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Let D = F 2 + 2G be a monic quartic polynomial in Z[x], where
deg G < deg F . Then for F/G ∈ Q[x], a necessary and sufficient
condition for the solution of the polynomial Pell’s equation
X2 − DY 2 = 1 in Z[x] has been shown. Also, the polynomial Pell’s
equation X2 − DY 2 = 1 has nontrivial solutions X, Y ∈ Q[x] if and
only if the values of period of the continued fraction of

√
D are

2, 4, 6, 8, 10, 14, 18, and 22 has been shown. In this paper, for
the period of the continued fraction of

√
D is 4, we show that the

polynomial Pell’s equation has no nontrivial solutions X, Y ∈ Z[x].
© 2010 Elsevier Inc. All rights reserved.

Let D be a monic quartic polynomial with integer coefficients. We consider the polynomial Pell’s
equation

X2 − DY 2 = 1 (1)

where solutions X , Y are polynomials with integer coefficients. Solving Pell’s equation in Z[x] has
been studied by Mollin [2–6], Nathanson [7], Ramasamy [8], Webb and Yokota [9,10,12]. The au-
thors [9] gave a necessary and sufficient condition for which the polynomial Pell’s equation has
a nontrivial solution in Z[x] in the case D = F 2 + 2G , F , G ∈ Q[x], and F/G ∈ Q[x]. This gives a par-
tial answer to the open problem which asks to determine the polynomial D for which Eq. (1) has
nontrivial solutions in Z[x].

Given D = F 2 + 2G with deg G < deg F , it is known [1,12] that X2 − DY 2 = 1 is solvable in Q[x] if
and only if the period of the continued fraction of

√
D is one of the followings: 2, 4, 6, 8, 10, 14, 18,

or 22. We recall that the period of the continued fraction of
√

D is 2 if and only if F/G ∈ Q[x]. So to
answer the open problem for a monic quartic polynomial, we only need to consider the case where
D = F 2 + 2G with F/G /∈ Q[x], and the period of the continued fraction of

√
D is one of 4, 6, 8, 10,

14, 18, or 22.
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In [4], Mollin has shown that for Dk(X) = (Bk − 1)2 A2
k X2(A2

k X + 2)2 + 2(Bk − 1)2 X(A2
k X + 2) +

2(Bk − 1)X + C , the period of continued fraction of
√

D K cannot be 4. Mollin [5] also has shown that
for d = (bak + a−1

2b )2 + 2ak , where a, b, k are natural numbers with a ≡ 1 (mod 2b), the length of

continued fraction expansion of
√

d is given by 4k + 2.
With these evidence, we believe that the polynomial Pell’s equation (1) has no nontrivial solution

in Z[x] except for the case F/G ∈ Q[x].
In this paper, we give a partial answer to the open problem by showing the following:

Theorem 1. Let D be a monic quartic polynomial in Z[x]. Suppose that the period of the continued fraction of√
D is 4. Then the polynomial Pell’s equation X2 − DY 2 = 1 has no nontrivial solutions X, Y ∈ Z[x].

Let D = x4 + ax3 + bx2 + cx + d ∈ Z[x]. Then we can rewrite D as

D =
(

x2 + a

2
x + 4b − a2

8

)2

+ 8c − a(4b − a2)

8
x + 64d − (4b − a2)2

64
.

For 8c − a(4b − a2) = 0, we can write D as D = F 2 + 2G , where F/G ∈ Q[x]. Then as we have shown
in [9],

√
D = 〈F , F/G,2F 〉, and the period of the continued fraction of

√
D is 2. Thus we assume

8c − a(4b − a2) �= 0. Applying the linear translation τ : x −→ x − 8
8c−a(4b−a2)

· 64d−(4b−a2)2

64 , we obtain

D∗ = (
x2 + Ax + B

)2 + Cx,

where

A = 2a(8c − a(4b − a2)) − (64d − (4b − a2)2)

4(8c − a(4b − a2))
, (2)

B = 8(4b − a2)(8c − a(4b − a2))2 + (64d − (4b − a2)2)2

64(8c − a(4b − a2))2

− 4a(8c − a(4b − a2))(64d − (4b − a2)2)

64(8c − a(4b − a2))2
, (3)

C = 8c − a(4b − a2)

8
. (4)

We note that by taking the linear translation τ , the period of the continued fraction of
√

D∗ and the
period of the continued fraction of

√
D are the same. Similarly, the leading coefficients of the numer-

ator and the denominator of the third convergents P∗
3/Q ∗

3 are the same as the leading coefficients of
the numerator and the denominator of the third convergents P3/Q 3.

For 4b −a2 = 0 and d = 0, we have B = 0 which implies that (x2 + Ax)/Cx ∈ Q[x]. Thus, the period
of the continued fraction of

√
D∗ is 2. So, we assume either 4b − a2 �= 0 or d �= 0.

Now by Lemma 1 below, the minimal solution of X2 − D∗Y 2 = 1 is given by P∗
3 + Q ∗

3

√
D∗ .

Since every solution W of X2 − DY 2 = 1 is generated by the minimal solution, we have W =
(P∗

3 + Q ∗
3

√
D∗)n = X∗

n−1 + Y ∗
n−1

√
D . Similarly, every solution U of X2 − DY 2 = 1 is given by U =

(P3 + Q 3
√

D)n = Xn−1 + Yn−1
√

D . We note that X∗
n−1 and Xn−1 can be expressed in the following

way:

X∗
n−1 =

∑
j

(
n

2 j

)(
P∗

3

)n−2 j(
Q ∗

3

)2 j(
D∗) j

,

Xn−1 =
∑

j

(
n

2 j

)
(P3)

n−2 j(Q 3)
2 j(D) j.
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Then since D∗ and D are monic, the leading coefficients of X∗
n−1 and Xn−1 are the same. Thus to

show that there is no nontrivial solution in Z[x] for the polynomial Pell’s equation X2 − DY 2 = 1, it
is enough to show that the leading coefficient of X∗

n−1 is not in Z .
Therefore, to prove Theorem 1, it is enough to show

Theorem 2. Let D∗ be defined above. Suppose that the period of the continued fraction of
√

D∗ is 4. Then the
leading coefficient of X∗

n−1 is not in Z[x].

1. Background

As in [11], K = Q((x−1)) is the field of formal Laurent series in x−1 over Q. Then α ∈ K implies
that

α =
∞∑
j=t

a jx
− j, where a j ∈ Q, at �= 0, sgnα = at .

We define the non-archimedian absolute value by

|α| = e−t .

So, |F/G| = edeg F−deg G for F , G ∈ Q[x]. We use the symbol �α� to mean the integer part of α:

�α� =
0∑

j=t

a jx
− j = at x−t + · · · + a0 ∈ Q[x].

For D ∈ Z[x], a continued fraction for
√

D is obtained by putting α0 = √
D and, recursively for

n � 0, putting

Fn = �αn� and αn+1 = 1/(αn − Fn).

We define M0 = F , L0 = 2G , L−1 = 1. Then

√
D =

√
F 2 + 2G = F + 1√

F 2+L0+F
2G

= M0 + 1√
M2

0+L0+M0

L0

.

Let F1 = �
√

M2
0+L0+M0

L0
�. Then F1 = � 2M0

L0
�. Now write 2M0 = F1L0 + ε0, degε0 < deg L0.

Since

√
M2

0+L0+M0

L0
= F1 + M2

0+L0−(L0 F1−M0)2

(

√
M2

0+L0+F1 L0−M0)L0

, we let L1 = M2
0+L0−(F1 L0−M0)2

L0
. Then L1 =

1 − F1(F1L0 − 2M0), M1 = M0 − ε0 = F1L0 − M0, and D = M2
1 + L0L1.

Continue this, we have for n � 1,

Mn = Fn Ln−1 − Mn−1,

Ln = Ln−2 − Fn(Fn Ln−1 − 2Mn−1),

Fn+1 = 2

⌊
Mn

Ln

⌋
,

D = M2
n−1 + Ln−2Ln−1.
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We write convergents to
√

D as Pn/Q n = 〈F0, F1, . . . , Fn〉, where

(
Pn Q n

Pn−1 Q n−1

)
=

(
Fn 1
1 0

)(
Pn−1 Q n−1
Pn−2 Q n−2

)
for n � 0

and

(
P−1 Q −1
P−2 Q −2

)
=

(
1 0
0 1

)
.

Then P 2
n−1 − D Q 2

n−1 = (−1)n Ln−1. Similarly, we write convergents to
√

D∗ as P∗
n/Q ∗

n =
〈F ∗

0 , F ∗
1 , . . . , F ∗

n 〉.
We will call W = U + V

√
D a rational solution of (1) if U 2 − D V 2 = 1 and U , V ∈ Q[x]. We define

T = {
U + V

√
D: U 2 − D V 2 = 1, sgn U > 0, sgn V > 0, where U , V ∈ Q[x]},

and T0 to be the subset of T such that U , V ∈ Z[x].
Among all rational solutions in T , we say P + Q

√
D is a minimal solution if and only if

|P + Q
√

D| � |U + V
√

D| for all U + V
√

D ∈ T .

Then by Lemma 3 in [9], the minimal solution is unique, and every rational solution W ∈ T can be
expressed as W = W n

0 for some n � 1, where W0 is the minimal solution.
Let ν2(m/n) = i − j, where (m,n) = 1,2i‖m,2 j‖n. For A = xm + am−1xm−1 + · · · + a1x + a0, denote

the coefficient a j of x j in A by [x j]A.

2. Lemmas

Here and in the sequel, we denote D∗ = (x2 + A X + B)2 + Cx.

Lemma 1. Suppose that the period of the continued fraction of
√

D∗ is 4. Then the minimal solution for the
polynomial Pell’s equation X2 − D∗Y 2 = 1 is given by P∗

3 + Q ∗
3

√
D∗ .

Proof. Suppose that the minimal solution of X2 − D∗Y 2 = 1 is given by U∗ + V ∗√D∗ . Then by
Lemma 2 in [9], U∗ = λP∗

k , V ∗ = λQ ∗
k for some λ ∈ Q and k � 0. Thus

(
U∗)2 − D∗(V ∗)2 = λ2((P∗

k

)2 − D∗(Q ∗
k

)2) = λ2(−1)k+1L∗
k .

Now by direct calculation of L∗
k , we obtain

L∗
1 = 4B

C
x + 4AB + C

C
,

L∗
2 = C2(4AB + C)

16B3
x + C2(16B3 − 4ABC − C2)

64B4
,

L∗
3 = 64B4(16B3 − 4ABC − C2)

C2(4AB + C)3
x − 512B6(−8A2 B2 + 8B3 − 6ABC − C2)

C2(4AB + C)4
.

Since for B = 0, we know the period of the continued fraction of
√

D∗ is 2. Thus we assume
B �= 0, which implies that L∗

1 /∈ Q. We note that (P∗
3)2 − D∗(Q ∗

3 )2 = L∗
3 = 1 implies that C �= 0 and
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4AB + C �= 0. Thus L∗
2 /∈ Q. Then we have |U∗ + V ∗√D∗| � |P∗

3 + Q ∗
3

√
D∗|. Thus, P∗

3 + Q ∗
3

√
D∗ is the

minimal solution. This proves the lemma. �
We now note that the period of

√
D∗ is 4 implies that L∗

3 = 1, which in turn implies

16B3 − 4ABC − C2 = 0. (5)

Lemma 2. Suppose that the period of the continued fraction of
√

D∗ is 4 and the minimal solution is
P∗

3 + Q ∗
3

√
D∗ . Then [x5]P∗

3 = 2
BC = [x3]Q ∗

3 .

Proof. By expanding
√

D∗ using the continued fraction, we obtain

√
D∗ =

〈
x2 + Ax + B,

2(x + A)

C
,

4BCx − C2

8B2
,

2(x + A)

C
,2

(
x2 + Ax + B

)〉
.

Then

P∗
3 = 2(x + A)

C
P∗

2 + P∗
1

= 2(x + A)

C

(
4BCx − C2

8B2
P∗

1 + P∗
0

)
+ P∗

1

= 2(x + A)

C

(
4BCx − C2

8B2

)(
2(x + A)

C
P∗

0 + 1

)
+ 2(x + A)

C
P∗

0 + P∗
1

= 2(x + A)

C

(
4BCx − C2

8B2

)(
2(x + A)

C

(
x2 + Ax + B

) + 1

)
+ 2(x + A)

C
P∗

0 + P∗
1,

Q ∗
3 = 2(x + A)

C

(
4BCx − C2

8B2

)(
2(x + A)

C

)
+ 2(x + A)

C
+ Q ∗

1 .

Therefore,

[
x5]P∗

3 = 2

C

4BC

8B2

2

C
= 2

BC
= [

x3]Q ∗
3 . �

3. Main theorem

Proof of Theorem 2. Suppose contrary that the leading coefficient of X∗
n−1 is in Z . Then since

X∗
n−1 =

∑
j

(
n

2 j

)(
P∗

3

)n−2 j(
Q ∗

3

)2 j(
D∗) j

has the leading coefficient

∑
j

(
n

2 j

)(
2

BC

)n

= 2n−1
(

2

BC

)n

,
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we must have 2
BC ∈ Z . Let 2

BC = 2lm, where l � 0, m ∈ Z . Then

BC = 1

2l−1m
, l � 0, m ∈ Z.

Let B = 1
2sα , C = 1

2tβ
, where α,β ∈ Q and ν2(α) = ν2(β) = 0. Then since BC = 1

2l−1m
, we have αβ = m

and s + t = l − 1.
Putting C = 1

2tβ
into Eq. (4), we have 23−t

β
= 8c − a(4b − a2) ∈ Z , which implies that β = 1

k , k ∈ Z ,
which in turn implies that α = km ∈ Z and

k23−t = 8c − a
(
4b − a2). (6)

This shows that t � 3.
Now by replacing C = k

2t , B = 1
2sα in Eq. (5), we have

A = 16B3 − C2

4BC
=

(
2−2s+t−2

kα2
− 2s−t−2kα

)
.

Also by replacing 8c − a(4b − a2) of Eq. (2) by k23−t , we obtain

A = 2a(8c − a(4b − a2)) − (64d − (4b − a2)2)

4(8c − a(4b − a2))

= k24−ta − (64d − (4b − a2)2)

k25−t
.

Equating these two equations, we have

2−2s+3

α2
− k22s−2t+3α = k24−ta − (

64d − (
4b − a2)2)

. (7)

We note that since t � 3, the right-hand side of Eq. (9) is in Z , which implies that 1
α2 ∈ Z . But since

α = km ∈ Z , we must have α2 = 1 and k2 = 1.
This shows that

2−2s+3 − 2s−2t+3α = 24−tak − (
64d − (

4b − a2)2)
. (8)

Suppose first that a is odd. Then by Eq. (8), 64d − (4b − a2)2 is even. But this is impossible, since
64d − (4b − a2)2 is odd for a odd.

So we assume that a is even. Then by letting a = 2a′ in Eq. (6), we have k23−t = 8(c −a′(b −a′ 2)) ∈
Z , which implies that t � 0. By letting a = 2a′ in Eq. (8), we have

2−2s+3 − 2s−2t+3α = 24−tak − 24(4d − (
b − a′2)2)

. (9)

Since t � 0, dividing both sides of Eq. (9) by 24, we have

2−2s−1 − 2s−2t−1α = 2−tak − (
4d − (

b − a′2)2) ∈ Z, (10)

which in turn implies that either −2s − 1 = s − 2t − 1 or −2s − 1 � 0, s − 2t − 1 � 0. The first case
implies that 3s = 2t and the second case implies that s � −1.
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We first treat the first case. Since t � 0 and 3s = 2t , we have s � 0. Thus, in this case, we have
A = 0, B, C ∈ Z which contradicts 2

BC ∈ Z .
Thus, we are left with the second case. Since t + s = l−1 and t � 0, l � 0, we have s � −1−t � −1.

Therefore s = −1. Then

B = ±2, C = ± 1

2t
, A = ±(

2t − 2−t−3)

and

4d − (
b − a′2)2 = ±2−ta − 2 + 2−2t−2.

Then since 8c − a(4b − a2) = ±23−t , we have

τ−1: x + (±2−2a − 2t−1 + 2−t−4).
Now we calculate D for A = 2t − 2−t−3, B = 2, C = 1

2t , and u = x + 2−2a − 2t−1 + 2−t−4.

D = (
u2 + (

2t − 2−t−3)u + 2
)2 + u

2t

= x4 + ax3 +
(

33 + 3a2

8
− 2−2t

128
− 3

21−2t

)
x2 + · · · .

We claim that the coefficient of x2 is not in Z . For t = 0,

33 + 3a2

8
− 2−2t

128
− 3

21−2t
= 16(33 + 3a2) − 1 − 192

128

and the numerator is odd. This shows that the coefficient of x2 is not in Z . For t = −1,

33 + 3a2

8
− 2−2t

128
− 3

21−2t
= 4(33 + 3a2) − 1 − 12

32

and the numerator is odd. This shows that the coefficient of x2 is not in Z . For t � −2,

33 + 3a2

8
− 2−2t

128
− 3

21−2t
= 2−2−2t(33 + 3a2) − 2−6−4t − 3

21−2t

and the numerator is odd. This shows that the coefficient of x2 is not in Z . Therefore, D is not
in Z[x], which is impossible.

For A = −(2t − 2−t−3), B = −2, C = − 1
2t , and u = x − 2−2a − 2t−1 + 2−t−4, we have

D = (
u2 − (

2t − 2−t−3)u − 2
)2 − u

2t

= x4 + (
2−1−t − 22+t − a

)
x3 + · · · .

For t = 0, the coefficient of x3 is not in Z . For t � −3,

2−1−t − 22+t − a = 2−3−2t − 1 − 2−2−ta
−2−t
2
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and the numerator is odd and the denominator is even. Thus the coefficient of x3 is not in Z . Now we
are left with the case t = −1 and t = −2. For t = −1, we look at the coefficient of x2. Since t = −1,
we have A = −( 1

2 − 1
4 ) = − 1

4 , B = −2, C = − 1
2 , and u = x − a

4 − 1
8 . Then

D =
(

u2 − u

4
− 2

)2

− u

2

= x4 − (a + 1)x3 + 2(3a2 − a3) − 117 + 24a + 9a2

32
x2 + · · · .

Thus, the coefficient of x2 is not in Z . Finally for t = −2. Note that in this case, we have A = 1
4 ,

B = −2, C = − 1
4 , and u = x − a

4 + 1
8 . Then

D =
(

u2 + u

4
− 2

)2

− u

2

= x4 + (1 − a)x3 + 2(3a2 − a3) − 117 − 24a + 9a2

32
x2 + · · · .

Thus, the coefficient of x2 is not in Z . Therefore, the leading coefficient of X∗
n−1 is not an integer. �
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