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Abstract

We prove a general symmetric identity involving the degenerate Bernoulli polynomials and sums of
generalized falling factorials, which unifies several known identities for Bernoulli and degenerate Bernoulli
numbers and polynomials. We use this identity to describe some combinatorial relations between these poly-
nomials and generalized factorial sums. As further applications we derive several identities, recurrences, and
congruences involving the Bernoulli numbers, degenerate Bernoulli numbers, generalized factorial sums,
Stirling numbers of the first kind, Bernoulli numbers of higher order, and Bernoulli numbers of the second
kind.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Carlitz [3,4] defined the degenerate Bernoulli polynomials βm(λ, x) for λ �= 0 by means of
the generating function

(
t

(1 + λt)μ − 1

)
(1 + λt)μx =

∞∑
m=0

βm(λ, x)
tm

m! (1.1)
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where λμ = 1. These are polynomials in λ and x with rational coefficients; we often write βm(λ)

for βm(λ,0), and refer to the polynomial βm(λ) as a degenerate Bernoulli number. The first few
are β0(λ, x) = 1, β1(λ, x) = x − 1

2 + 1
2λ, β2(λ, x) = x2 − x + 1

6 − 1
6λ2, β3(λ, x) = x3 − 3

2x2 +
1
2x − 3

2λx2 + 3
2λx + 1

4λ3 − 1
4λ. One combinatorial significance these polynomials have found is

in expressing sums of generalized falling factorials (i|λ)m; specifically, we have

a−1∑
i=0

(i|λ)m = 1

m + 1

[
βm+1(λ, a) − βm+1(λ)

]
(1.2)

for all integers a > 0 and m � 0 (cf. [4, Eq. (5.4)]), where (i|λ)m = i(i − λ)(i − 2λ) · · ·
(i − (m − 1)λ).

The (usual) Bernoulli polynomials Bm(x) may be defined by the generating function

(
t

et − 1

)
ext =

∞∑
m=0

Bm(x)
tm

m! (1.3)

and their values at x = 0 are called the Bernoulli numbers and denoted Bm. Since (1+λt)μ → et

as λ → 0 it is evident that βm(0, x) = Bm(x); letting λ → 0 in (1.2) yields the familiar identity

a−1∑
i=0

im = 1

m + 1

[
Bm+1(a) − Bm+1

]
(1.4)

expressing power sums in terms of Bernoulli polynomials.
A major theme of the present paper is that the degenerate Bernoulli polynomials provide use-

ful ways to study the Bernoulli numbers, their various other generalizations, and other important
sequences. In Section 3 we prove the polynomial identity

n∑
k=0

(
n

k

)
an−kbk−1βk(aλ, ax)σn−k(bλ, b − 1)

=
n∑

k=0

(
n

k

)
bn−kak−1βk(bλ, bx)σn−k(aλ, a − 1) (1.5)

for all positive integers a, b, and n, where

σm(λ, c) =
c∑

i=0

(i|λ)m (1.6)

is a generalized falling factorial sum. We will use (1.5) to demonstrate several other combinato-
rial connections between the polynomials βn(λ, x) and σm(λ, c), and show how several known
identities [3–6,10,11,13] are special cases of (1.5). In Sections 4 and 5 we derive several congru-
ences and identities from (1.5), some of which extend and generalize results in [1–3,9–12]. These
give indication of the vast arithmetic interplay between the various generalizations of Bernoulli
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numbers and other combinatorially important sequences; for example, in Section 4 we prove that
if c and d are any two divisors of the odd integer n, then

n+1∑
k=1

Bks(n + 1, k − 1)

(
ck − dk

k

)
= 0, (1.7)

where s(n, k) denotes the Stirling number of the first kind, defined in (2.2). A similar identity,
with c = 2 and d = 1, was recently established in [12, Corollary 2]. We also show that if d is any
divisor of the odd integer n, then

n+2∑
k=1

s(n + 1, k − 1)

(
nk − 2Bkd

k

k

)
= 0. (1.8)

2. Notation and preliminaries

Throughout this paper p will denote a prime number, Zp the ring of p-adic integers, Z×
p the

multiplicative group of units in Zp , and Qp the field of p-adic numbers. For a rational number
x = r/s we have x ∈ Zp if and only if p does not divide s, and x ∈ Z×

p if and only if p divides
neither r nor s. The p-adic valuation ordp is defined by setting ordp(x) = k if x = pky with
y ∈ Z×

p , and ordp(0) = +∞. A congruence x ≡ y (mod mZp) is equivalent to ordp(x − y) �
ordp m, and if x and y are rational numbers this congruence for all primes p is equivalent to the
definition of congruence x ≡ y (mod m) given in [11, §2]. The symbols λ and μ will generally
represent elements of Qp satisfying λμ = 1, although λ = 0 will also be allowed and λ will
sometimes be regarded as an indeterminate.

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
j=0

(x − jλ) (2.1)

for positive integers n, with the convention (x|λ)0 = 1; we may also write

(x|λ)n =
n∑

k=0

s(n, k)xkλn−k (2.2)

where the integers s(n, k) are the Stirling numbers of the first kind. Note that (x|λ)n is a ho-
mogeneous polynomial in λ and x of degree n, so if λ �= 0 then (x|λ)n = λn(λ−1x|1)n. Clearly
(x|0)n = xn. The generalized factorial sum σm(λ, c) is defined for integers c � 0 by (1.6); note
that σ0(λ, c) = c + 1. The identity (1.2) shows that σm(λ, c) is a polynomial in λ and c; when
λ = 0 the sum σm(0, c) is called a power sum polynomial. Our main identity in Section 3 will be
derived from (1.1) and the generating function

(1 + λt)(c+1)μ − 1

(1 + λt)μ − 1
=

∞∑
σm(λ, c)

tm

m! ; (2.3)

m=0
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this generating function follows from the definition (1.6) and the binomial expansion

(1 + λt)μy =
∞∑

n=0

(y|λ)n
tn

n! . (2.4)

For our identities we will rely on the following well-known property of exponential generating
functions: ( ∞∑

n=0

an

tn

n!

)( ∞∑
n=0

bn

tn

n!

)
=

∞∑
n=0

cn

tn

n! where cn =
n∑

k=0

(
n

k

)
akbn−k. (2.5)

For example, taking the product of the generating function (1.1) with the binomial expansion
(2.4) yields the identity

βn(λ, x + y) =
n∑

k=0

(
n

k

)
βk(λ, x)(y|λ)n−k (2.6)

for the degenerate Bernoulli polynomials (cf. [4, Eq. (5.12)]).

3. A symmetric identity for the degenerate Bernoulli polynomials

Most of the results of this paper are derived from the following symmetric identity.

Theorem 3.1. For all positive integers a and b and all nonnegative integers n we have

n∑
k=0

(
n

k

)
an−kbk−1βk(aλ, ax)σn−k(bλ, b − 1)

=
n∑

k=0

(
n

k

)
bn−kak−1βk(bλ, bx)σn−k(aλ, a − 1)

as an identity in the polynomial ring Q[λ,x].

Proof. We consider the generating function

F(t) = t (1 + λt)abμx((1 + λt)abμ − 1)

((1 + λt)aμ − 1)((1 + λt)bμ − 1)
. (3.1)

We first use (1.1) and (2.3) to expand F(t) as

F(t) = t (1 + λt)abμx

((1 + λt)aμ − 1)
· (1 + λt)abμ − 1

((1 + λt)bμ − 1)

=
(

a−1
∞∑

βn

(
a−1λ,bx

) (at)n

n!

)( ∞∑
σn

(
b−1λ,a − 1

) (bt)n

n!

)
=

∞∑
cn

tn

n! (3.2)

n=0 n=0 n=0
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where by (2.5) we have

cn =
n∑

k=0

(
n

k

)
ak−1bn−kβk

(
a−1λ,bx

)
σn−k

(
b−1λ,a − 1

)
. (3.3)

We may also expand F(t) as

F(t) = t (1 + λt)abμx

((1 + λt)bμ − 1)
· (1 + λt)abμ − 1

((1 + λt)aμ − 1)

=
(

b−1
∞∑

n=0

βn

(
b−1λ,ax

) (bt)n

n!

)( ∞∑
n=0

σn

(
a−1λ,b − 1

) (at)n

n!

)
=

∞∑
n=0

cn

tn

n! (3.4)

where

cn =
n∑

k=0

(
n

k

)
bk−1an−kβk

(
b−1λ,ax

)
σn−k

(
a−1λ,b − 1

); (3.5)

that is, since F(t) is symmetric in a and b, so is cn. Equating the expressions for cn in (3.3) and
(3.5) and replacing λ with abλ gives the identity of the theorem.

Putting λ = x = 0 in Theorem 3.1 gives the identity

n∑
k=0

(
n

k

)
an−kbk−1Bkσn−k(0, b − 1) =

n∑
k=0

(
n

k

)
bn−kak−1Bkσn−k(0, a − 1) (3.6)

which was proved by Tuenter [13]; the b = 1 case of (3.6) may be rearranged to give the recur-
rence

Bn = 1

a
(
1 − an

) n−1∑
k=0

(
n

k

)
akBkσn−k(0, a − 1) (3.7)

given in [5,6] and studied in [10].
Putting b = 1 in Theorem 3.1 and multiplying by a yields an identity

aβn(aλ, ax) =
n∑

k=0

(
n

k

)
akβk(λ, x)σn−k(aλ, a − 1) (3.8)

which will be exploited in Section 5 to prove several congruences. This may be rewritten as

aβn(aλ, ax) − an+1βn(λ, x) =
n−1∑(

n

k

)
akβk(λ, x)σn−k(aλ, a − 1); (3.9)
k=0
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putting x = 0 in (3.9) gives Howard’s recurrence [11, Theorem 4.1]. We remark that (3.8) may
also be used to give another proof of the multiplication formula for degenerate Bernoulli poly-
nomials [4, Eq. (5.5)]: We first observe that, since (x|λ)n is a homogeneous polynomial in λ and
x of degree n, we have

a−mσm(aλ, a − 1) =
a−1∑
i=0

a−m(i|aλ)m =
a−1∑
i=0

(
i

a
|λ

)
m

. (3.10)

Multiplying (3.8) by a−n and applying (3.10) then yields

a1−nβn(aλ, ax) =
n∑

k=0

(
n

k

)
ak−nβk(λ, x)σn−k(aλ, a − 1)

=
n∑

k=0

(
n

k

)
βk(λ, x)

a−1∑
i=0

(
i

a
|λ

)
n−k

=
a−1∑
i=0

n∑
k=0

(
n

k

)
βk(λ, x)

(
i

a
|λ

)
n−k

=
a−1∑
i=0

βk

(
λ,x + i

a

)
(3.11)

via the identity (2.6) with y = i/a; putting λ = 0 in (3.11) gives the well-known multiplication
theorem for the usual Bernoulli polynomials Bn(x) (cf. [10, Eq. (3)]).

One may also observe by putting x = 1 in (1.1) that βn(λ,1) = βn(λ) for all n �= 1, while
β1(λ,1) = β1(λ) + 1. Therefore putting both x = 0 and x = 1 in (3.8) yields

βn(aλ, a) = βn(aλ) + nσn−1(aλ, a − 1); (3.12)

replacing aλ with λ and n with m + 1 gives the identity (1.2).
Since βn(λ) is an even (resp. odd) function when n > 1 is even (resp. odd) (cf. [4,11]), we

have β0(−1) = 1, β1(−1) = −1, and βn(−1) = 0 for n > 1. Thus putting x = 0 and λ = −1 in
(3.8) yields the identity

aβn(−a) = σn(−a, a − 1) − anσn−1(−a, a − 1). (3.13)

The following special case of Theorem 3.1 illustrates that the values βn(λ) at rational argu-
ments λ = b/a are related to the connection coefficients for expressing certain factorial sums
with increment b/a in terms of factorial sums with increment 1.

Corollary 3.2. For all positive integers a and b and all nonnegative integers n we have

σn(b/a, b − 1) =
n∑(

n

k

)
(b/a)n+1−kβk(b/a)σn−k(1, a − 1);
k=0
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equivalently we may write this as

σn(b/a, b − 1) =
n∑

k=0

n!
k!

(
a

n + 1 − k

)
(b/a)n+1−kβk(b/a).

Proof. From (1.1) we observe that β0(λ) = 1 and βn(1) = 0 for all n > 0. Putting x = 0 and
λ = 1/a in Theorem 3.1 gives the first result. Next we observe that

σm(1, a − 1) = m!
a−1∑
j=m

(
j

m

)
= m!

(
a

m + 1

)
(3.14)

from the familiar property
(
n
k

) + (
n

k+1

) = (
n+1
k+1

)
. Substituting (3.14) into the first expression gives

the second statement.
If we put a = 1 and replace b with a in the above corollary we obtain the useful identity (cf.

[3, Eq. (4.1)])

aβn(a) = σn(a, a − 1), (3.15)

valid for integers n � 0 and a > 0; we give some applications of this identity in Section 4. It
implies that aβn(a) is an integer for all nonnegative integers a and n, and (−1)n+1βn(a) > 0
for integers a,n > 1. It follows that, in the case where b = ac with c ∈ Z, all the coefficients(
n
k

)
cn+1−kβk(c) in the first form of the corollary are actually integers. Combining (3.15) with

(3.13) also yields

(−1)nσn(a, a − 1) = σn(−a, a − 1) − anσn−1(−a, a − 1). (3.16)

We conclude this section with a recurrence for the reciprocal polynomials of the degenerate
Bernoulli numbers involving generalized factorial sums. Recall that for a polynomial f (λ) of
degree n, the reciprocal polynomial f̃ of f is the polynomial f̃ (λ) = λnf (1/λ).

Corollary 3.3. For all positive integers a and n we have the recurrence

0 =
n∑

k=0

(
n

k

)
β̃k(a)σn−k(1, a − 1)

for the reciprocal polynomials β̃n of βn, with β̃0(x) = 1.

Proof. If we take x = 0 and λ = 1/a in (3.8), we get, for n > 0,

aβn(1) = 0 =
n∑

k=0

(
n

k

)
akβk(1/a)σn−k(1, a − 1). (3.17)

Since βk is a polynomial of degree k, we have β̃k(a) = akβk(1/a), and the statement is proved.
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As in Corollary 3.2 we may use (3.14) to rewrite this recurrence as

0 =
n∑

k=0

(
a

n + 1 − k

)
β̃k(a)

k! . (3.18)

If we view the binomial coefficient
(

a
n+1−k

) = (a|1)n+1−k/(n + 1 − k)! as a polynomial in a

of degree n + 1 − k, then (3.18) says that
∑n

k=0

(
a

n+1−k

)
β̃k(a)/k! is a polynomial in a which

vanishes at all positive integers a, and therefore vanishes identically. Thus (3.18) may be viewed
as holding for arbitrary a, although it becomes rather trivial for a = 0. Putting x = 0 and λ = 1/a

in (1.1), and replacing t by at , yields

at

(1 + t)a − 1
=

∞∑
m=0

β̃m(a)
tm

m! . (3.19)

Now the Bernoulli numbers of the second kind bn may be defined by the generating function

t

log(1 + t)
=

∞∑
n=0

bnt
n; (3.20)

the numbers n!bn are also known as the Cauchy numbers of the first type. Since

lim
a→0

at

(1 + t)a − 1
= t

log(1 + t)
, (3.21)

we see that β̃n(0) = n!bn for all n. Since

lim
a→0

(
a

n+1−k

)
a

= lim
a→0

(
a−1
n−k

)
n + 1 − k

= (−1)n−k

n + 1 − k
, (3.22)

if we divide (3.18) by a and let a → 0 we obtain the well-known recurrence

n∑
k=0

(−1)n−kbk

n + 1 − k
= 0 (3.23)

for the Bernoulli numbers of the second kind (cf. [11, Eq. (2.2)]). Therefore Corollary 3.3 may
be viewed as a degenerate generalization of the recurrence (3.23).

4. Congruences and identities for generalizations of Bernoulli numbers

In this section we derive some congruences for values of βn(λ) and the numbers bn defined in
(3.20). We also give several identities involving Bn, bn, and s(n, k). We begin with the following
theorem concerning the factors of the integers aβn(a) for integers a > 1.

Theorem 4.1. Let n and a be positive integers, and let k, l be integers with (k, an) = (l, an) = 1.
If d = (kn −1, an), then the integer σn(al, a −1) is divisible by an/d . Consequently the rational
number βn(a) is an integer multiple of n/d .
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Proof. If n, a are positive integers and (l, an) = 1, then for any integer i ∈ {0,1, . . . , a − 1}
the set of n factors of (i|al)n = i(i − al)(i − 2al) · · · (i − (n − 1)al) comprises exactly the
coset i + (a) of the ideal (a) in the factor ring R = Z/anZ, and the set {0,1, . . . , a − 1}
is a complete set of coset representatives. If (k, an) = 1, then k is a unit in R and there-
fore multiplication by kn permutes both R and the cosets of (a) in R; that is, the factors of
kn(i|al)n = ki(ki − kal)(ki − 2kal) · · · (ki − (n− 1)kal) comprise precisely a coset of (a) in R,
and the set {k · 0, k · 1, . . . , k(a − 1)} is a complete set of coset representatives. If we view the
integer S = σn(al, a −1) = ∑a−1

i=0 (i|al)n as an element of R, then as a complete sum of products
over cosets we have knS = S in R; that is, (kn − 1)S ≡ 0 (mod an) since multiplication by kn

merely permutes the terms in the sum for S modulo an. Since (kn − 1)σn(al, a − 1) is divisible
by an it follows immediately that σn(al, a − 1) is divisible by an/d , where d = (kn − 1, an).
Taking l = 1 and using (3.15) gives the statement concerning βn(a).

This theorem gives information about both the numerator and denominator of the rational
numbers βn(a). As one illustration of this theorem we give a new proof of a classical theorem of
J.C. Adams [1] concerning the numerators of certain Bernoulli numbers. We will give a general-
ization of this result to degenerate Bernoulli polynomials in Section 5.

Corollary 4.2 (Theorem of J.C. Adams, 1878). If n > 0 is an integer with pr dividing n but p −1
does not divide n, then pr divides the numerator of Bn.

Proof. Take a = ps with s > 0 and write n = mpr with (m,p) = 1 and p − 1 not dividing m.
Since p − 1 does not divide m we can choose k with (k,p) = 1 and km �≡ 1 (mod p); this
congruence depends only on the class of k modulo p. By the Chinese Remainder Theorem,
k may be chosen so that (k, an) = (k,m) = (k,p) = 1 and kn = (km)p

r ≡ km �≡ 1 (mod p).
Since kn − 1 is not divisible by p, the greatest common divisor d = (kn − 1,mpr+s) must be
a factor of m, say m = dc. Theorem 4.1 then implies that aβn(a) is divisible by cpr+s . Since
a = ps we see that βn(p

s) is an integer divisible by cpr for all s > 0. Now we take the p-adic
limit as s → ∞; since ps → 0 and βn(p

s) ∈ prZp for all s > 0, by the p-adic continuity of the
polynomial βn(λ) we have Bn = βn(0) ∈ prZp as well. Since Bn is a rational number in prZp ,
pr divides its numerator.

We may also derive the following important polynomial divisibility result from identity (3.15).

Theorem 4.3. If n > 1 is odd then

βn

( ±1

n − 2

)
= 0.

Consequently ((n − 2)2λ2 − 1) divides the polynomial βn(λ) in Q[λ] for all odd n > 1.

Proof. Let n = 2m + 1 and suppose that c ≡ 2mλ (mod N ) for some integer N . Then by the
definition (2.1) we have (c − i|λ)n ≡ (−1)n(i|λ)n = −(i|λ)n (mod N ) for all i, since their re-
spective products contain the same factors (mod N ) in reverse order. It follows from (1.6) that
σn(λ, c) ≡ −σn(λ, c) (mod N ) and therefore σn(λ, c) ≡ 0 (mod N ) if N is odd, under the as-
sumptions that n = 2m + 1 and c ≡ 2mλ (mod N ).

Now suppose that p is any prime such that p ≡ 1 (mod 2m − 1); it follows that pr ≡ 1
(mod 2m − 1) for all r , so there exists a sequence of positive integers {ar} such that pr − 1 =
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(2m − 1)ar for all r > 0. This implies that ar − 1 ≡ 2mar (mod pr ), so by the above result
with c = ar − 1 and λ = ar we have σn(ar , ar − 1) ≡ 0 (mod pr ) for all r . This means that
limr→∞ σn(ar , ar − 1) = 0 in Zp . But

lim
r→∞ar = lim

r→∞
pr − 1

2m − 1
= −1

2m − 1
(4.1)

in Zp , so by the p-adic continuity of the polynomial βn(λ) we have

βn(
−1

2m − 1
) = lim

r→∞βn(ar) = lim
r→∞

1

ar

σn(ar , ar − 1) = 0 (4.2)

in Zp . Since βn(λ) is an odd function for odd n > 1 [4,11] and it vanishes at −1/(n − 2) it must
also vanish at 1/(n − 2), completing the proof.

In [11] Howard gave an explicit formula for the coefficients of the polynomial βn(λ),

βn(λ) = n!bnλ
n +

[n/2]∑
j=1

n

2j
B2j s(n − 1,2j − 1)λn−2j , (4.3)

where B2j is the Bernoulli number defined in (1.3), s(n, k) is the Stirling number of the first
kind defined in (2.2), and bn is the Bernoulli number of the second kind defined in (3.20). If we
replace n with n + 2 put λ = 1/n in (4.3), then applying Theorem 4.3 yields the identity

(n + 1)!bn+2 = −
(n+1)/2∑

j=1

B2j

2j
s(n + 1,2j − 1)n2j (4.4)

which is valid for all odd positive integers n. This identity is quite useful for deriving various
congruences for the numbers bn.

Theorem 4.4. For primes p � 3 we have 12bpr+2 ≡ p2r (mod p2r+1Zp) for all positive inte-
gers r .

Proof. For a polynomial f (λ) = ∑n
i=0 aiλ

i the Newton polygon of f at p is the upper convex
hull of the set of points {(i,ordp ai): 0 � i � n}. A basic property is that the Newton polygon
of f at p has a side of slope m and horizontal run l if and only if f has l roots (counted with
multiplicity) of p-adic ordinal −m in an algebraic closure Q̄p of Qp . We consider the polynomial

(1|λ)n+1 = 1(1 − λ) · · · (1 − nλ) =
n+1∑
k=1

s(n + 1, k)λn+1−k (4.5)

obtained by setting x = 1 in (2.2). Clearly the roots are {1−1,2−1, . . . , n−1}, so if n = pr then
the Newton polygon of (1|λ)n+1 at p has a side of slope r and horizontal run 1, and all other
sides have slope at most r − 1. The convexity of the Newton polygon implies that the largest
slope occurs on the rightmost side, and it is easily seen that s(n + 1,1) = (−1)nn!. Therefore
we have ordp s(n + 1,1) = ordp pr !, ordp s(n + 1,2) = ordp pr ! − r , and ordp s(n + 1, k) �
ordp pr ! − r − (k − 2)(r − 1) for all k � 2.
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Multiplying (4.4) by 12 yields

12(n + 1)!bn+2 =
(n+1)/2∑

j=1

−6B2j

j
s(n + 1,2j − 1)n2j . (4.6)

Let cj denote the j th term in the sum in (4.6) for n = pr ; then c1 = pr !p2r since B2 = 1/6.
We claim that cj ∈ pr !p2r+1Zp for all j > 1: We use the results of the preceding paragraph to
compute for j � 2

ordp cj = ordp 6B2j − ordp j + ordp s(n + 1,2j − 1) + 2jr

� ordp 6B2j − ordp j + ordp pr ! − (2j − 2)r + (2j − 3) + 2jr

= ordp pr ! + 2r + (2j − 3) + ordp 6B2j − ordp j. (4.7)

Observing that ordp B2j � −1 for all j (by the well-known von Staudt–Clausen theorem,
or Proposition 5.2 below), (4.7) shows that ordp cj � ordp pr ! + 2r + 1 when j � 3, since
ordp j = 0 for j < p and ordp j � logp j < j for all j > 0. Since B4 = −1/30, (4.7) also
shows ordp c2 � ordp pr ! + 2r + 1 for all odd primes p �= 5. To handle the p = 5 case we use
the explicit formula

s(n + 1,3) = (−1)nn!
∑

1�i<j�n

1

ij
= (−1)n

n!
2

((
n∑

k=1

1

k

)2

−
n∑

k=1

1

k2

)
(4.8)

which follows from (4.5). For n = pr we observe that in (4.8) the difference of sums S =
(
∑n

1 1/k)2 − ∑n
1(1/k)2 is congruent to 1/p2r − 1/p2r = 0 modulo p2−2rZp , and therefore

ordp s(n+ 1,3) � ordp pr !− 2r + 2. This proves that the inequality ordp c2 � ordp pr !+ 2r + 1
is also valid for p = 5.

We have therefore shown that

12
(
pr + 1

)!bpr+2 ≡ pr !p2r
(
mod pr !p2r+1Zp

)
(4.9)

for all odd primes p and positive integers r . Dividing (4.9) by pr ! gives the statement of the
theorem.

In [9] Howard observed that B
(n−1)
n = −(n − 1)n!bn, where B

(n−1)
n is the nth Bernoulli num-

ber of order n − 1, which can be defined by

(
t

et − 1

)w

=
∞∑

n=0

B(w)
n

tn

n! , (4.10)

and he proved that if n > 9 is odd and composite, then the rational number B
(n+1)
n+2 has numer-

ator divisible by n4. An argument from (4.4) like that of the previous theorem can extend this
divisibility result.

Theorem 4.5. If n > 15 is odd and composite, then the rational number B
(n+1)
n+2 has numerator

divisible by n5.
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Proof. The case where n = pr > 15 is odd and composite follows directly from (4.9), since
ordp pr ! � 3r when p � 5 and r � 2, and ord3 3r ! � 3r + 1 when p = 3 and r � 3. Therefore we
now assume that n is of the form n = mpr with p � 3 prime, m � 3 odd, and (m,p) = 1, and we
must show that ordp(n+2)!bn+2 � 5r . Let cj denote the j th term in the sum (4.4) corresponding
to such n = mpr ; we want to show that ordp cj � 5r for all j . We consider three cases:

For j = 1, we must show ordp((mpr)!/12) � 3r . Observing that ordp(mpr)! �
m · ordp(pr !) � mr accomplishes this, since m � 3 and m � 5 when p = 3.

For j = 2, we must show ordp(s(mpr + 1,3)/120) � r . Suppose that pt is the highest
power of p in the set {1,2, . . . ,mpr}; then m � pt−r + 2 since m is odd and (m,p) = 1, so
ordp(mpr !) � 2 + ordp(pt !) � 3t , with equality only if m = 3, t = 1 or p = 3,m = 5, t = 2.
The case p = 3,m = 5, t = 2 is excluded since we assume n > 15. As in (4.5) we see that for
n = mpr the Newton polygon of the polynomial (1|λ)n+1 at p has maximum slope t , and there-
fore ordp s(n + 1,3) � ordp s(n + 1,1) − 2t = ordp(mpr !) − 2t � t � r with equality only if
m = 3, t = 1. For p = 3 we have m > p and thus t > r , so ord3 s(n+ 1,3) � r + 1; for p = 5 we
likewise have ord5 s(n + 1,3) � r + 1 in all cases except m = 3, r = 1. The required inequality
is therefore proven for all odd composites greater than 15.

For j � 3, we make use of Howard’s theorem [8, Theorem 2.1] that s(n, k) ≡ 0 (mod
(
n
2

)
)

if n + k is odd. For our purposes it implies that ordp s(mpr + 1,2j − 1) � r for all j . So we
compute

ordp cj = ordp B2j − ordp 2j + ordp s
(
mpr + 1,2j − 1

) + 2jr

� ordp B2j − ordp j + (2j + 1)r � 5r (4.11)

for all j � 3, with equality if and only if p = j = 3 and r = 1.
We have shown that all terms in the sum (4.4) for n = mpr lie in p5rZp . Therefore p5r divides

the numerator of B
(n+1)
n+2 whenever pr divides n, so the numerator of B

(n+1)
n+2 is divisible by n5.

We remark that, from the perspective of identity (4.4), the odd composites 9 and 15 were
excluded in this theorem due to the occurrence of the primes 3 and 5 in the denominators of B2
and B4. While it is true that for any given k, there are infinitely many odd composite integers n

with the numerator of B
(n+1)
n+2 divisible by nk , it seems that n5 is the best possible modulus one

can achieve in a result like Theorem 4.5 for odd composite n with only finitely many exceptions.
Indeed for n = 3p with p > 5 prime, the following theorem shows that B

(n+1)
n+2 has p-adic ordinal

exactly 5.

Theorem 4.6. For all primes p > 3, 40b3pr+2 ≡ 3p2r (mod p2r+1Zp) for all positive integers r .

Proof. The proof is similar to that of Theorem 4.4. Multiply both sides of (4.4) by 40, and let
cj denote the j th term in the resulting sum for n = 3pr . We calculate c1 = 30p2r (3pr)! directly.
By evaluating the difference of sums in (4.8) modulo p2−2rZp we find that

( 3pr∑
k=1

1

k

)2

−
3pr∑
k=1

1

k2
≡

(
1

pr
+ 1

2pr
+ 1

3pr

)2

−
(

1

p2r
+ 1

4p2r
+ 1

9p2r

)

= p−2r
(
(11/6)2 − 49/36

) = 2p−2r
(
mod p2−2rZp

)
, (4.12)
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and therefore c2 ≡ −27p2r (3pr)! (mod (3pr)!p2r+2Zp). The Newton polygon of (1|λ)n+1 at
p has a side of slope r and horizontal run 3, and all other sides have slope at most r − 1; thus
ordp s(3pr +1,4) = ordp(3pr !)−3r and ordp s(3pr +1, k) � ordp(3pr !)−3r − (k −4)(r −1)

for all k � 4. This shows that all cj for j � 3 in the sum lie in (3pr)!p2r+1Zp , with the exception
of c3 when p = 7 (since B6 = 1/42).

To get the required congruence when j = 3 and p = 7 we must show that ordp s(3pr +1,5) �
ordp(3pr)! − 4r + 2. Write the coefficient of λn−4 in (4.5) as

s(n + 1,5) = (−1)nn!
∑

1�i<j<k<l�n

1

ijkl
= (−1)nn!Sn. (4.13)

Since s(n, k) ≡ 0 (mod
(
n
2

)
) if n+k is odd [8, Theorem 2.1] we have ordp s(3p+1,5) � 1, giving

the required result for r = 1; via (4.13) it also implies that ordp S3p � −2. Suppose 1 � i < j <

k < l � 3pr . If not all of i, j , k, l are divisible by pr−1 then the term 1/(ijkl) of S3pr has p-adic
ordinal at least −4r + 2. Furthermore multiplication of i, j , k, l by pr−1 induces a bijection
between {terms of S3p} and {terms of S3pr in which all of i, j, k, l are divisible by pr−1}. It
follows that ordp S3pr � −4(r − 1) + ordp S3p � −4r + 2 for all r ; thus ordp s(3pr + 1,5) �
ordp(3pr)! − 4r + 2, so c3 ∈ (3pr)!p2r+1Zp when p = 7.

In summary, we have shown that

40
(
3pr + 1

)!b3pr+2 ≡ 3p2r
(
3pr

)! (
mod

(
3pr

)!p2r+1Zp

)
(4.14)

for all primes p > 3; dividing (4.14) by (3pr)! gives the stated result.

The identity (4.4) should be compared to the identity

B
(n+1)
n+2 =

(
n + 2

2

) n+1∑
r=1

1

r + 1
s(n + 1, r)nr+1 (4.15)

[9, Eq. (4.2)], also valid for odd n, which Howard used to prove that the numerator of B
(n+1)
n+2 is

divisible by n4 for odd composite n > 9. Although the presence of Bernoulli numbers compli-
cates the terms of (4.4) a bit relative to those of (4.15), it cuts the number of terms in half. If we
observe that B

(n+1)
n+2 = −(n + 1)(n + 2)!bn+2 and equate the expressions in (4.4) and (4.15), we

obtain

n+1∑
r=1

1

r + 1
s(n + 1, r)nr+1 =

(n+1)/2∑
j=1

B2j

j
s(n + 1,2j − 1)n2j , (4.16)

valid for all odd positive integers n.
We conclude this section with the following generalization of Theorem 4.3.

Theorem 4.7. If n is odd, then for every divisor d of n,

βn+2(±1/d) = 0.

Consequently
∏

(d2λ2 − 1) divides the polynomial βn+2(λ) in Q[λ] for all odd n > 1.
d|n
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Proof. Suppose that d = 2m + 1 is a positive odd integer, and consider the polynomial P(t) =
((1 + t)d − 1)/dt . We see that it is a polynomial of degree 2m with rational coefficients and
constant term 1, so we may write

P(t) =
2m∏
i=1

(1 − αit) (4.17)

where {αi}2m
i=1 is the set of its reciprocal roots. If ζ is a fixed primitive d th root of 1, then we

see that P(ζ i − 1) = 0 for i = 1,2, . . . ,2m; therefore the set of reciprocal roots is {αi}2m
i=1 =

{(ζ i − 1)−1}2m
i=1. From (3.19), the generating function

1

P(t)
= dt

(1 + t)d − 1
=

∞∑
n=0

β̃n(d)
tn

n! (4.18)

reveals that the sequence of rational numbers {β̃n(d)/n!} satisfies a linear recurrence of order
d − 1.

We now consider the partial fraction decomposition

1

P(t)
=

2m∏
i=1

(
1

1 − αit

)
=

2m∑
i=1

Ai

1 − αit
(4.19)

where Ai = ∏
k �=i (1 − αk/αi)

−1 = α2m−1
i

∏
k �=i (αi − αk)

−1 = α2m−1
i Ci for 1 � i � 2m. Since

P(t) has all rational coefficients but all the reciprocal roots αi are nonreal, the reciprocal roots
must occur as a union of m complex conjugate pairs; in fact αi = αj when i + j = d , because

ζ i = ζ j . So when i + j = d we see that Ai = Aj and also Ci = Cj . Furthermore, since

αi + αi = 1

ζ i − 1
+ 1

ζ j − 1
= ζ i + ζ j − 2

2 − ζ i − ζ j
= −1 (4.20)

we find that each αi has real part −1/2; therefore the product Ci = ∏
k �=i (αi − αk)

−1 has zero
real part, since each of its 2m − 1 factors has zero real part. Since Ci is purely imaginary and
Ci = Cj , we have Ci = −Cj when i + j = d . Finally, since (ζ i − 1)(−ζ j ) = ζ j − 1, we note
that αi/αj = −ζ j is a 2d th root of unity when i + j = d . It follows that αn

i = αn
j whenever

i + j = d and n is a multiple of 2d .
By pairing each αi with its conjugate αd−i and using the above observations, we may write

the partial fraction decomposition as

1

P(t)
=

m∑
i=1

Ci

(
αd−2

i

1 − αit
− αd−2

i

1 − αit

)
. (4.21)

Expanding both sides as power series yields

∞∑
β̃n(d)

tn

n! =
∞∑ m∑

Ci

(
αn+d−2

i − αn+d−2
i

)
tn. (4.22)
n=0 n=0 i=1
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Since αn
i = αn

i whenever n is a multiple of 2d , we see that β̃n+2(d) = 0 whenever (n + 2) +
d − 2 = 2kd , that is, whenever n = (2k − 1)d , which is precisely when the odd integer d is a
divisor of the odd integer n. Since β̃n+2 is an odd function we also have β̃n+2(−d) = 0 under the
same condition, completing the proof.

Remark. A referee has noted that a result similar to Theorem 4.7 but for βn(λ,1 − λ) is given
in [7].

As in (4.4) we may substitute λ = 1/d for any divisor d of an odd integer n into (4.3) and
apply this theorem to get new identities of the form

(n + 1)!bn+2 = −
(n+1)/2∑

j=1

B2j

2j
s(n + 1,2j − 1)d2j ; (4.23)

the identity (1.7) follows directly since s(n + 1,0) = 0 and Bk = 0 for odd k > 1, as we now
record.

Corollary 4.8. If c and d are any two divisors of the odd integer n, then

n+1∑
k=1

Bks(n + 1, k − 1)

(
ck − dk

k

)
= 0.

Alternately, we may equate the expressions in (4.23) and (4.15) to give

n+1∑
r=1

1

r + 1
s(n + 1, r)nr+1 =

(n+1)/2∑
j=1

B2j

j
s(n + 1,2j − 1)d2j , (4.24)

which we can rewrite by putting k = r + 1 in the left sum and k = 2j in the right, to give the
identity (1.8).

Corollary 4.9. If d is any divisor of the odd integer n, then

n+2∑
k=1

s(n + 1, k − 1)

(
nk − 2Bkd

k

k

)
= 0.

5. Congruences for degenerate Bernoulli polynomials

Many of our results for the polynomials βn(λ, x) are generalizations of properties of the usual
Bernoulli polynomials Bn(x) which may be obtained by putting λ = 0. An exception is our
first result in this section, which follows directly from the generating function (1.1) and has no
analogue for the usual Bernoulli polynomials.

Proposition 5.1. If λ ∈ Z× and x ∈ Zp then βn(λ, x) ∈ n!Zp for all nonnegative integers n.
p
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Proof. If λ ∈ Z×
p then ((1 + λt)μ − 1)/t ∈ 1 + tZp�t� and therefore ((1 + λt)μ − 1)/t is a

unit in the power series ring Zp�t�. The generating function in (1.1) therefore lies in Zp�t�, so
βn(λ, x)/n! lies in Zp for all n.

As polynomials in Q[λ,x] the coefficients of the degenerate Bernoulli polynomials do not in
general have squarefree denominators; for example β3(λ) = 1

4λ3 − 1
4λ has denominators divisible

by 22, and other examples may be found in [11, §6]. However, as the next proposition shows, if
λ, x are integers then βn(λ, x) is always a rational number with squarefree denominator.

Proposition 5.2. For any prime p we have pβn(λ, x) ∈ Zp for all λ,x ∈ Zp and all nonnegative
integers n.

Proof. We first consider the case where x = 0 and use induction on ordp λ. For the case
ordp λ = 0 the proposition follows from Proposition 5.1. If we put a = p and x = 0 in (3.8)
we get

pβn(pλ) =
n∑

k=0

(
n

k

)
pkβk(λ)σn−k(pλ,p − 1). (5.1)

Assume that the proposition holds for ordp λ = j , and let λ′ = pλ have ordinal j + 1, so
ordp λ = j . By the induction hypothesis all terms in the sum on the right in (5.1) lie in Zp ,
so pβn(pλ) ∈ Zp , proving the proposition for λ′ with ordp λ′ = j + 1. By induction the proposi-
tion is true for all nonzero λ ∈ Zp when x = 0; it follows for λ = 0 from p-adic continuity of the
polynomial βn(λ). Then for any x ∈ Zp , putting x = 0 and replacing y with x in (2.6) yields

pβn(λ, x) =
n∑

k=0

(
n

k

)
pβk(λ)(x|λ)n−k; (5.2)

all terms in the sum on the right lie in Zp , so pβn(λ, x) ∈ Zp as well, completing the proof.

We can now prove one of our primary congruence results between the degenerate Bernoulli
polynomials and generalized factorial sums.

Theorem 5.3. For λ,x ∈ Zp and positive integers a and n, the congruence

aβn(aλ, ax) ≡ σn(aλ, a − 1) (mod anZp)

holds if λ ∈ Z×
p ; or if p is odd and p divides a; or if p = 2 and 4 divides a. Furthermore this

congruence holds modulo 1
2anZp if p = 2 and 2 divides a.

Proof. From Theorem 3.1 with b = 1 we have

aβn(aλ, ax) = σn(aλ, a − 1) +
n∑(

n

k

)
akβk(λ, x)σn−k(aλ, a − 1), (5.3)
k=1
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so we must show that all terms in the sum in (5.3) lie in anZp . By Proposition 5.1 if λ ∈ Z×
p then

βk(λ, x) ∈ k!Zp , so
(
n
k

)
βk(λ, x) ∈ (n|1)kZp , completing the proof in that case. Now suppose p

divides a; we calculate

ordp

(
n

k

)
ak = ordp(n|1)k + k ordp a − ordp k!

= ordp(n|1)k + k ordp a − k − S(k)

p − 1

= ordp(n|1)k + ordp a + (k − 1)

(
ordp a − 1

p − 1

)
+ S(k) − 1

p − 1
, (5.4)

where S(k) denotes the sum of the digits in the base p expansion of the nonnegative integer k.
If p|a, (5.4) implies that ordp

(
n
k

)
ak � ordp n+ordp a for all k > 0, and ordp

(
n
k

)
ak � ordp n+

ordp a +1 if k > 1 and p > 2. Since β1(λ, x) = x + λ−1
2 ∈ Zp for p > 2, we find that all terms in

the sum in (5.3) lie in 1
2anZp , proving the stated result except for the case where p = 2 and 4|a.

Finally, if p = 2 and 4|a, (5.4) implies that ordp

(
n
k

)
ak � ordp n + ordp a + 1 if k > 1, so all

terms in the sum in (5.3) with k > 1 lie in anZ2; thus

aβn(aλ, ax) ≡ σn(aλ, a − 1) + naβ1(λ, x)σn−1(aλ, a − 1) (mod anZ2). (5.5)

In this case we observe that σ0(aλ, a − 1) = a and

σn−1(aλ, a − 1) =
a−1∑
i=0

(i|aλ)n−1 ≡
a−1∑
i=0

i = a(a − 1)

2
≡ 0 (mod 2Z2) (5.6)

if n > 1. Therefore since β1(λ, x) = x + λ−1
2 we have naβ1(λ, x)σn−1(aλ, a − 1) ∈ anZ2, com-

pleting the proof.

The next proposition will allow us to restate Theorem 5.3 in terms of power sum polynomials,
which allows us to generalize and extend some important congruences for the usual Bernoulli
numbers.

Proposition 5.4. Suppose p divides a. Then the polynomial congruence

(x|aλ)n ≡ xn

(
mod

1

2
anλZp[x]

)

holds for all λ ∈ Zp and all nonnegative integers n. Consequently we have

σn(aλ, c) ≡ σn(0, c)

(
mod

1

2
anλZp

)

for all λ ∈ Zp and all nonnegative integers n and c.
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Proof. It is clear that

(x|aλ)n = x(x − aλ) · · · (x − (n − 1)aλ
) ≡ xn

(
mod aλZp[x]) (5.7)

for any λ ∈ Zp , which proves the theorem in the case where p does not divide n or where p = 2
and ord2 n = 1. Now suppose p divides n; write n = mpr with r > 0 and (m,p) = 1. In [14,
Eq. (2.15)] we proved the polynomial identity

(x|λ)pr ≡ xpr−1(
xp−1 − λp−1)pr−1

(
mod

1

2
prλZ[λ,x]

)
. (5.8)

Applying an evaluation homomorphism λ �→ aλ with λ ∈ Zp yields

(x|aλ)pr ≡ xpr−1(
xp−1 − (aλ)p−1)pr−1

(
mod

1

2
aprλZp[x]

)
. (5.9)

Since xp−1 − (aλ)p−1 ≡ xp−1 (mod 1
2apλZp[x]), it follows by induction on r that

(
xp−1 − (aλ)p−1)pr−1 ≡ xpr−1(p−1)

(
mod

1

2
aprλZp[x]

)
, (5.10)

so that

(x|aλ)pr ≡ xpr

(
mod

1

2
aprλZp[x]

)
. (5.11)

Then

(x|aλ)mpr =
m−1∏
j=0

(
x − jpraλ

∣∣aλ
)
pr ≡

m−1∏
j=0

(
x − jpraλ

)pr

≡ xmpr

(
mod

1

2
aprλZp[x]

)
, (5.12)

proving the proposition.

Combining Proposition 5.4 with Theorem 5.3 yields the following useful result:

Corollary 5.5. If p divides a, then the congruence

aβn(aλ, ax) ≡ σn(0, a − 1)

(
mod

1

2
anZp

)

holds for all λ,x ∈ Zp and all nonnegative integers n. For p = 2, the above congruence also
holds modulo anZp if λ ∈ 2Z2 and 4|a.

Evaluating the power sum polynomial occurring in Corollary 5.5 gives a polynomial general-
ization of some well-known congruences for the usual Bernoulli numbers.
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Corollary 5.6 (Degenerate polynomial Carlitz and Adams theorems). Suppose n > 2 is an integer
and pr divides n for some integer r � 0. Then we have

pβn(λ, x) ≡
{

0, if p − 1 does not divide n,

p − 1, if p − 1 divides n

(
mod pr+1Zp

)

for all λ,x ∈ pZp if p is odd; for p = 2, this congruence holds modulo 2rZ2 if λ,x ∈ 4Z2 and
it holds modulo 2r+1Z2 if r > 0, x ∈ 4Z2 and λ ∈ 8Z2.

Proof. For any t ∈ Zp , the Teichmüller representative t̂ of t is defined by the p-adic limit
limr→∞ tp

r
; it satisfies t̂p = t̂ and t̂ ≡ t (mod pZp). By induction on r we have tp

r ≡ t̂

(mod pr+1Zp) for all positive integers r . We observe that the set {1̂, 2̂, . . . , p̂ − 1} is precisely
the set of (p − 1)-st roots of unity in Zp . Therefore since

∑
ζp−1=1

ζm =
{

0, if p − 1 does not divide m,

p − 1, if p − 1 divides m,
(5.13)

for n = mpr we have

σn(0,p − 1) = 0mpr + 1mpr + 2mpr + · · · + (p − 1)mpr

≡ 1̂m + 2̂m + · · · + p̂ − 1
m

=
{

0, if p − 1 does not divide m,

p − 1, if p − 1 divides m

(
mod pr+1Zp

)
. (5.14)

Combining this with the a = p case of Corollary 5.5 yields the stated congruence for odd p.
For p = 2, we use Corollary 5.5 with a = 4, yielding

4βn(4λ,4x) ≡ σn(0,3) (mod 2nZ2) (5.15)

for λ,x ∈ Z2, and this holds modulo 4nZ2 if λ ∈ 2Z2. If n = 2rm with m odd, then 2n ≡ 0
(mod 2r+2) since we assume n > 2, and by induction on r we have 3n ≡ 1 (mod 2r+2) for all
positive integers r . It follows that σn(0,3) ≡ 2 (mod 4nZ2); therefore from (5.15) we have

4βn(4λ,4x) ≡ 2
(
mod 2r+1Z2

)
(5.16)

for λ,x ∈ Z2, and this holds modulo 2r+2Z2 if λ ∈ 2Z2. Dividing (5.16) by 2 yields the stated
result for p = 2.

Putting λ = x = 0 in Corollary 5.6 gives the theorem of Carlitz [2] that if n is even and
(p − 1)pr divides n then pr divides the numerator of Bn + 1

p
− 1, and also the theorem of

J.C. Adams [1] that we restated in Corollary 4.2. Carlitz also proved a version of the above
corollary for p > 2 and x = 0 in [3].

Our final result is a congruence for the divided degenerate Bernoulli polynomials βn(λ, x)/n.
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Theorem 5.7. If λ ∈ Z×
p , x ∈ Zp , and p − 1 does not divide n then for all positive integers a we

have

βn+1(aλ, ax)

n + 1
≡ σn+1(aλ, a − 1)

a(n + 1)
(mod anZp).

Proof. Replacing n with n + 1 in (3.8) yields the identity

βn+1(aλ, ax) = a−1σn+1(aλ, a − 1) +
n+1∑
k=1

(
n + 1

k

)
ak−1βk(λ, x)σn+1−k(aλ, a − 1), (5.17)

so we must show that all terms in the sum on the right lie in a(n + 1)nZp . In Theorem 4.1 we
showed that for any integers k and l relatively prime to an we have (kn − 1)σn(al, a − 1) ≡ 0
(mod an). If p − 1 does not divide n then k may be chosen so that kn �≡ 1 (mod p) and therefore
σn(al, a − 1) ∈ anZp for all integers l ∈ Z×

p ; by continuity σn(aλ, a − 1) ∈ anZp for all λ ∈ Z×
p

when p − 1 does not divide n. Since βk(λ, x) ∈ k!Zp for λ ∈ Z×
p , it follows that all terms in the

sum on the right lie in a(n + 1)nZp when p − 1 does not divide n, proving the theorem.

In conclusion we observe that the degenerate Staudt–Clausen theorem, which was proved by
Carlitz [3] and later by Howard [11], also follows directly from the results of this section. This
theorem may be stated as follows:

(i) If λ ∈ Z×
p , then for all integers n � 0 we have βn(λ) ∈ Zp .

(ii) If p is odd and λ ∈ Zp , then for n > 0,

pβn(pλ) ≡
{

0, if p − 1 does not divide n

−1, if p − 1 divides n
(mod pZp). (5.18)

(iii) If p = 2 and λ ∈ Z2, then for n > 0,

2βn(2λ) ≡
{

1, if n is even

λ, if n is odd
(mod 2Z2). (5.19)

It will be seen that Proposition 5.1 implies (i), and the case a = p, x = 0 of Theorem 5.3
implies (ii) and the even n case of (iii). To get the odd n case of (iii), put a = 2 and x = 0 in (5.3)
to get

2βn(2λ) = σn(2λ,1) + 2nβ1(λ)σn−1(2λ,1) +
n∑

k=2

(
n

k

)
2kβk(λ)σn−k(2λ,1). (5.20)

Then observe that all terms in the sum in (5.20) lie in 2Z2, that σm(2λ,1) ≡ 1 (mod 2Z2) for
m > 0, and β1(λ) = (λ − 1)/2 to get (5.19).



758 P.T. Young / Journal of Number Theory 128 (2008) 738–758
References

[1] J.C. Adams, Table of the values of the first sixty-two numbers of Bernoulli, J. Reine Angew. Math. 85 (1878)
269–272.

[2] L. Carlitz, Some congruences for the Bernoulli numbers, Amer. J. Math. 75 (1953) 163–172.
[3] L. Carlitz, A degenerate Staudt–Clausen theorem, Arch. Math. 7 (1956) 28–33.
[4] L. Carlitz, Degenerate Stirling, Bernoulli, and Eulerian numbers, Utilitas Math. 15 (1979) 51–88.
[5] E. Deeba, D. Rodriguez, Stirling’s series and Bernoulli numbers, Amer. Math. Monthly 98 (1991) 423–426.
[6] I. Gessel, Solution to problem E3237 (submitted by J.G.F. Belinfante), Amer. Math. Monthly 96 (1989) 364.
[7] I. Gessel, Generating functions and generalized Dedekind sums, Electron. J. Combin. 4 (2) (1997) R11.
[8] F.T. Howard, Congruences for the Stirling numbers and associated Stirling numbers, Acta Arith. 55 (1990) 29–41.
[9] F.T. Howard, Congruences and recurrences for Bernoulli numbers of higher order, Fibonacci Quart. 32 (1994) 316–

328.
[10] F.T. Howard, Applications of a recurrence for the Bernoulli numbers, J. Number Theory 52 (1995) 157–172.
[11] F.T. Howard, Explicit formulas for degenerate Bernoulli numbers, Discrete Math. 162 (1996) 175–185.
[12] S. Shirai, K. Sato, Some identities involving Bernoulli and Stirling numbers, J. Number Theory 90 (2001) 130–142.
[13] H.J.H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001)

258–261.
[14] P.T. Young, Congruences for degenerate number sequences, Discrete Math. 270 (2003) 279–289.


