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Let D be a monic quartic polynomial with integer coefficients. We consider the polynomial Pell’s
equation

X?—-DyY?=1 (1)

where solutions X, Y are polynomials with integer coefficients. Solving Pell’s equation in Z[x] has
been studied by Mollin [2-6], Nathanson [7], Ramasamy [8], Webb and Yokota [9,10,12]. The au-
thors [9] gave a necessary and sufficient condition for which the polynomial Pell’s equation has
a nontrivial solution in Z[x] in the case D = F2 + 2G, F, G € Q[x], and F/G € Q[x]. This gives a par-
tial answer to the open problem which asks to determine the polynomial D for which Eq. (1) has
nontrivial solutions in Z[x].

Given D = F2 4+ 2G with degG < degF, it is known [1,12] that X2 — DY2 =1 is solvable in Q[x] if
and only if the period of the continued fraction of /D is one of the followings: 2, 4, 6, 8, 10, 14, 18,
or 22. We recall that the period of the continued fraction of +/D is 2 if and only if F/G € Q[x]. So to
answer the open problem for a monic quartic polynomial, we only need to consider the case where
D = F2 + 2G with F/G ¢ Q[x], and the period of the continued fraction of +/D is one of 4, 6, 8, 10,
14, 18, or 22.
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In [4], Mollin has shown that for Di(X) = (Bx — D?A}X?(AZX +2)® + 2(Bx — D?X(AZX +2) +
2(Br — 1)X + C, the period of continued fraction of +/Di cannot be 4. Mollin [5] also has shown that
for d = (ba* + %)2 + 2a¥, where a, b, k are natural numbers with a =1 (mod 2b), the length of
continued fraction expansion of +/d is given by 4k + 2.

With these evidence, we believe that the polynomial Pell’s equation (1) has no nontrivial solution
in Z[x] except for the case F/G € Q[x].

In this paper, we give a partial answer to the open problem by showing the following:

Theorem 1. Let D be a monic quartic polynomial in Z[x). Suppose that the period of the continued fraction of
/D is 4. Then the polynomial Pell’s equation X% — DY? =1 has no nontrivial solutions X, Y € Z[x].

Let D = x* + ax3 4+ bx? + cx +d € Z[x]. Then we can rewrite D as

b X2+ax+4b—a2 2 8c—a(4b—a2)x+64d—(4b—a2)2
N 2 8 8 64 ’

For 8¢ —a(4b — a?) =0, we can write D as D = F2 4+ 2G, where F/G € Q[x]. Then as we have shown
in [9], v'D = (F, F/G, 2F), and the period of the continued fraction of +/D is 2. Thus we assume

3 64d—(4b—a?)? .
8c—a(db—a?) 2~ We obtain

8c — a(4b — a?) # 0. Applying the linear translation 7 :x — x —

D* = (x* + Ax + B)2 +Cx,

where
_ _ A42Y) _ _ _42\2

4 2a(8¢c — a(4b — a?)) — (64d — (4b — a?) )’ 2)
4(8c —a(4b — a?2))

g _ 8(4b—a*)(8c —a(4b —a*)* + (64d — (4b — a*)*)’

- 64(8c — a(4b — a?))2
_ 4a(8c —a(4b —a%))(64d — (4b — a®)?) 3)
64(8c — a(4b — a?))?2 ’
_ _ 42
CZSC a(4b a). 4)

8

We note that by taking the linear translation 7, the period of the continued fraction of ~/D* and the
period of the continued fraction of /D are the same. Similarly, the leading coefficients of the numer-
ator and the denominator of the third convergents P5/QJ are the same as the leading coefficients of
the numerator and the denominator of the third convergents P3/Q3.

For 4b —a? = 0 and d = 0, we have B = 0 which implies that (x2 + Ax)/Cx € Q[x]. Thus, the period
of the continued fraction of +/D* is 2. So, we assume either 4b — a® 0 or d #0.

Now by Lemma 1 below, the minimal solution of X? — D*Y2 =1 is given by P + Q3+/D*.
Since every solution W of X2 — DY2 =1 is generated by the minimal solution, we have W =
(P3 + Qiv/D*)" =X’ | + Y’ ,+/D. Similarly, every solution U of X2 — DY? =1 is given by U =
(P3 4+ Q3+v/D)" = Xp_1 + Yn_1+/D. We note that X, and Xp_1 can be expressed in the following
way:

X*

=X () e ey e

J

X1 =3 (2”].)@3)"—21' (@)% (D).

J
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Then since D* and D are monic, the leading coefficients of X ; and X; 1 are the same. Thus to

show that there is no nontrivial solution in Z[x] for the polynomial Pell's equation X2 — DY2 =1, it
is enough to show that the leading coefficient of X*_, is not in Z.
Therefore, to prove Theorem 1, it is enough to show

Theorem 2. Let D* be defined above. Suppose that the period of the continued fraction of ~/D* is 4. Then the
leading coefficient of X;_, is notin Z[x].

1. Background

As in [11], K = Q((x~ 1)) is the field of formal Laurent series in x_! over Q. Then « € K implies
that

o0
o= Zajx_f, wherea; € Q, a; #0, sgno =ay.
J=t

We define the non-archimedian absolute value by

loe| = et

So, |F/G| = edegF—degG for F G e Q[x]. We use the symbol |« to mean the integer part of a:

0
la] = Zajx_j =ax ' +---+ap e Q[x].
j=t

For D € Z[x], a continued fraction for +/D is obtained by putting ctg = /D and, recursively for
n > 0, putting

Fp=lan] and opi1=1/(on — Fp).

We define My =F, Lo =2G, L_; =1. Then

1 1
VD=VF24+2G=F4+ ——— =M+

A/ F2+Lo+F M2+Lo+Mo
2 N

JM2+Lo+M
Let Fq = L%J. Then Fy = | 2% |. Now write 2Mo = F1Lo + o, deg&o < deg Lo.

\/M§+LL0+M0 _Fy 4 Mitlo~(oFi-Moy
0 (/M3 +Lo+F1Lo—Mo)Lo
1-— F](F]Lo — 21\/10), M1 = Mg —&y=F1Ly — Mo, and D ZM% + LoLq.
Continue this, we have for n > 1,

M2+Lo—(F1Lo—Mop)?
Lo

Since , we let L1 = . Then L1 =

Mp = Fnlp—1 — My,
Ly=1Lpn>— Fn(FnLn—l - 2Mn—1)y

Foiy=2| M
n+1 = Ln )

D=M2 4+ Lyalp1.
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We write convergents to /D as Py/Qn = (Fo, F1, ..., Fp), where

Pn Qn Fn 1 Pn—] Qﬂ—1
= forn>0
<Pn—1 Qn-1 > ( 1 0) (Pn—Z Qn—2) orn

P.y Q1)_(1 0
P, Q) \0 1)°
Then P2, — DQZ2, = (—1)"Lp—y. Similarly, we write convergents to +/D* as P;/Q} =

(F& Ff.....Fp).
We will call W = U + V+/D a rational solution of (1) if U2 —DV2 =1 and U, V € Q[x]. We define

and

T={U+VvD: U?~DV?=1, sgnU >0, sgnV > 0, where U, V € Q[x]},

and Ty to be the subset of T such that U,V € Z[x].
Among all rational solutions in T, we say P + Q +/D is a minimal solution if and only if

I[P+ Q~D|<|U+V~D| foralU+V+/DeT.
Then by Lemma 3 in [9], the minimal solution is unique, and every rational solution W € T can be
expressed as W = Wg for some n > 1, where Wy is the minimal solution.
Let vy(m/n) =i — j, where (m,n)=1,2/||m, 2J||n. For A=X" + a_1x™ "1 + .- + a1 + ao, denote
the coefficient a; of x/ in A by [x/]A.
2. Lemmas

Here and in the sequel, we denote D* = (x2 + AX + B)? + Cx.

Lemma 1. Suppose that the period of the continued fraction of /D* is 4. Then the minimal solution for the
polynomial Pell’s equation X*> — D*Y? =1 is given by P} + Q;+/D*.

Proof. Suppose that the minimal solution of X? — D*Y2 =1 is given by U* + V*/D*. Then by
Lemma 2 in [9], U* = AP}, V* =1Q} for some A € Q and k > 0. Thus

(U)* = D*(v*)* = 22((P})” = D*(Q)) =2 (=DM

*, we obtain

Now by direct calculation of L,

[ gH 4AB +C
1= c c
. C?(4AB+C)  (C?(16B> —4ABC —(C?)
2= " 163 64B4 ’
15 64B*(16B3 — 4ABC — CZ)X B 512B%(—8A%B2 + 8B3 — 6ABC — (C?)
3= C2(4AB + ()3 C2(4AB + C)4 '

Since for B = 0, we know the period of the continued fraction of +/D* is 2. Thus we assume
B # 0, which implies that L% ¢ Q. We note that (P3)? — D*(Q3)? =L =1 implies that C # 0 and
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4AB + C #0. Thus L} ¢ Q. Then we have |U* 4 V*+/D*| > |P5 4+ Q5 +/D*|. Thus, P 4+ Q}+/D* is the
minimal solution. This proves the lemma. 0O

We now note that the period of +/D* is 4 implies that L} = 1, which in turn implies

16B3 —4ABC — C?>=0. (5)

Lemma 2. Suppose that the period of the continued fraction of ~/D* is 4 and the minimal solution is
P + Q3+/D*. Then [x°1P} = & = [x*]Q3.

Proof. By expanding ~/D* using the continued fraction, we obtain

2+ A) 4BCx—C2 2(x1 A
«/D*:<x2+Ax+B, (x+ A) 4BCx—C7 2kt ),2(x2+Ax+B)>.

C 8B2 C
Then
2 A
P = LJF ) p3 4
_2(x+A 4BCx — (2
( )< = PT+P5‘>+PT
_2 A) (4BC —C2 2 A 2 A
(x—i— < X >< x+ )P0+1) x4+ )PE;H)T
C
_2 A) [(4BC —c2 2 A A
(x+ )< X >< (x+ ) +Ax+B)+1>+$P + P,
*_2(x+A)<4BCx—C2><2(x+A)> 2(X+A)+Q*
Q3= C 1
Therefore,

3. Main theorem
Proof of Theorem 2. Suppose contrary that the leading coefficient of X, is in Z. Then since
n n—2j J
=2 () s e o)
j

has the leading coefficient

S (0)(2) (2]
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we must have % € Z. Let BZ—C =2!m, where I >0, m € Z. Then

1

PO i

>0, meZ.

Let B= 5, C= ﬁ where o, 8 € Q and V() = v2(8) = 0. Then since BC = ﬁ we have ¢ =m
and s+t=1-1. -

Putting C = ﬁ into Eq. (4), we have ZT =8c — a(4b — a®) € Z, which implies that g = % ke Z,
which in turn implies that « =km € Z and

k237" =8c —a(4b — a?). (6)

This shows that t < 3.
Now by replacing C = k B=-L in Eq. (5), we have

2t X
A ]633 _ CZ _ 2—25+t—2 B 25_[_2’(0[
4BC koe? '

Also by replacing 8c — a(4b — a?) of Eq. (2) by k23—, we obtain

_ 2a(8c —a(4b — a?)) — (64d — (4b — a*)?)
B 4(8c —a(4b — a?))

_ k2%'a — (64d — (4b — a*)?)

A

k25—t '
Equating these two equations, we have
2—25+3 2
— — kP22 By = k2% 'a — (64d — (4b —a®)"). (7)
o

We note that since t < 3, the right-hand side of Eq. (9) is in Z, which implies that alz € Z. But since

o =km € Z, we must have «% =1 and k? = 1.
This shows that

22543 _ 9s=243, _ 94—tgp _ (64d — (4b - az)z)_ (8)

Suppose first that a is odd. Then by Eq. (8), 64d — (4b — a®)? is even. But this is impossible, since
64d — (4b — a?)? is odd for a odd.

So we assume that a is even. Then by letting a = 2a’ in Eq. (6), we have k23~ =8(c—d'(b—a'?)) €
Z, which implies that t < 0. By letting a = 2a’ in Eq. (8), we have

272543 _ 95Uy — 94~tak — 2% (ad — (b — a/z)z). 9
Since t < 0, dividing both sides of Eq. (9) by 24, we have
2=2s=1 _ os=2t=1, _ y~tqp _ (4d — (b — a,z)z) €z, (10)

which in turn implies that either —2s —1=s—2t—1 or —2s—1>0, s — 2t — 1 > 0. The first case
implies that 3s = 2t and the second case implies that s < —1.
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We first treat the first case. Since t < 0 and 3s = 2t, we have s < 0. Thus, in this case, we have
A=0, B, C € Z which contradicts % € Z.

Thus, we are left with the second case. Since t+s=I[—1and t <0,1>0, we have s > —1—t > —1.
Therefore s = —1. Then

1 e
B==+2, C=do;, A=#(2'-2" %)

and
4d—(b—a?)’ =42"ta—2+4272%2,
Then since 8c — a(4b — a?) = +£23~t, we have
Tl ox+ (F27 %20 427,

Now we calculate D for A=2f —27t3 B=2 C= % and u=x+2"2q—20-1 42714,

D=(u?+ (2 =27 3u+2)° + %

33+3a2 27% 3 )2
X4

_ A 3 e
=X +< 8 128 2=

We claim that the coefficient of x% is not in Z. For t =0,

3343¢2 27% 3 16(33+3a}) —1-192
8 128 21-2 128

and the numerator is odd. This shows that the coefficient of x? is not in Z. For t = —1,

3343a2 274 3 4(333+43aH)-1-12
8 128 21—t 32

and the numerator is odd. This shows that the coefficient of x% is not in Z. For t < —2,

3343a2 274 3 27272033 4 3g%) — 2764 _3
8 - 128 - 2172t = 2172t

and the numerator is odd. This shows that the coefficient of x2 is not in Z. Therefore, D is not
in Z[x], which is impossible.
For A=—(2f—27t3) B=-2,C= —%, and u=x—2"2qg —2t=1 4+ 274 we have
u
St
:x4 + (2—1—t _22+[ _a)x3 4,

D=@u?— (2 =27 3)u—2)°

For t =0, the coefficient of x3 is not in Z. For t < —3,

_ 2—3—2t N 2—2—ta

—1-t 2+t
2 —27 —a 771
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and the numerator is odd and the denominator is even. Thus the coefficient of x> is not in Z. Now we
are left with the case t = —1 and t = —2. For t = —1, we look at the coefficient of x2. Since t = —1,
we have A:—(%—}l):—}‘, B=-2, C:—%,and u=x—12 —%.Then

7
2
p=(w2-%-2) -2
4 2

2(3a®> —a3) — 117 +24a +9a® ,
32 X+

:x4—(a+1)x3+

Thus, the coefficient of x? is not in Z. Finally for t = —2. Note that in this case, we have A = g,
B=-2C=—% and u=x—%+}. Then

2
D=(u2+2-2) -2
4 2
2(3a®> —a®) — 117 —24a +9a° ,
X°+

4 3
— 1—
X+ (1—-ax +

Thus, the coefficient of x? is not in Z. Therefore, the leading coefficient of Xy_; is not an integer. O
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