Jk with 

=.&Is, = J* #J, for every t (1 > 1). Let 
i ck) = 1, and then, from A(a) = B(b) = E~;~y,J,, 

z have yk = C: = ru, b, : in fact ce cannot find another product of matrices _T, 
which is different from J* and has 1 in the position (r,s) (this product would 
bring, eventually, some other a and b into the expression of yk). As J*#J,, 
there are indices t,, tz with ij[l’t,#$~,. We may suppose without loss of 
generality that ii:,‘t, = 1 and I~,, 12 *(Q = 0. Now there is a k’ #k such that i,‘fT’i, = ii:,\, 
= 1, and then yk’ E E{ = ,q, b, Eyk, which is impossible. n 

THEOREM 4.1. Let n be prime. If & = {J-J, ,..., J,_l} satisfies (*) and is 
closed under multiplication, then (**) holds. 

Proof Fix Jk #I, and consider the disjoint-cycle decomposition of the 
permutation u corresponding to Jk. Let r be a cycle of minimal length t > 1 
in 6. Then rt= 1 and, as Jkf E $, we have _I; = I. As t is the minimal length of 
cycles of u, all cycles of u have length t, and t divides n2, a contradiction if 
t#n. n 

Let us observe that Theorem 3.2 and Theorem 4.1 are false for n not 
prime. For instance, let 

n = 4 and Pz = 0 1 
[ 1 10; 

then the matrices 

commute with each other and form a set which is closed under multiplica- 
tion. Obviously they are not similar to a circulant through the same permuta- 
tion matrix. 

We can summarize some of the results we have obtained up to this point 
in the following 

THEOREM 4.2. The only 2, c C which constitute a commutative algebra 
are the spaces of n X n matrices (n = prime integer) of the fnm PTCP, where 
C is circulant and P, which depends on g, is a permutation matrix or the 
identity. 
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5. CONCLUDING REMARKS 

The previous results give some suggestions for a generalization, which has 
not yet been proved, to the case where n is any integer, not necessarily 
prime. The following points may be further investigated: Structural proper- 
ties of p-circulant matrices appear as a generalization of the well-known 
“stronger” properties which are verified by circulant matrices. In addition, 
the k-commutativity of p-circulant matrices appears as a generalization of 
the commutativity of circulant matrices. Thus we may look for a proof of the 
analogues of Theorem 3.2 and Theorem 4.1 where we substitute “p-circulant 
matrices” and ‘f-commutative matrices” respectively for “circulant 
matrices” and “commutative matrices,” and eventually introduce a notion of 
“k-closure” with respect to matrix product. Studying these problems may be 
useful for a deeper understanding of interesting relationships among some 
different properties of matrices: that is, k-commutativity (k > 1) and proper- 
ties of spaces of matrices which form an algebra. 
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