Solutions of polynomial Pell's equation

H. Yokota
Department of Mathematics, Shibaura Institute of Technology, Fukasaku Minuma-ku Saitama, Japan

A R T I C L E I N F O

Article history:

Received 27 October 2009
Revised 9 December 2009
Available online 10 March 2010
Communicated by David Goss

Keywords:

Polynomial Pell's equation

Abstract

Let $D=F^{2}+2 G$ be a monic quartic polynomial in $\mathcal{Z}[x]$, where $\operatorname{deg} G<\operatorname{deg} F$. Then for $F / G \in \mathcal{Q}[x]$, a necessary and sufficient condition for the solution of the polynomial Pell's equation $X^{2}-D Y^{2}=1$ in $\mathcal{Z}[x]$ has been shown. Also, the polynomial Pell's equation $X^{2}-D Y^{2}=1$ has nontrivial solutions $X, Y \in \mathcal{Q}[x]$ if and only if the values of period of the continued fraction of \sqrt{D} are $2,4,6,8,10,14,18$, and 22 has been shown. In this paper, for the period of the continued fraction of \sqrt{D} is 4 , we show that the polynomial Pell's equation has no nontrivial solutions $X, Y \in \mathcal{Z}[x]$. © 2010 Elsevier Inc. All rights reserved.

Let D be a monic quartic polynomial with integer coefficients. We consider the polynomial Pell's equation

$$
\begin{equation*}
X^{2}-D Y^{2}=1 \tag{1}
\end{equation*}
$$

where solutions X, Y are polynomials with integer coefficients. Solving Pell's equation in $\mathcal{Z}[x]$ has been studied by Mollin [2-6], Nathanson [7], Ramasamy [8], Webb and Yokota [9,10,12]. The authors [9] gave a necessary and sufficient condition for which the polynomial Pell's equation has a nontrivial solution in $\mathcal{Z}[x]$ in the case $D=F^{2}+2 G, F, G \in \mathcal{Q}[x]$, and $F / G \in \mathcal{Q}[x]$. This gives a partial answer to the open problem which asks to determine the polynomial D for which Eq. (1) has nontrivial solutions in $\mathcal{Z}[x]$.

Given $D=F^{2}+2 G$ with $\operatorname{deg} G<\operatorname{deg} F$, it is known $[1,12]$ that $X^{2}-D Y^{2}=1$ is solvable in $\mathcal{Q}[x]$ if and only if the period of the continued fraction of \sqrt{D} is one of the followings: $2,4,6,8,10,14,18$, or 22 . We recall that the period of the continued fraction of \sqrt{D} is 2 if and only if $F / G \in \mathcal{Q}[x]$. So to answer the open problem for a monic quartic polynomial, we only need to consider the case where $D=F^{2}+2 G$ with $F / G \notin \mathcal{Q}[x]$, and the period of the continued fraction of \sqrt{D} is one of $4,6,8,10$, 14,18 , or 22.

[^0]In [4], Mollin has shown that for $D_{k}(X)=\left(B_{k}-1\right)^{2} A_{k}^{2} X^{2}\left(A_{k}^{2} X+2\right)^{2}+2\left(B_{k}-1\right)^{2} X\left(A_{k}^{2} X+2\right)+$ $2\left(B_{k}-1\right) X+C$, the period of continued fraction of $\sqrt{D_{K}}$ cannot be 4. Mollin [5] also has shown that for $d=\left(b a^{k}+\frac{a-1}{2 b}\right)^{2}+2 a^{k}$, where a, b, k are natural numbers with $a \equiv 1(\bmod 2 b)$, the length of continued fraction expansion of \sqrt{d} is given by $4 k+2$.

With these evidence, we believe that the polynomial Pell's equation (1) has no nontrivial solution in $\mathcal{Z}[x]$ except for the case $F / G \in \mathcal{Q}[x]$.

In this paper, we give a partial answer to the open problem by showing the following:

Theorem 1. Let D be a monic quartic polynomial in $\mathcal{Z}[x]$. Suppose that the period of the continued fraction of \sqrt{D} is 4. Then the polynomial Pell's equation $X^{2}-D Y^{2}=1$ has no nontrivial solutions $X, Y \in \mathcal{Z}[x]$.

Let $D=x^{4}+a x^{3}+b x^{2}+c x+d \in \mathcal{Z}[x]$. Then we can rewrite D as

$$
D=\left(x^{2}+\frac{a}{2} x+\frac{4 b-a^{2}}{8}\right)^{2}+\frac{8 c-a\left(4 b-a^{2}\right)}{8} x+\frac{64 d-\left(4 b-a^{2}\right)^{2}}{64}
$$

For $8 c-a\left(4 b-a^{2}\right)=0$, we can write D as $D=F^{2}+2 G$, where $F / G \in \mathcal{Q}[x]$. Then as we have shown in [9], $\sqrt{D}=\langle F, \overline{F / G, 2 F}\rangle$, and the period of the continued fraction of \sqrt{D} is 2 . Thus we assume $8 c-a\left(4 b-a^{2}\right) \neq 0$. Applying the linear translation $\tau: x \longrightarrow x-\frac{8}{8 c-a\left(4 b-a^{2}\right)} \cdot \frac{64 d-\left(4 b-a^{2}\right)^{2}}{64}$, we obtain

$$
D^{*}=\left(x^{2}+A x+B\right)^{2}+C x
$$

where

$$
\begin{align*}
A= & \frac{2 a\left(8 c-a\left(4 b-a^{2}\right)\right)-\left(64 d-\left(4 b-a^{2}\right)^{2}\right)}{4\left(8 c-a\left(4 b-a^{2}\right)\right)}, \tag{2}\\
B= & \frac{8\left(4 b-a^{2}\right)\left(8 c-a\left(4 b-a^{2}\right)\right)^{2}+\left(64 d-\left(4 b-a^{2}\right)^{2}\right)^{2}}{64\left(8 c-a\left(4 b-a^{2}\right)\right)^{2}} \\
& -\frac{4 a\left(8 c-a\left(4 b-a^{2}\right)\right)\left(64 d-\left(4 b-a^{2}\right)^{2}\right)}{64\left(8 c-a\left(4 b-a^{2}\right)\right)^{2}}, \tag{3}\\
C= & \frac{8 c-a\left(4 b-a^{2}\right)}{8} . \tag{4}
\end{align*}
$$

We note that by taking the linear translation τ, the period of the continued fraction of $\sqrt{D^{*}}$ and the period of the continued fraction of \sqrt{D} are the same. Similarly, the leading coefficients of the numerator and the denominator of the third convergents P_{3}^{*} / Q_{3}^{*} are the same as the leading coefficients of the numerator and the denominator of the third convergents P_{3} / Q_{3}.

For $4 b-a^{2}=0$ and $d=0$, we have $B=0$ which implies that $\left(x^{2}+A x\right) / C x \in \mathcal{Q}[x]$. Thus, the period of the continued fraction of $\sqrt{D^{*}}$ is 2 . So, we assume either $4 b-a^{2} \neq 0$ or $d \neq 0$.

Now by Lemma 1 below, the minimal solution of $X^{2}-D^{*} Y^{2}=1$ is given by $P_{3}^{*}+Q_{3}^{*} \sqrt{D^{*}}$. Since every solution W of $X^{2}-D Y^{2}=1$ is generated by the minimal solution, we have $W=$ $\left(P_{3}^{*}+Q_{3}^{*} \sqrt{D^{*}}\right)^{n}=X_{n-1}^{*}+Y_{n-1}^{*} \sqrt{D}$. Similarly, every solution U of $X^{2}-D Y^{2}=1$ is given by $U=$ $\left(P_{3}+Q_{3} \sqrt{D}\right)^{n}=X_{n-1}+Y_{n-1} \sqrt{D}$. We note that X_{n-1}^{*} and X_{n-1} can be expressed in the following way:

$$
\begin{aligned}
& X_{n-1}^{*}=\sum_{j}\binom{n}{2 j}\left(P_{3}^{*}\right)^{n-2 j}\left(Q_{3}^{*}\right)^{2 j}\left(D^{*}\right)^{j} \\
& X_{n-1}=\sum_{j}\binom{n}{2 j}\left(P_{3}\right)^{n-2 j}\left(Q_{3}\right)^{2 j}(D)^{j}
\end{aligned}
$$

Then since D^{*} and D are monic, the leading coefficients of X_{n-1}^{*} and X_{n-1} are the same. Thus to show that there is no nontrivial solution in $\mathcal{Z}[x]$ for the polynomial Pell's equation $X^{2}-D Y^{2}=1$, it is enough to show that the leading coefficient of X_{n-1}^{*} is not in \mathcal{Z}.

Therefore, to prove Theorem 1, it is enough to show
Theorem 2. Let D^{*} be defined above. Suppose that the period of the continued fraction of $\sqrt{D^{*}}$ is 4 . Then the leading coefficient of X_{n-1}^{*} is not in $\mathcal{Z}[x]$.

1. Background

As in [11], $\mathcal{K}=\mathcal{Q}\left(\left(x^{-1}\right)\right)$ is the field of formal Laurent series in x^{-1} over \mathcal{Q}. Then $\alpha \in \mathcal{K}$ implies that

$$
\alpha=\sum_{j=t}^{\infty} a_{j} x^{-j}, \quad \text { where } a_{j} \in \mathcal{Q}, a_{t} \neq 0, \operatorname{sgn} \alpha=a_{t}
$$

We define the non-archimedian absolute value by

$$
|\alpha|=e^{-t}
$$

So, $|F / G|=e^{\operatorname{deg} F-\operatorname{deg} G}$ for $F, G \in \mathcal{Q}[x]$. We use the symbol $\lfloor\alpha\rfloor$ to mean the integer part of α :

$$
\lfloor\alpha\rfloor=\sum_{j=t}^{0} a_{j} x^{-j}=a_{t} x^{-t}+\cdots+a_{0} \in \mathcal{Q}[x]
$$

For $D \in \mathcal{Z}[x]$, a continued fraction for \sqrt{D} is obtained by putting $\alpha_{0}=\sqrt{D}$ and, recursively for $n \geqslant 0$, putting

$$
F_{n}=\left\lfloor\alpha_{n}\right\rfloor \quad \text { and } \quad \alpha_{n+1}=1 /\left(\alpha_{n}-F_{n}\right)
$$

We define $M_{0}=F, L_{0}=2 G, L_{-1}=1$. Then

$$
\sqrt{D}=\sqrt{F^{2}+2 G}=F+\frac{1}{\frac{\sqrt{F^{2}+L_{0}}+F}{2 G}}=M_{0}+\frac{1}{\frac{\sqrt{M_{0}^{2}+L_{0}+M_{0}}}{L_{0}}} .
$$

Let $F_{1}=\left\lfloor\frac{\sqrt{M_{0}^{2}+L_{0}}+M_{0}}{L_{0}}\right\rfloor$. Then $F_{1}=\left\lfloor\frac{2 M_{0}}{L_{0}}\right\rfloor$. Now write $2 M_{0}=F_{1} L_{0}+\varepsilon_{0}, \operatorname{deg} \varepsilon_{0}<\operatorname{deg} L_{0}$.
Since $\frac{\sqrt{M_{0}^{2}+L_{0}}+M_{0}}{L_{0}}=F_{1}+\frac{M_{0}^{2}+L_{0}-\left(L_{0} F_{1}-M_{0}\right)^{2}}{\left(\sqrt{\left.M_{0}^{2}+L_{0}+F_{1} L_{0}-M_{0}\right) L_{0}}\right.}$, we let $L_{1}=\frac{M_{0}^{2}+L_{0}-\left(F_{1} L_{0}-M_{0}\right)^{2}}{L_{0}}$. Then $L_{1}=$ $1-F_{1}\left(F_{1} L_{0}-2 M_{0}\right), M_{1}=M_{0}-\varepsilon_{0}=F_{1} L_{0}-M_{0}$, and $D=M_{1}^{2}+L_{0} L_{1}$.

Continue this, we have for $n \geqslant 1$,

$$
\begin{aligned}
M_{n} & =F_{n} L_{n-1}-M_{n-1}, \\
L_{n} & =L_{n-2}-F_{n}\left(F_{n} L_{n-1}-2 M_{n-1}\right), \\
F_{n+1} & =2\left\lfloor\frac{M_{n}}{L_{n}}\right\rfloor \\
D & =M_{n-1}^{2}+L_{n-2} L_{n-1} .
\end{aligned}
$$

We write convergents to \sqrt{D} as $P_{n} / Q_{n}=\left\langle F_{0}, F_{1}, \ldots, F_{n}\right\rangle$, where

$$
\left(\begin{array}{cc}
P_{n} & Q_{n} \\
P_{n-1} & Q_{n-1}
\end{array}\right)=\left(\begin{array}{cc}
F_{n} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
P_{n-1} & Q_{n-1} \\
P_{n-2} & Q_{n-2}
\end{array}\right) \text { for } n \geqslant 0
$$

and

$$
\left(\begin{array}{ll}
P_{-1} & Q_{-1} \\
P_{-2} & Q_{-2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Then $P_{n-1}^{2}-D Q_{n-1}^{2}=(-1)^{n} L_{n-1}$. Similarly, we write convergents to $\sqrt{D^{*}}$ as $P_{n}^{*} / Q_{n}^{*}=$ $\left\langle F_{0}^{*}, F_{1}^{*}, \ldots, F_{n}^{*}\right\rangle$.

We will call $W=U+V \sqrt{D}$ a rational solution of (1) if $U^{2}-D V^{2}=1$ and $U, V \in \mathcal{Q}[x]$. We define

$$
T=\left\{U+V \sqrt{D}: U^{2}-D V^{2}=1, \operatorname{sgn} U>0, \operatorname{sgn} V>0, \text { where } U, V \in \mathcal{Q}[x]\right\}
$$

and T_{0} to be the subset of T such that $U, V \in \mathcal{Z}[x]$.
Among all rational solutions in T, we say $P+Q \sqrt{D}$ is a minimal solution if and only if

$$
|P+Q \sqrt{D}| \leqslant|U+V \sqrt{D}| \text { for all } U+V \sqrt{D} \in T .
$$

Then by Lemma 3 in [9], the minimal solution is unique, and every rational solution $W \in T$ can be expressed as $W=W_{0}^{n}$ for some $n \geqslant 1$, where W_{0} is the minimal solution.

Let $\nu_{2}(m / n)=i-j$, where $(m, n)=1,2^{i}\left\|m, 2^{j}\right\| n$. For $A=x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$, denote the coefficient a_{j} of x^{j} in A by $\left[x^{j}\right] A$.

2. Lemmas

Here and in the sequel, we denote $D^{*}=\left(x^{2}+A X+B\right)^{2}+C x$.
Lemma 1. Suppose that the period of the continued fraction of $\sqrt{D^{*}}$ is 4 . Then the minimal solution for the polynomial Pell's equation $X^{2}-D^{*} Y^{2}=1$ is given by $P_{3}^{*}+Q_{3}^{*} \sqrt{D^{*}}$.

Proof. Suppose that the minimal solution of $X^{2}-D^{*} Y^{2}=1$ is given by $U^{*}+V^{*} \sqrt{D^{*}}$. Then by Lemma 2 in [9], $U^{*}=\lambda P_{k}^{*}, V^{*}=\lambda Q_{k}^{*}$ for some $\lambda \in \mathcal{Q}$ and $k \geqslant 0$. Thus

$$
\left(U^{*}\right)^{2}-D^{*}\left(V^{*}\right)^{2}=\lambda^{2}\left(\left(P_{k}^{*}\right)^{2}-D^{*}\left(Q_{k}^{*}\right)^{2}\right)=\lambda^{2}(-1)^{k+1} L_{k}^{*}
$$

Now by direct calculation of L_{k}^{*}, we obtain

$$
\begin{aligned}
& L_{1}^{*}=\frac{4 B}{C} x+\frac{4 A B+C}{C} \\
& L_{2}^{*}=\frac{C^{2}(4 A B+C)}{16 B^{3}} x+\frac{C^{2}\left(16 B^{3}-4 A B C-C^{2}\right)}{64 B^{4}}, \\
& L_{3}^{*}=\frac{64 B^{4}\left(16 B^{3}-4 A B C-C^{2}\right)}{C^{2}(4 A B+C)^{3}} x-\frac{512 B^{6}\left(-8 A^{2} B^{2}+8 B^{3}-6 A B C-C^{2}\right)}{C^{2}(4 A B+C)^{4}} .
\end{aligned}
$$

Since for $B=0$, we know the period of the continued fraction of $\sqrt{D^{*}}$ is 2 . Thus we assume $B \neq 0$, which implies that $L_{1}^{*} \notin \mathcal{Q}$. We note that $\left(P_{3}^{*}\right)^{2}-D^{*}\left(Q_{3}^{*}\right)^{2}=L_{3}^{*}=1$ implies that $C \neq 0$ and
$4 A B+C \neq 0$. Thus $L_{2}^{*} \notin \mathcal{Q}$. Then we have $\left|U^{*}+V^{*} \sqrt{D^{*}}\right| \geqslant\left|P_{3}^{*}+Q_{3}^{*} \sqrt{D^{*}}\right|$. Thus, $P_{3}^{*}+Q_{3}^{*} \sqrt{D^{*}}$ is the minimal solution. This proves the lemma.

We now note that the period of $\sqrt{D^{*}}$ is 4 implies that $L_{3}^{*}=1$, which in turn implies

$$
\begin{equation*}
16 B^{3}-4 A B C-C^{2}=0 \tag{5}
\end{equation*}
$$

Lemma 2. Suppose that the period of the continued fraction of $\sqrt{D^{*}}$ is 4 and the minimal solution is $P_{3}^{*}+Q_{3}^{*} \sqrt{D^{*}}$. Then $\left[x^{5}\right] P_{3}^{*}=\frac{2}{B C}=\left[x^{3}\right] Q_{3}^{*}$.

Proof. By expanding $\sqrt{D^{*}}$ using the continued fraction, we obtain

$$
\sqrt{D^{*}}=\left\langle x^{2}+A x+B, \overline{\left.\frac{2(x+A)}{C}, \frac{4 B C x-C^{2}}{8 B^{2}}, \frac{2(x+A)}{C}, 2\left(x^{2}+A x+B\right)\right\rangle ~}\right.
$$

Then

$$
\begin{aligned}
P_{3}^{*} & =\frac{2(x+A)}{C} P_{2}^{*}+P_{1}^{*} \\
& =\frac{2(x+A)}{C}\left(\frac{4 B C x-C^{2}}{8 B^{2}} P_{1}^{*}+P_{0}^{*}\right)+P_{1}^{*} \\
& =\frac{2(x+A)}{C}\left(\frac{4 B C x-C^{2}}{8 B^{2}}\right)\left(\frac{2(x+A)}{C} P_{0}^{*}+1\right)+\frac{2(x+A)}{C} P_{0}^{*}+P_{1}^{*} \\
& =\frac{2(x+A)}{C}\left(\frac{4 B C x-C^{2}}{8 B^{2}}\right)\left(\frac{2(x+A)}{C}\left(x^{2}+A x+B\right)+1\right)+\frac{2(x+A)}{C} P_{0}^{*}+P_{1}^{*}, \\
Q_{3}^{*} & =\frac{2(x+A)}{C}\left(\frac{4 B C x-C^{2}}{8 B^{2}}\right)\left(\frac{2(x+A)}{C}\right)+\frac{2(x+A)}{C}+Q_{1}^{*} .
\end{aligned}
$$

Therefore,

$$
\left[x^{5}\right] P_{3}^{*}=\frac{2}{C} \frac{4 B C}{8 B^{2}} \frac{2}{C}=\frac{2}{B C}=\left[x^{3}\right] Q_{3}^{*} .
$$

3. Main theorem

Proof of Theorem 2. Suppose contrary that the leading coefficient of X_{n-1}^{*} is in \mathcal{Z}. Then since

$$
X_{n-1}^{*}=\sum_{j}\binom{n}{2 j}\left(P_{3}^{*}\right)^{n-2 j}\left(Q_{3}^{*}\right)^{2 j}\left(D^{*}\right)^{j}
$$

has the leading coefficient

$$
\sum_{j}\binom{n}{2 j}\left(\frac{2}{B C}\right)^{n}=2^{n-1}\left(\frac{2}{B C}\right)^{n}
$$

we must have $\frac{2}{B C} \in \mathcal{Z}$. Let $\frac{2}{B C}=2^{l} m$, where $l \geqslant 0, m \in \mathcal{Z}$. Then

$$
B C=\frac{1}{2^{l-1} m}, \quad l \geqslant 0, m \in \mathcal{Z}
$$

Let $B=\frac{1}{2^{s} \alpha}, C=\frac{1}{2^{t} \beta}$, where $\alpha, \beta \in \mathcal{Q}$ and $\nu_{2}(\alpha)=\nu_{2}(\beta)=0$. Then since $B C=\frac{1}{2^{l-1} m}$, we have $\alpha \beta=m$ and $s+t=l-1$.

Putting $C=\frac{1}{2^{t} \beta}$ into Eq. (4), we have $\frac{2^{3-t}}{\beta}=8 c-a\left(4 b-a^{2}\right) \in \mathcal{Z}$, which implies that $\beta=\frac{1}{k}, k \in \mathcal{Z}$, which in turn implies that $\alpha=k m \in \mathcal{Z}$ and

$$
\begin{equation*}
k 2^{3-t}=8 c-a\left(4 b-a^{2}\right) \tag{6}
\end{equation*}
$$

This shows that $t \leqslant 3$.
Now by replacing $C=\frac{k}{2^{t}}, B=\frac{1}{2^{s} \alpha}$ in Eq. (5), we have

$$
A=\frac{16 B^{3}-C^{2}}{4 B C}=\left(\frac{2^{-2 s+t-2}}{k \alpha^{2}}-2^{s-t-2} k \alpha\right)
$$

Also by replacing $8 c-a\left(4 b-a^{2}\right)$ of Eq. (2) by $k 2^{3-t}$, we obtain

$$
\begin{aligned}
A & =\frac{2 a\left(8 c-a\left(4 b-a^{2}\right)\right)-\left(64 d-\left(4 b-a^{2}\right)^{2}\right)}{4\left(8 c-a\left(4 b-a^{2}\right)\right)} \\
& =\frac{k 2^{4-t} a-\left(64 d-\left(4 b-a^{2}\right)^{2}\right)}{k 2^{5-t}}
\end{aligned}
$$

Equating these two equations, we have

$$
\begin{equation*}
\frac{2^{-2 s+3}}{\alpha^{2}}-k^{2} 2^{s-2 t+3} \alpha=k 2^{4-t} a-\left(64 d-\left(4 b-a^{2}\right)^{2}\right) \tag{7}
\end{equation*}
$$

We note that since $t \leqslant 3$, the right-hand side of Eq. (9) is in \mathcal{Z}, which implies that $\frac{1}{\alpha^{2}} \in \mathcal{Z}$. But since $\alpha=k m \in \mathcal{Z}$, we must have $\alpha^{2}=1$ and $k^{2}=1$.

This shows that

$$
\begin{equation*}
2^{-2 s+3}-2^{s-2 t+3} \alpha=2^{4-t} a k-\left(64 d-\left(4 b-a^{2}\right)^{2}\right) \tag{8}
\end{equation*}
$$

Suppose first that a is odd. Then by Eq. (8), $64 d-\left(4 b-a^{2}\right)^{2}$ is even. But this is impossible, since $64 d-\left(4 b-a^{2}\right)^{2}$ is odd for a odd.

So we assume that a is even. Then by letting $a=2 a^{\prime}$ in Eq. (6), we have $k 2^{3-t}=8\left(c-a^{\prime}\left(b-a^{\prime 2}\right)\right) \in$ \mathcal{Z}, which implies that $t \leqslant 0$. By letting $a=2 a^{\prime}$ in Eq. (8), we have

$$
\begin{equation*}
2^{-2 s+3}-2^{s-2 t+3} \alpha=2^{4-t} a k-2^{4}\left(4 d-\left(b-a^{\prime 2}\right)^{2}\right) \tag{9}
\end{equation*}
$$

Since $t \leqslant 0$, dividing both sides of Eq. (9) by 2^{4}, we have

$$
\begin{equation*}
2^{-2 s-1}-2^{s-2 t-1} \alpha=2^{-t} a k-\left(4 d-\left(b-a^{\prime 2}\right)^{2}\right) \in \mathcal{Z} \tag{10}
\end{equation*}
$$

which in turn implies that either $-2 s-1=s-2 t-1$ or $-2 s-1 \geqslant 0, s-2 t-1 \geqslant 0$. The first case implies that $3 s=2 t$ and the second case implies that $s \leqslant-1$.

We first treat the first case. Since $t \leqslant 0$ and $3 s=2 t$, we have $s \leqslant 0$. Thus, in this case, we have $A=0, B, C \in \mathcal{Z}$ which contradicts $\frac{2}{B C} \in \mathcal{Z}$.

Thus, we are left with the second case. Since $t+s=l-1$ and $t \leqslant 0, l \geqslant 0$, we have $s \geqslant-1-t \geqslant-1$. Therefore $s=-1$. Then

$$
B= \pm 2, \quad C= \pm \frac{1}{2^{t}}, \quad A= \pm\left(2^{t}-2^{-t-3}\right)
$$

and

$$
4 d-\left(b-a^{\prime 2}\right)^{2}= \pm 2^{-t} a-2+2^{-2 t-2}
$$

Then since $8 c-a\left(4 b-a^{2}\right)= \pm 2^{3-t}$, we have

$$
\tau^{-1}: \quad x+\left(\pm 2^{-2} a-2^{t-1}+2^{-t-4}\right)
$$

Now we calculate D for $A=2^{t}-2^{-t-3}, B=2, C=\frac{1}{2^{t}}$, and $u=x+2^{-2} a-2^{t-1}+2^{-t-4}$.

$$
\begin{aligned}
D & =\left(u^{2}+\left(2^{t}-2^{-t-3}\right) u+2\right)^{2}+\frac{u}{2^{t}} \\
& =x^{4}+a x^{3}+\left(\frac{33+3 a^{2}}{8}-\frac{2^{-2 t}}{128}-\frac{3}{2^{1-2 t}}\right) x^{2}+\cdots
\end{aligned}
$$

We claim that the coefficient of x^{2} is not in \mathcal{Z}. For $t=0$,

$$
\frac{33+3 a^{2}}{8}-\frac{2^{-2 t}}{128}-\frac{3}{2^{1-2 t}}=\frac{16\left(33+3 a^{2}\right)-1-192}{128}
$$

and the numerator is odd. This shows that the coefficient of x^{2} is not in \mathcal{Z}. For $t=-1$,

$$
\frac{33+3 a^{2}}{8}-\frac{2^{-2 t}}{128}-\frac{3}{2^{1-2 t}}=\frac{4\left(33+3 a^{2}\right)-1-12}{32}
$$

and the numerator is odd. This shows that the coefficient of x^{2} is not in \mathcal{Z}. For $t \leqslant-2$,

$$
\frac{33+3 a^{2}}{8}-\frac{2^{-2 t}}{128}-\frac{3}{2^{1-2 t}}=\frac{2^{-2-2 t}\left(33+3 a^{2}\right)-2^{-6-4 t}-3}{2^{1-2 t}}
$$

and the numerator is odd. This shows that the coefficient of x^{2} is not in \mathcal{Z}. Therefore, D is not in $\mathcal{Z}[x]$, which is impossible.

For $A=-\left(2^{t}-2^{-t-3}\right), B=-2, C=-\frac{1}{2^{t}}$, and $u=x-2^{-2} a-2^{t-1}+2^{-t-4}$, we have

$$
\begin{aligned}
D & =\left(u^{2}-\left(2^{t}-2^{-t-3}\right) u-2\right)^{2}-\frac{u}{2^{t}} \\
& =x^{4}+\left(2^{-1-t}-2^{2+t}-a\right) x^{3}+\cdots .
\end{aligned}
$$

For $t=0$, the coefficient of x^{3} is not in \mathcal{Z}. For $t \leqslant-3$,

$$
2^{-1-t}-2^{2+t}-a=\frac{2^{-3-2 t}-1-2^{-2-t} a}{2^{-2-t}}
$$

and the numerator is odd and the denominator is even. Thus the coefficient of x^{3} is not in \mathcal{Z}. Now we are left with the case $t=-1$ and $t=-2$. For $t=-1$, we look at the coefficient of x^{2}. Since $t=-1$, we have $A=-\left(\frac{1}{2}-\frac{1}{4}\right)=-\frac{1}{4}, B=-2, C=-\frac{1}{2}$, and $u=x-\frac{a}{4}-\frac{1}{8}$. Then

$$
\begin{aligned}
D & =\left(u^{2}-\frac{u}{4}-2\right)^{2}-\frac{u}{2} \\
& =x^{4}-(a+1) x^{3}+\frac{2\left(3 a^{2}-a^{3}\right)-117+24 a+9 a^{2}}{32} x^{2}+\cdots
\end{aligned}
$$

Thus, the coefficient of x^{2} is not in \mathcal{Z}. Finally for $t=-2$. Note that in this case, we have $A=\frac{1}{4}$, $B=-2, C=-\frac{1}{4}$, and $u=x-\frac{a}{4}+\frac{1}{8}$. Then

$$
\begin{aligned}
D & =\left(u^{2}+\frac{u}{4}-2\right)^{2}-\frac{u}{2} \\
& =x^{4}+(1-a) x^{3}+\frac{2\left(3 a^{2}-a^{3}\right)-117-24 a+9 a^{2}}{32} x^{2}+\cdots .
\end{aligned}
$$

Thus, the coefficient of x^{2} is not in \mathcal{Z}. Therefore, the leading coefficient of X_{n-1}^{*} is not an integer.

References

[1] V.A. Malyshev, Periods of quadratic irrationalities and torsion of elliptic curves, St. Petersburg Math. J. 15 (4) (2004) 587602.
[2] R.A. Mollin, Polynomial solutions for Pell's equation revisited, Indian J. Pure Appl. Math. 28 (4) (1997) 429-438.
[3] R.A. Mollin, Polynomials of Pellian type and continued fractions, Serdica Math. J. 27 (2001) 317-342.
[4] R.A. Mollin, Infinite families of Pellian polynomials and their continued fraction expansions, Results Math. 43 (2003) 300317.
[5] R.A. Mollin, Construction of families of long continued fractions revisited, Acta Math. Acad. Nyházi 19 (2003) 175-181.
[6] R.A. Mollin, A description of continued fraction expansion of quadratic surds represented by polynomials, J. Number Theory 107 (2004) 228-240.
[7] M.B. Nathanson, Polynomial Pell's equations, Proc. Amer. Math. Soc. 86 (1976) 89-92.
[8] A.M.S. Ramasamy, Polynomial solutions for the Pell's equation, Indian J. Pure Appl. Math. 25 (1994) 577-581.
[9] W.A. Webb, H. Yokota, Polynomial Pell's equation, Proc. Amer. Math. Soc. 131 (2003) 993-1006.
[10] W.A. Webb, H. Yokota, Polynomial Pell's equation, II, J. Number Theory 106 (2004) 128-141.
[11] W.A. Webb, H. Yokota, On the period of continued fractions, JP J. Algebra Number Theory Appl. 6 (3) (2006) 551-559.
[12] H. Yokota, Polynomial Pell's equation and periods of quadratic irrationals, JP J. Algebra Number Theory Appl. 8 (1) (2007) 135-144.

[^0]: E-mail address: hyokota@sic.shibaura-it.ac.jp.

