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Abstract We show that every n × n matrix is generically a product of �n/2� + 1
Toeplitz matrices and always a product of at most 2n + 5 Toeplitz matrices. The
same result holds true if the word ‘Toeplitz’ is replaced by ‘Hankel,’ and the generic
bound �n/2� + 1 is sharp. We will see that these decompositions into Toeplitz or
Hankel factors are unusual: We may not, in general, replace the subspace of Toeplitz
or Hankel matrices by an arbitrary (2n −1)-dimensional subspace of n × n matrices.
Furthermore, such decompositions do not exist if we require the factors to be symmetric
Toeplitz or persymmetric Hankel, even if we allow an infinite number of factors.

Keywords Toeplitz decomposition · Hankel decomposition · Linear algebraic
geometry
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1 Introduction

One of the top ten algorithms of the twentieth century [1] is the ‘decompositional
approach to matrix computation’ [47]. The fact that a matrix may be expressed as a
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product of a lower-triangular with an upper-triangular matrix (LU), or of an orthogonal
with an upper-triangular matrix (QR), or of two orthogonal matrices with a diagonal
one (SVD) is a cornerstone of modern numerical computations. As aptly described in
[47], such matrix decompositions provide a platform on which a variety of scientific
and engineering problems can be solved. Once computed, they may be reused repeat-
edly to solve new problems involving the original matrix and may often be updated
or downdated with respect to small changes in the original matrix. Furthermore, they
permit reasonably simple rounding-error analysis and afford high-quality software
implementations.

In this article, we describe a new class of matrix decompositions that differs from
the classical ones mentioned above, but are similar in spirit. Recall that a Toeplitz
matrix is one whose entries are constant along the diagonals and a Hankel matrix is
one whose entries are constant along the reverse diagonals:

T =

⎡
⎢⎢⎢⎣

t0 t1 tn

t−1 t0
. . .

. . .
. . . t1

t−n t−1 t0

⎤
⎥⎥⎥⎦ , H =

⎡
⎢⎢⎢⎣

hn h1 h0

. .
. h0 h−1

h1 . .
.

. .
.

h0 h−1 h−n

⎤
⎥⎥⎥⎦

Given any n × n matrix A over C, we will show that

A = T1T2 · · · Tr , (1)

where T1, . . . , Tr are all Toeplitz matrices, and

A = H1 H2 · · · Hr , (2)

where H1, . . . , Hr are all Hankel matrices. We shall call (1) a Toeplitz decomposition
and (2) a Hankel decomposition of A. The number r is �n/2�+ 1 for almost all n × n
matrices (in fact, holds generically) and is at most 4�n/2� + 5 ≤ 2n + 5 for all n × n
matrices. So every matrix can be approximated to arbitrary accuracy by a product of
�n/2� + 1 Toeplitz (resp. Hankel) matrices since the set of products of �n/2� + 1
Toeplitz (resp. Hankel) matrices forms a generic subset and is therefore dense (with
respect to the norm topology) in the space of n ×n matrices. Furthermore, the generic
bound �n/2� + 1 is sharp—by dimension counting, we see that one can do no better
than �n/2� + 1.

The perpetual value of matrix decompositions alluded to in the first para-
graph deserves some elaboration. A Toeplitz or a Hankel decomposition of a
given matrix A may not be as easily computable as LU or QR, but once com-
puted, these decompositions can be reused ad infinitum for any problem involv-
ing A. If A has a known Toeplitz decomposition with r factors, one can solve
linear systems in A within O(rn log2 n) time via any of the superfast algo-
rithms in [2,8,17,20,27,34,36,48,56]. Nonetheless, we profess that we do not
know how to compute Toeplitz or Hankel decompositions efficiently (or stably)
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enough for them to be practically useful. We discuss two rudimentary approaches
in Sect. 7.

2 Why Toeplitz

The choice of Toeplitz factors is natural for two reasons. Firstly, Toeplitz matrices are
ubiquitous and are one of the most well-studied and understood classes of structured
matrices. They arise in pure mathematics: algebra [6], algebraic geometry [46], analy-
sis [31], combinatorics [35], differential geometry [40], graph theory [26], integral
equations [5], operator algebra [23], partial differential equations [50], probability
[45], representation theory [25], topology [42], as well as in applied mathematics:
approximation theory [54], compressive sensing [32], numerical integral equations
[39], numerical integration [51], numerical partial differential equations [52], image
processing [19], optimal control [44], quantum mechanics [24], queueing networks
[7], signal processing [53], statistics [22], time series analysis [18], and among other
areas.

Furthermore, studies of related objects such as Toeplitz determinants [21], Toeplitz
kernels [41], q-deformed Toeplitz matrices [29], and Toeplitz operators [12] have led
to much recent success and were behind some major developments in mathematics
(e.g., Borodin–Okounkov formula for Toeplitz determinant [11]) and in physics (e.g.,
Toeplitz quantization [9]).

Secondly, Toeplitz matrices have some of the most attractive computational prop-
erties and are amenable to a wide range of disparate algorithms. Multiplication,
inversion, determinant computation, and LU and QR decompositions of n × n
Toeplitz matrices may all be computed in O(n2) time and in numerically sta-
ble ways. Contrast this with the usual O(n3) complexity for arbitrary matrices. In
an astounding article [8], Bitmead and Anderson first showed that Toeplitz sys-
tems may in fact be solved in O(n log2 n) via the use of displacement rank; later
advances have achieved essentially the same complexity [possibly O(n log3 n)],
but are practically more efficient. These algorithms are based on a variety of dif-
ferent techniques: Bareiss algorithm [20], generalized Schur algorithm [2], FFT
and Hadamard product [56], Schur complement [48], semiseparable matrices [17],
divide-and-concur technique [27]—the last three have the added advantage of math-
ematically proven numerical stability. One can also find algorithms based on more
unusual techniques, e.g., number theoretic transforms [34] or syzygy reduction
[36].

In parallel to these direct methods, we should also mention the equally substantial
body of work in iterative methods for Toeplitz matrices (cf [13,14,43] and references
therein). These are based in part on an elegant theory of optimal circulant precondi-
tioners [15,16,55], which are the most complete and well-understood class of precon-
ditioners in iterative matrix computations. In short, there is a rich plethora of highly
efficient algorithms for Toeplitz matrices and the Toeplitz decomposition in (1) would
often (but not always) allow one to take advantage of these algorithms for general
matrices.
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3 Algebraic Geometry

The classical matrix decompositions1 LU, QR, and SVD correspond to the Bruhat,
Iwasawa, and Cartan decompositions of Lie groups [33,37]. In this sense, LU, QR,
SVD already exhaust the standard decompositions of Lie groups, and to go beyond
these, we will have to look beyond Lie theory. The Toeplitz decomposition described
in this article represents a new class of matrix decompositions that do not arise from
Lie theoretic considerations, but from algebraic geometric ones.

As such, the results in this article will rely on some very basic algebraic geometry.
Since we are writing for an applied and computational mathematics readership, we
will not assume any familiarity with algebraic geometry and will introduce some basic
terminologies in this section. Readers interested in the details may refer to [49] for
further information. We will assume that we are working over C.

Let C[x1, . . . , xn] denote the ring of polynomials in x1, . . . , xn with coefficients in
C. For f1, . . . , fr ∈ C[x1, . . . , xn], the set

X := {(a1, . . . , an) ∈ C
n : f j (a1, . . . , an) = 0, j = 1, 2, . . . , r}

is called an algebraic set in C
n defined by f1, . . . , fr . If I is the ideal generated by

f1, . . . , fr , we also say that X is an algebraic set defined by I .
It is easy to see that the collection of all algebraic sets in C

n is closed under arbitrary
intersection and finite union and contains both ∅ and C

n . In other words, the algebraic
sets form the closed sets of a topology on C

n that we will call the Zariski topology. It
is a topology that is much coaser than the usual Euclidean or norm topology on C

n .
All topological notions appearing in this article, unless otherwise specified, will be
with respect to the Zariski topology.

For an algebraic set X in C
n defined by an ideal I , the coordinate ring C[X ] of

X is the quotient ring C[x1, . . . , xn]/I ; the dimension of X , denoted dim(X), is the
dimension of C[X ] as a ring. Note that dim(Cn) = n, agreeing with the usual notion
of dimension. A single-point set has dimension zero.

A subset Z of an algebraic set X , which is itself also an algebraic set, is called a
closed subset of X ; it is called a proper closed subset if Z � X . An algebraic set is
said to be irreducible if it is not the union of two proper closed subsets. In this paper,
an algebraic variety will mean an irreducible algebraic set and a subvariety will mean
an irreducible closed subset of some algebraic set.

Let X and Y be algebraic varieties and ϕ : C[Y ] → C[X ] be a homomorphism of
C-algebras. Then, we have an induced map f : X → Y defined by

f (a1, . . . , an) = (
ϕ(y1)(a1, . . . , an), . . . , ϕ(ym)(a1, . . . , an)

)
.

In general, a map f : X → Y between two algebraic varieties X and Y is said to be a
morphism if f is induced by a homomorphism of rings ϕ : C[Y ] → C[X ]. Let f be

1 We restrict our attention to decompositions that exist for arbitrary matrices over both R and C. Of the six
decompositions described in [47], we discounted the Cholesky (only for positive definite matrices), Schur
(only over C), and spectral decompositions (only for normal matrices).
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a morphism between X and Y . If its image is Zariski dense, i.e., f (X) = Y , then f
is called a dominant morphism. If f is bijective and f −1 is also a morphism, then we
say that X and Y are isomorphic, denoted X � Y , and f is called an isomorphism.

An algebraic group is a group that is also an algebraic variety where the multipli-
cation and inversion operations are morphisms.

For algebraic varieties, we have the following analogue of the open mapping the-
orem in complex analysis with dominant morphisms playing the role of open maps
[49].

Theorem 1 Let f : X → Y be a morphism of algebraic varieties. If f is dominant,
then f (X) contains an open dense subset of Y .

A property P is said to be generic in an algebraic variety X if the points in X that
do not have property P are contained in a proper subvariety Z of X . When we use the
term generic without specifying X , it just means that X = C

n . Formally, let Z ⊂ X
be the subset consisting of points that do not satisfy P . If Z is a proper closed subset
of X , then we say that a point x ∈ X − Z is a generic point with respect to the property
P , or just ‘x ∈ X − Z is a generic point,’ if the property being discussed is understood
in context. The following is an elementary, but useful fact regarding generic points.

Lemma 1 Let f : X → Y be a morphism of algebraic varieties where dim(X) ≥
dim(Y ). If there is a point x ∈ X such that d fx , the differential at x, has the maximal
rank dim(Y ), then d fx ′ will also have the maximal rank dim(Y ) for any generic point
x ′ ∈ X.

Proof It is obvious that d fx is of full-rank if and only if the Jacobian determinant of
f is nonzero at the point x . Since the Jacobian determinant of f at x is a polynomial,
this means for a generic point x ′ ∈ X, d fx ′ is also of full-rank dim(Y ). ��

All notions in this section apply verbatim to the space of n × n matrices C
n×n

by simply regarding it as C
n2

, or, to be pedantic, C
n×n � C

n2
. Note that C

n×n is
an algebraic variety of dimension n2 and matrix multiplication C

n×n × C
n×n →

C
n×n, (A, B) 
→ AB, is a morphism of algebraic varieties C

2n2
and C

n2
.

4 Toeplitz Decomposition of Generic Matrices

Let Toepn(C) be the set of all n × n Toeplitz matrices with entries in C, i.e., the subset
of A = (ai, j )

n
i, j=1 ∈ C

n×n defined by equations

ai,i+r = a j, j+r ,

where −n+1 ≤ r ≤ n−1 and 1 ≤ r +i, r + j, i, j ≤ n. Note that Toepn(C) � C
2n−1

and that Toepn(C) is a subvariety of C
n×n . In fact, it is a linear algebraic variety defined

by linear polynomials.
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Toepn(C), being a linear subspace of C
n×n , has a natural basis Bk := (δi, j+k)

n
i, j=1,

k = −n + 1,−n + 2, . . . , n − 1, i.e.,

B1 =

⎡
⎢⎢⎢⎢⎣

0 1 0
0 1 . . .

0 . . . 0
. . . 1

0

⎤
⎥⎥⎥⎥⎦

, B2 =

⎡
⎢⎢⎢⎢⎣

0 0 1
0 0 . . .

0 . . . 1
. . . 0

0

⎤
⎥⎥⎥⎥⎦

, . . . ,

Bn−1 =

⎡
⎢⎢⎢⎢⎣

0 0 0 1
0 0 . . .

0 . . . 0
. . . 0

0

⎤
⎥⎥⎥⎥⎦

.

Note that B−k = BT
k and B0 = I . A Toeplitz matrix T may thus be expressed as

T =
∑n−1

j=−n+1
t j B j .

Let A = (as,t ) ∈ C
n×n be arbitrary. Suppose j is a positive integer such that

j ≤ n − 1. Then, it is easy to see the effect of left- and right-multiplications of A by
B j :

B j A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a j+1,1 a j+1,2 · · · a j+1,n

a j+2,1 a j+2,2 · · · a j+2,n
...

...
. . .

...

an,1 an,2 · · · an,n

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

AB j =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 a1,1 · · · a1,n− j

0 · · · 0 a2,1 · · · a2,n− j

0 · · · 0 a3,1 · · · a3,n− j

0 · · · 0 a4,1 · · · a4,n− j
. . .

...
...

...

0 · · · 0 an,1 · · · an,n− j

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Multiplying by B j on the left has the effect of shifting a matrix up (if j is positive)
or down (if j is negative) by | j | rows, whereas multiplying by B j on the right has the
effect of shifting a matrix to right (if j is positive) or to left (if j is negative) by | j |
columns.

We will denote r -tuples of n × n Toeplitz matrices by

Toepr
n(C) = Toepn(C) × · · · × Toepn(C)︸ ︷︷ ︸

r copies

.
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This is an algebraic variety in C
rn2

(endowed with the Zariski topology) under the
subspace topology.

Theorem 2 Let ρr : Toepr
n(C) → C

n×n be the map defined by ρr (Tn−r , . . . , Tn−1) =
Tn−r · · · Tn−1. When r ≥ �n/2� + 1, for a generic point τ = (Tn−r , . . . , Tn−1) ∈
Toepr

n(C), the differential of ρr at τ is of full-rank n2. Therefore, for a generic A ∈
C

n×n, there exists r = �n/2�+1 Toeplitz matrices T1, . . . , Tr such that A = T1 · · · Tr .

To prove this theorem, we first fix some notations. Let r = �n/2� + 1 and denote the
Toeplitz matrix occuring in the i th argument of ρr by

Xn−i :=
∑n−1

j=−n+1
xn−i, j B j , i = 1, . . . , r.

The differential of ρr at a point τ = (Tn−r , . . . , Tn−1) ∈ Toepr
n(C) is the linear map

(dρr )τ : Toepr
n(C) → C

n × n ,

(dρr )τ (Xn−r , . . . , Xn−1) =
∑r

i=1
Tn−r · · · Tn−i−1 Xn−i Tn−i+1 · · · Tn−1,

where Xn−i ∈ Toepn(C), i =1, . . . , r . For any given τ , observe that (dρr )τ (Xn−r , . . . ,

Xn−1) is an n×n matrix with entries that are linear forms in the xn−i, j ’s. Let L p,q be the
linear form in the (p, q)-th entry of this matrix. The statement of the theorem says that
we can find a point τ ∈ Toepr

n(C), so that these linear forms are linearly independent.
For any given τ , since (dρr )τ is a linear map from the r(2n−1)-dimensional Toepr

n(C)

to the n2-dimensional C
n×n , we may also regard it as an n2 × (2n − 1)r matrix M .

Hence, our goal is to find a point τ , so that this rectangular matrix M has full-rank n2;
or equivalently, M has a nonzero n2 × n2 minor.

The idea of the proof of Theorem 2 is that we explicitly find such a point τ =
(Tn−r , . . . , Tn−1), where the differential (dρr )τ of ρr at τ is surjective. This implies
that the differential of ρr at a generic point is surjective, allowing us to conclude that
ρr is dominant. We then apply Theorem 1 to deduce that the image of ρr contains an
open dense subset of C

n×n .
As will be clear later, our choice of τ = (Tn−r , . . . , Tn−1) will take the form

Tn−i := B0 + tn−i (Bn−i − B−n+i ), i = 1, . . . , r, (3)

where tn−i ’s are indeterminates. We will start by computing

Yn−i := Tn−r · · · Tn−i−1 Xn−i Tn−i+1 · · · Tn−1.

To avoid clutter in the subsequent discussions, we adopt the following abbreviation:
When we write x’s, we will mean “xn−i, j , i = 1, . . . , r, j = −n + 1, . . . , n − 1,”
and when we write t’s, we will mean “tn−i , i = 1, . . . , r .” This convention will also
apply to other lists of variables.
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Lemma 2 For τ = (Tn−r , . . . , Tn−1) as in (3), we have

Yn−i = Xn−i + [
tn−r (Bn−r − B−(n−r)) + · · · + tn−i−1(Bn−i−1 − B−(n−i−1))

]
Xn−i

+ Xn−i
[
tn−i+1(Bn−i+1−B−(n−i+1)) + · · · + tn−1(Bn−1−B−(n−1))

]+Ω(t2),

where Ω(t2) means terms of degrees at least two in t’s.

By our choice of Tn− j ’s, L p,q is a linear form in x’s with coefficients that are
polynomials in t’s. Note that L p,q has the form:

L p,q =
∑r

i=1
xn−i,q−p + Ω(t),

where Ω(t) denotes terms of degrees at least one in t’s.
By our choice of Tn− j ’s, entries of the coefficient matrix M are also polynomials in

t’s, which implies that any n2 × n2 minor of M is a polynomial in t’s. Furthermore,
observe that the constant entries (i.e., entries without t’s) in M are all 1’s. Let us
examine the coefficient of the lowest degree term of these minors.

Lemma 3 For τ = (Tn−r , . . . , Tn−1) as in (3), any n2 × n2 minor P of M is a
polynomial in t’s of degree at least (n − 1)2.

Proof Let d ≤ (n − 1)2 − 1 be a positive integer. It suffices to show that any term of
degree d in P is zero. To see this, note that the minor P is the determinant of a submatrix
obtained from choosing n2 columns of M . Hence, terms of degree d < (n −1)2 come
from taking at least 2n 1’s in M ; otherwise, the degree would be larger than or equal
to (n − 1)2. If we take 2n 1’s from M , then there exist (p, q) and (p′, q ′) such that
q − p = q ′ − p′ with two of the 1’s coming from L p,q and L p′,q ′ . But terms arising
this way must be zero because the terms determined by (p, q) and (p′, q ′) differ only
in sign. One can see this clearly in the example immediately following this proof. ��
To illustrate the proof, we consider the case n = 3 and thus r = �3/2� + 1 = 2. In
this case,

L p,q = x1,q−p + x2,q−p + Ω(t), p, q = 1, 2, 3.

The 9 × 10 coefficient matrix M takes the form

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1,−2 x2,−2 x1,−1 x2,−1 x1,0 x2,0 x1,1 x2,1 x1,2 x2,2

L1,1 ∗ ∗ ∗ ∗ 1 1 ∗ ∗ ∗ ∗
L1,2 ∗ ∗ ∗ ∗ ∗ ∗ 1 1 ∗ ∗
L1,3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1 1
L2,1 ∗ ∗ 1 1 ∗ ∗ ∗ ∗ ∗ ∗
L2,2 ∗ ∗ ∗ ∗ 1 1 ∗ ∗ ∗ ∗
L2,3 ∗ ∗ ∗ ∗ ∗ ∗ 1 1 ∗ ∗
L3,1 1 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
L3,2 ∗ ∗ 1 1 ∗ ∗ ∗ ∗ ∗ ∗
L3,3 ∗ ∗ ∗ ∗ 1 1 ∗ ∗ ∗ ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where the rows correspond to the L p,q ’s and the columns correspond to the xn−i, j ’s.
We have marked the locations of the 1’s and used ∗ to denote entries of the form Ω(t).
It is easy to see in this case that if we take a 9 × 9 minor of M , the degree in t’s of this
minor will be at least four. Indeed, it is also not hard to see that there exists a minor
of degree exactly four—this is the content of our next lemma.

Since a linear change of variables does not change the rank of a matrix, to simplify
our calculations, we will change our x’s to y’s linearly as follows:

y j = xn−r, j + . . . + xn−1, j ,

yn−1, j = xn−r, j + . . . + xn−2, j ,

...

yn−(r−1), j = xn−r, j ,

for each −(n − 1) ≤ j ≤ n − 1.

Lemma 4 For τ = (Tn−r , . . . , Tn−1) as in (3), there exists an n2 × n2 minor P of M
that contains a monomial term of degree exactly (n − 1)2 in t’s and whose coefficient
is nonzero. It follows that rank(M) = n2 for this particular choice of τ .

Proof If we use more than 2n − 1 1’s from M to form monomials in P , then we
must obtain that coefficients of these monomials are zero. Therefore, the only way to
obtain a nonzero coefficient for the degree (n − 1)2 term is to take exactly 2n − 1 1’s
and (n − 1)2 terms involving t’s to the first power. We may thus ignore the Ω(t2) in
Lemma 2. We claim that there exists a minor of M such that it contains the monomial
t2n−2
n−1 t2n−2

n−2 · · · t2n−2
n−r+2t2r−3

n−r+1 if n is even and t2n−2
n−1 t2n−2

n−2 · · · t2n−2
n−r+2t2n−2

n−r+1 if n is odd.
We will prove the odd case. The even case can be proved in the same manner. Let
n = 2k + 1. Then, r = �n/2�+ 1 = k + 1 and n − r + 1 = k + 1. Upon transforming
to the new coordinates y’s defined before this lemma, L p,q takes the form:

L p,q = yq−p + (tq−1 y1−p,q−1 + · · · ) − (tn−q yn−p,n−q + · · · )
+[tn−p(yq−n − yn−p+1,q−n) + · · · ] − [tp−1(yq−1 − yp,q−1) + · · · ],

(4)

where we have adopted the convention that ti := 0 if it is not of the form tn− j with
j = 1, . . . , r . The ‘· · · ’ in (4) denotes the trailing terms that play no role in the
formation of the required minor P . For example, the trailing terms after tq−1 y1−p,q−1
are tq−2 y2−p,q−2 + tq−3 y3−p,q−3 + · · · + tn−r yp−q+r−n,n−r . By (4), we have to
choose exactly one 1 from the linear forms L1,q−p+1, L2,q−p+2, . . . , Ln,q−p+n , where
1 ≤ q − p + j ≤ n and j = 1, . . . , n. Now, it is obvious that there is only one
way to obtain a monomial containing t2n−2

n−1 , because tn−1 only appears in L j,1 and

L j,n for j = 1, . . . , n. By the same reasoning, the monomial containing t2n−2
n−1 t2n−2

n−2
is unique. Continuing this procedure, we arrive at the conclusion that the monomial
t2n−2
n−1 t2n−2

n−2 · · · t2n−2
n−r+1 is unique in P and, in particular, the coefficient of this monomial

is not zero. ��
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To illustrate the proof of Lemma 4, we work out the case n = 5 explicitly. In this
case, there are 25 linear forms Li, j where i, j = 1, . . . , 5. The coefficients of these
linear forms Li, j determine a matrix M of size 25 × 27. Each 25 × 25 minors of M
is a polynomial in t’s. Our goal is to find a nonzero minor P of M , and we achieve
this by finding a nonzero monomial in P . Since r = �5/2� + 1 = 3, the monomial
we seek is t8

4 t8
3 . If we backtrack the way we calculate minors of M , we would see that

to obtain a particular monomial, we need to take one coefficient from each Li, j in an
appropriate way.

It is easy to see that t4 appears in L j,1 and L j,5 for j = 1, . . . , 5. Notice that we have
to take exactly one 1 from each linear form in {L p,q : −4 ≤ q − p ≤ 4} and so we are
only allowed to take eight t4’s from the ten linear forms L j,1 and L j,5, j = 1, . . . , 5,
because the set {L p,q : q − p = s} contains only one element when s = −4 or 4. Next,
we need to choose t3, and t3 appears only in L1, j , L2, j , L4, j , L5, j , L j,1, L j,2, L j,4
as well as in L j,5. Since we have already used L j,1 and L j,5 in the previous step, we
are only allowed to take t3 from L j,2, L j,4 and L1, j , L2, j , L4, j , L5, j . But by (4), the
y’s in L1, j , L2, j , L4, j , L5, j with coefficients involving t3 have also been used in the
previous step, compelling us to choose L j,2, L j,4.

Again, we have to take 1’s from each linear form in {L p,q : −4 ≤ q − p ≤ 4}.
Therefore, we obtain t8

3 . Now there are five Li, j ’s left, they are L j,3 for 1 ≤ j ≤ 5,
and we have to take 1 for each L j,3 since we need nine 1’s. Thus, we obtain t8

4 t8
3 in

the unique way.
The following summarizes the procedure explained above. The three tables below

are intended to show how we obtain the monomial t8
4 t8

3 . The (i, j)th entry of the three
tables indicates the term we pick from Li, j . For example, the (1, 1)th entry of those
tables means that we would pick t4 from L1,1 and the (5, 3)th entry means that we
would pick 1 from L5,3. The ‘×’ in the (1, 2)th entry of the first table indicate that we
have yet to pick an entry from L1,2. In case it is not clear, we caution the reader that
these tables are neither matrices nor determinants.

1. We pick eight t4’s from Li,1 and L j,5 where i = 1, . . . , 4, j = 2, . . . , 5, and we
pick two 1’s from L5,1 and L1,5. This yields a factor of t8

4 .

Li, j 1 2 3 4 5
1 t4 × × × 1
2 t4 × × × t4
3 t4 × × × t4
4 t4 × × × t4
5 1 × × × t4

2. We pick eight t3’s from Li,2 and L j,4 where i = 1, . . . , 4, j = 2, . . . , 5, and we
pick two 1’s from L5,2 and L4,5. This yields the factor t8

4 t8
3 .

Li, j 1 2 3 4 5
1 t4 t3 × 1 1
2 t4 t3 × t3 t4
3 t4 t3 × t3 t4
4 t4 t3 × t3 t4
5 1 1 × t3 t4
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3. In order to preserve the t8
4 t8

3 factor obtained above, we pick five 1’s from
L1,3, L2,3, L3,3, L4,3, and L5,3.

Li, j 1 2 3 4 5
1 t4 t3 1 1 1
2 t4 t3 1 t3 t4
3 t4 t3 1 t3 t4
4 t4 t3 1 t3 t4
5 1 1 1 t3 t4

Proof (Proof of Theorem 2:) By Lemma 4, the linear map dρτ is surjective at the point
τ = (Tn−r , . . . , Tn−1) as defined in (3). Hence, dρτ is surjective at any generic point τ
by Lemma 1. If im(ρ) is contained in a closed subset of C

n×n , then we obtain that the
rank of dρ at a generic point has rank less than or equal to n2, which is a contradiction
to the fact that dρ is surjective at a generic point. By Theorem 1, we see that the image
of ρ contains an open dense subset of C

n×n . This completes the proof of Theorem 2.
��

Let X be a generic n × n matrix. Then, Theorem 2 ensures the existence of a
decomposition into a product of r = �n/2� + 1 Toeplitz matrices. Note that the
decomposition of X is not unique without further conditions on the Toeplitz factors.
An easy way to see this is that (α1T1)(α2T2) · · · (αr Tr ) = T1T2 · · · Tr as long as
α1α2 · · ·αr = 1. In fact, the preimage ρ−1(X) is the set of r -tuples of Toeplitz matrices
(T1, T2, . . . , Tr ) such that T1T2 · · · Tr = X , and this set is an algebraic set of dimension
r(2n − 1) − n2, i.e., 3n/2 − 1 for even n and (n − 1)/2 for odd n.

The generic number of Toeplitz factor r = �n/2� + 1 in Theorem 2 is, however,
sharp.

Corollary 1 r = �n/2� + 1 is the smallest integer such that every generic n × n
matrix is a product of r Toeplitz matrices.

Proof If r is not the smallest such integer, then there exists some s < r such that
ρs : Toepn(C)s → C

n×n is dominant, i.e., the image of ρs is dense in C
n×n . Since

ρs is a polynomial map with a dense image, it is a morphism between two algebraic
varieties and, hence, its image contains an open dense subset of C

n×n . This implies
that dim(Toepn(C)s) ≥ dim(Cn×n), i.e., s2 ≥ n2, contradicting our assumption that
s < r = �n/2�. ��

Theorem 2 remains true if we replace Toeplitz matrices by Hankel matrices. This
follows from the observation that if H is a Hankel matrix, then J T and T J are both
Toeplitz matrices, where J denotes the permutation matrix with 1’s on the reverse
diagonal and 0’s elsewhere:

J =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 0 · · · 1 0
...

... . .
. ...

...

0 1 . . . 0 0
1 0 . . . 0 0

⎤
⎥⎥⎥⎥⎦

. (5)
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Note that J 2 = I . Let X = T1 · · · Tr be a Toeplitz decomposition of a generic
matrix X . If r is even, then

X = (T1 J )(J T2) · · · (Tr−1 J )(J Tr )

is a Hankel decomposition of X . If r is odd, then

J X = (J T1)(T2 J )(J T3) · · · (Tr−1 J )(J Tr )

is a Hankel decomposition of J X . Since J is invertible, if U ⊆ C
n×n is a Zariski open

subset, then so is the set JU . This implies that a generic matrix may always be written
as a product of r Hankel matrices. We would like to thank an anonymous referee of
this paper for providing this argument, vastly simplifying our original proof.

Although we have been working over C for convenience, Theorem 2 and Corol-
lary 1 (as well as their Hankel analogues) hold over any algebraically closed field, for
example, the algebraic numbers Q or the field of Puiseux series over C. Indeed, Theo-
rem 1 is true for any morphism of schemes over an integral domain (see, for example,
[49]) and Lemma 1 is true over any infinite perfect field (see, for example, [28]). In
other words, the two results that we use in our proofs here hold over algebraically
closed fields.

Moreover, even though the proof of Theorem 2 requires algebraic closure, if we
only consider the dominance and surjectivity of ρr as a morphism of schemes, then
our results are true over any infinite field of characteristic zero since Theorem 1 and
Lemma 1 hold in this case. For example, it is true that the image of ρr contains an
open subscheme of C

n×n , but this does not imply that a generic matrix is the product
of r Toeplitz matrices. The reason being that for a non-algebraically field k, there
is no one-to-one correspondence between closed points of Spec(k[x1, . . . , xn]) and
elements of k

n (such a correspondence exists for an algebraically closed field).

5 Toeplitz Decomposition of Arbitrary Matrices

We now show that every invertible n × n matrix is a product of 2r Toeplitz matrices
and every matrix is a product of 4r + 1 Toeplitz matrices, where r = �n/2� + 1.

We make use of the following property of algebraic groups [10].

Lemma 5 Let G be an algebraic group and U, V be two open dense subsets of G.
Then, U V = G.

Proposition 1 Let W be a subspace of C
n × n such that the map ρ : W r → C

n × n is
dominant. Then, every invertible n × n matrix can be expressed as the product of 2m
elements in W .

Proof Since ρ is dominant, im(ρ) contains an open dense subset of C
n×n . On the other

hand, GLn(C) is an open dense subset of C
n×n ; therefore, im(ρ) contains an open

dense subset of GLn(C). Let U be such an open dense subset. Then, by Lemma 5,
we see that UU = GLn(C). Hence, every invertible matrix A can be expressed as a
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product of two matrices in U and so A can be expressed as a product of 2m matrices
in W . ��
Corollary 2 Every invertible n×n matrix can be expressed as a product of 2r Toeplitz
matrices.

Proof By Theorem 2, we have seen that the map ρ is dominant. Hence, by Proposi-
tion 1, every invertible matrix is a product of 2r Toeplitz matrices. ��
Lemma 6 Let W be a linear subspace of C

n×n such that ρ : W r → C
n×n is

dominant. Let A ∈ C
n×n and suppose the orbit of A under the action of GLn(C) ×

GLn(C), acting by left and right matrix multiplication, intersects W . Then, A can be
expressed as a product of 4m + 1 matrices in W .

Proof By assumption, there exist invertible matrices P, Q such that A = P B Q, where
B ∈ W . By Proposition 2, we know that P, Q can be decomposed into a product of r
matrices in W . Hence, A can be expressed as a product of 4m + 1 matrices in W . ��
Theorem 3 Every n × n matrix can be expressed as a product of 4r + 1 Toeplitz
matrices for r = �n/2� + 1.

Proof It remains to consider the rank-deficient case. Let A be an n × n matrix of rank
m < n. Then, there exist invertible matrices P, Q such that A = P Bn−m Q, where
Bk = (δi+k, j ) for k = 1, . . . , n − 1. By Lemma 6, A is a product of 4r + 1 Toeplitz
matrices. ��

It is easy to see that 4r +1 is not the smallest integer p such that every n ×n matrix
is a product of p Toeplitz matrices. For example, consider the case n = 2. If we set

[
x y
z x

] [
s t
u s

]
=

[
a b
c d

]
,

where x, y, z, s, t , and u are unknowns; a simple calculation shows that when c =
b = 0, we have a solution

[
0 a
d 0

] [
0 1
1 0

]
=

[
a 0
0 d

]
,

and otherwise we have solutions

x = as − bu

s2 − tu
, y = bs − at

s2 − tu
, z = cs2 − ctu − asu + bu2

(s2 − tu)s
,

where s, t , and u are parameters satisfying

(s2 − tu)s �= 0, (a − d)s3 + cs2t − bs2u − ct2u + btu2 + (d − a)stu = 0.

Hence, any 2 × 2 matrix requires two Toeplitz factors to decompose.
While the generic bound r = �n/2�+1 is sharp by Corollaries 1, we see no reason

that the bound 4r + 1 in Theorem 3 should also be sharp. In fact, we are optimistic
that the generic bound r holds always:
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Conjecture 1 Every matrix A ∈ C
n×n is a product of at most �n/2� + 1 Toeplitz

matrices.

The discussion in this section clearly also applies to Hankel decomposition.

6 Toeplitz Decomposition is Special

We will see in this section that the Toeplitz decomposition studied above are excep-
tional in two ways: (1) The Toeplitz structure of the factors cannot be extended to
arbitrary structured matrices that form a (2n −1)-dimensional subspace of C

n × n , and
(2) the Toeplitz structure of the factors cannot be further restricted to circulant, sym-
metric Toeplitz, or persymmetric Hankel. Moreover, (1) and (2) hold even if we allow
an infinite number of factors in the decomposition. For (2), one may immediately rule
out circulant matrices since these are closed under multiplication although the other
two structures might seem plausible at first.

Noting that Toepn(C) is a (2n − 1)-dimensional subspaces of C
n × n , one might

suspect that such decompositions are nothing special and would hold for any subspace
W ⊆ C

n × n of dimension 2n −1. This is not the case. In fact, for any d = 1, . . . , n2 −
n + 1, we may easily construct a d-dimensional subspace W ⊆ C

n × n such that a
decomposition of an arbitrary matrix into products of r elements of W does not exist
for any r ∈ N. For example, W could be taken to be any d-dimensional subspace of
C

n×n consisting of matrices of the form

⎡
⎢⎢⎣

∗ ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...

0 ∗ · · · ∗

⎤
⎥⎥⎦ ,

i.e., with zeros below the (1, 1)th entry. Since such a structure is preserved under
matrix product, the semigroup generated by W , i.e., the set of all products of matrices
from W , could never be equal to all of C

n×n .
While here we are primarily concern with the semigroup generated by a subspace,

it is interesting to also observe the following.

Proposition 2 Let W be a proper associative subalgebra (with identity) of C
n × n.

Then, dim W ≤ n2 − n + 1.

Proof Every associative algebra can be made into a Lie algebra by defining the Lie
bracket as [X, Y ] = XY − Y X . So W may be taken to be a Lie algebra. Let sln(C)

be the Lie algebra of traceless matrices. For any X ∈ W , we can write

X = X0 + tr(X)

n
I,

where tr(X) is the trace of X , X0 is an element in sln(C), and I is the identity matrix.
In particular, X0 ∈ W since both I and X are in W . Hence, we have

W = (W ∩ sln(C)) ⊕ C · I.
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Since W ∩ sln(C) is a proper Lie subalgebra of sln(C) and the dimension of a
proper Lie subalgebra of sln(C) cannot exceed n2 − n [3], we must have

dim W ≤ n2 − n + 1.

��
On the other hand, one might perhaps think that any n × n matrix is expressible as a

product of n symmetric Toeplitz matrices (note that these require exactly n parameters
to specify and form an n-dimensional linear subspace of Toepn(C)). We see below
that this is false.

Theorem 4 Let n ≥ 2. There exists A ∈ C
n×n that cannot be expressed as a product

of r symmetric Toeplitz matrices for any r ∈ N.

Proof We exhibit a subset S � C
n × n that contains all symmetric Toeplitz matrices but

also matrices that are neither symmetric nor Toeplitz. The desired result then follows
by observing that there are n × n matrices that cannot be expressed as a product of
elements from S.

Let the entries of X, Y ∈ C
n × n satisfy xi j = xn−i+1,n− j+1 and yi j =

yn−i+1,n− j+1, respectively, i.e.,

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x11 x12 x13 · · · x1,n−2 x1,n−1 x1n

x21 x22 x23 · · · x2,n−2 x2,n−1 x2n

x31 x32 x33 · · · x3,n−2 x3,n−1 x3n
...

...
...

. . .
...

...
...

x3n x3,n−1 x3,n−2 · · · x33 x32 x31
x2n x2,n−1 x2,n−2 · · · x23 x22 x21
x1n x1,n−1 x1,n−2 · · · x13 x12 x11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11 y12 y13 · · · y1,n−2 y1,n−1 y1n

y21 y22 y23 · · · y2,n−2 y2,n−1 y2n

y31 y32 y33 · · · y3,n−2 y3,n−1 y3n
...

...
...

. . .
...

...
...

y3n y3,n−1 y3,n−2 · · · y33 y32 y31
y2n y2,n−1 y2,n−2 · · · y23 y22 y21
y1n y1,n−1 y1,n−2 · · · y13 y12 y11

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Let Z = (zi j ) = XY . Then, it is easy to see that zi j = zn−i+1,n− j+1 since

zi j =
n∑

k=1

xik yk j =
n∑

k=1

xn−i+1,n−k+1 yn−k+1,n− j+1 = zn−i+1,n− j+1.

Let S be the variety of matrices defined by equations xi j = xn−i+1,n− j+1, where
1 ≤ i, j ≤ n. It is obvious that S is a proper subvariety of C

n × n and we just saw that
it is closed under matrix product, i.e., X, Y ∈ S implies XY ∈ S.

123



Found Comput Math

Since symmetric Toeplitz matrices are contained in S, product of any r symmetric
Toeplitz matrices must also be in S. Therefore, for any r ∈ N and A �∈ S, it is not
possible to express A as a product of r symmetric Toeplitz matrices. ��
Recall that an n × n matrix X = (xi j ) is persymmetric if xi j = xn− j+1,n−i+1 for all
1 ≤ i, j ≤ n. Since the map X 
→ J X , with J as defined in (5), sends a persym-
metric matrix to a symmetric matrix and vice versa, one may deduce the analogue of
Theorem 4 for persymmetric Hankel matrices.

7 Computing the Toeplitz Decomposition

We will discuss two approaches toward computing Toeplitz decompositions for generic
matrices. The first uses numerical algebraic geometry and yields a decomposition with
the minimal number, i.e., r = �n/2� + 1, of factors, but is difficult to compute in
practice. The second uses numerical linear algebra and is O(n3) in time complexity,
but requires an additional n permutation matrices and yields a decomposition with 2n
Toeplitz factors.

These proposed methods are intended to: (1) provide an idea of how the purely
existential discussions in the Sect. 4 may be made constructive and (2) shed light
on the computational complexity of such decompositions (e.g., the second method
is clearly polynomial time). Important issues like backward numerical stability have
been omitted from our considerations. Further developments are necessary before
these methods can become practical for large n, and these will be explored in [57].

7.1 Solving a System of Linear and Quadratic Equations

For notational convenience later, we drop the subscript r and write

ρ : Toepr
n(C) → C

n×n

for the map ρr introduced in Theorem 2. We observe that Toepn(C) � C
2n−1 and,

therefore, we may embed Toepr
n(C), being a product of r copies of Toepn(C), via the

Segre embedding [38] into (C2n−1)⊗r . It is easy to see that we then have the following
factorization of ρ:

Here, i denotes the Segre embedding of Toepr
n(C) into (C2n−1)

⊗r
and π is a

linear projection from (C2n−1)
⊗r

onto C
n × n . The image of the Segre embedding is

the well-known Segre variety. Note that like ρ, both i and π depend on r , but we
omitted subscripts to avoid notational clutter. An explicit expression for i is as an
outer product i(t1, . . . , tr ) = t1 ⊗ . . .⊗ tr , where t1, . . . , tr ∈ C

2n−1 are the vectors of
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parameters (e.g., first column and row) that determine the Toeplitz matrices T1, . . . , Tr ,
respectively. There is no general expression for π , but for a fixed r , one can determine
π iteratively.

For example, if n = 2, we set r = 2 so that ρ is dominant by Theorem 2. Let X, Y
be two Toeplitz matrices. Then,

X =
[

x0 x1
x−1 x0

]
, Y =

[
y0 y1

y−1 y0

]
, XY =

[
x0 y0 + x1 y−1 x0 y1 + x1 y0

x−1 y0 + x0 y−1 x−1 y1 + x0 y0

]
.

The map ρ : Toep2(C) × Toep2(C) → C
2×2 can be factored as ρ = π ◦ i ,

where i is the Segre embedding of Toep2(C) × Toep2(C) into C
3 ⊗ C

3 and π is the
projection of C

3 ⊗ C
3 onto C

2×2. More specifically, we have

i

([
x0 x1

x−1 x0

]
,

[
y0 y1

y−1 y0

])
=

⎡
⎣

x−1 y−1 x−1 y0 x−1 y1
x0 y−1 x0 y0 x0 y1
x1 y−1 x1 y0 x1 y1

⎤
⎦

and

π

⎛
⎝

⎡
⎣

z−1,−1 z−1,0 z−1,1
z0,−1 z0,0 z0,1
z1,−1 z1,0 z1,1

⎤
⎦

⎞
⎠ =

[
z0,0 + z1,−1 z0,1 + z1,0

z−1,0 + z0,−1 z−1,1 + z0,0

]
.

Now, given a 2 × 2 matrix A, a decomposition of A into the product of two Toeplitz
matrices is equivalent to finding an intersection of the Segre variety V = i(Toep2(C)×
Toep2(C)) with the affine linear space π−1(A). It is well known that the Segre variety
V is cut out by quadratic equations given by the vanishing of 2 × 2 minors of

⎡
⎣

z−1,−1 z−1,0 z−1,1
z0,−1 z0,0 z0,1
z1,−1 z1,0 z1,1

⎤
⎦ .

These nine quadratic equations defined by the vanishing of 2 × 2 minors, together with
the four linear equations that defineπ−1(A), can be used to calculate the decomposition
of A. In summary, the problem of computing a Toeplitz decomposition of a 2 × 2 matrix
reduces to the problem of computing a solution to a system of nine quadratic and four
linear equations. More generally, this extends to arbitrary dimensions—computing a
Toeplitz decomposition of an n × n matrix is equivalent to computing a solution to a
linear quadratic system

cT
i x = di , i = 1, . . . , l, xT E j x = 0, j = 1, . . . , q. (6)
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The l linear equations form a linear system CTx = d, where c1, . . . , cl are the columns
of the matrix C and d = [d1, . . . , dl ]T; these define the linear variety π−1(A). The q
quadratic equations define the Segre variety V . By Theorem 2, the two varieties must
have a non-empty intersection, i.e., a solution to (6) must necessarily exist, for any
generic A (and for all A if Conjecture 1 is true). Observe that d depends on the entries
of the input matrix A but the matrix C and the symmetric matrices E1, . . . , Eq depend
only on r and are the same regardless of the input matrix A.

Such a system may be solved symbolically using computer algebra techniques
(e.g., Macaulay2 [30]) or numerically via homotopy continuation techniques (e.g.,
Bertini [4]). The complexity of solving (6) evidently depends on both l and q, but is
dominated by q, the number of quadratic equations. It turns out that q may often be
reduced, i.e., some of the quadratic equations may be dropped from (6). For example,
suppose that the entries of X and Y are all nonzero in the 2 × 2 example above.
Observe that the linear equations defining π−1(A) do not involve z−1,−1 and z1,1. So
instead of the original system of nine quadratic and four linear equations, we just need
to consider a reduced system of two quadratic equations z−1,0z0,1 − z0,0z−1,1 = 0,
z0,−1z1,0 − z0,0z1,−1 = 0 and four linear equations.

In the 3 × 3 case, ρ factorizes as

Denoting the Toeplitz factors by X = [x j−i ], Y = [y j−i ] ∈ Toep3(C), the maps i
and π are given by

i([xk], [ym]) = [xk ym] ∈ C
5×5, k, m = −2,−1, 0, 1, 2, (7)

and

π([zkm]) =
[∑

k+m= j−i, 1−i≤k, m≤ j−1
zkm

]
∈ C

3×3, i, j = −1, 0, 1. (8)

The vanishing of the 2 × 2 minors of (7) yields a system of ten quadratic equations,
and setting π(Z) = A in (8) yields a system of nine linear equations. Any common
solution, which must exist by Theorem 2, gives us a decomposition of the generic
3 × 3 matrix A.

Example 1 The following is an explicit numerical example computed by solving the
linear quadratic system with Bertini [4].

⎡
⎣

1 2 3
4 5 6
7 8 9

⎤
⎦ =

⎡
⎣

2.2222 0.8889 −0.4444
3.5556 2.2222 0.8889
4.8889 3.5556 2.2222

⎤
⎦

⎡
⎣

0.2500 1.0000 1.0000
1.0000 0.2500 1.0000
1.0000 1.0000 0.2500

⎤
⎦ .
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7.2 Using Gaussian Elimination

If we allow 2n Toeplitz matrices T1, . . . , T2n and n permutation matrices P1, . . . , Pn ,
then a generic n × n matrix A may be decomposed as

A = T1T2 P1T3T4 P2 · · · T2n−1T2n Pn . (9)

While this is not strictly speaking a Toeplitz decomposition, it can nonetheless be
computed in polynomial time in exact arithmetic without regard to numerical stability.
For a generic matrix A ∈ C

n × n , we may perform Gaussian elimination without
pivoting to get

A = (I + v1eT
1 )(I + v2eT

2 ) · · · (I + vneT
n ),

where e j is the j th standard basis vector of C
n . If we write I + vkeT

k = Πk(I +
wkeT

1 )Πk where Πk is the permutation matrix corresponding to the permutation
(1 � k) ∈ Sn and wk = Πkvk , then I + wkeT

1 = Wk(W −1
k + eneT

1 ) where
wk = [wk1, wk2, . . . , wkn]T,

Wk =

⎡
⎢⎢⎢⎢⎣

wkn wk,n−1 · · · wk2 wk1
0 wkn · · · wk3 wk2
...

...
. . .

...
...

0 0 · · · wkn wk,n−1
0 0 · · · 0 wkn

⎤
⎥⎥⎥⎥⎦

, eneT
1 =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0
1 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

.

Now we may take Tk = Wk and Tk+1 = W −1
k + eneT

1 to be the required Toeplitz
factors and Pk := ΠkΠk+1 to be the permutation factors, k = 1, . . . , n. The matrices
Tk and Tk+1 are Toeplitz since Wk is an upper-triangular Toeplitz matrices and the
inverse of such a matrix is again an upper-triangular Toeplitz matrix. As the inversion
of an upper-triangular Toeplitz matrix requires only O(n log n) arithmetic steps (cf
Sect. 2), computational cost is at most O(n3), dominated by the arithmetic steps
required in Gaussian elimination.

Example 2 Applying the above to a random 5 × 5 matrix with small integer entries

A =

⎡
⎢⎢⎢⎢⎣

2 5 2 5 3
4 5 5 2 2
2 3 2 1 5
3 1 5 2 3
4 1 2 4 3

⎤
⎥⎥⎥⎥⎦

,

we obtain A = T1T2 P1T3T4 P2T5T6 P3T7T8 P4T9T10 P5, where

T1 = T ([4, 3, 2, 4, 1], [4, 0, 0, 0, 0]),
T2 = T ([0.25,−0.1875, 0.015625,−0.16796875, 0.2431640625], [0.25, 0, 0, 0, 1]),
P1 = (1 � 2),
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T3 = T ([−9, −6.5,−2, 2.5,−6], [−9, 0, 0, 0, 0]),
T4 = T ([−0.11111, 0.0802469, 0.0332647,−0.02467230, 0.121575], [−0.11111, 0, 0, 0, 1]),
P2 = (1 � 3 � 2),

T5 = T ([−3.8, 0.7, 1.5,−0.2,−1.4], [−3.8, 0, 0, 0, 0]),
T6 = T ([−0.26316,−0.0484764,−0.112808,−0.026065, 0.050173], [−0.26315, 0, 0, 0, 1]),
P3 = (1 � 4 � 3),

T7 = T ([16, −4.5, 2, 2, 2.5], [16, 0, 0, 0, 0]),
T8 = T ([−0.0625, 0.017578,−0.0028687,−0.0108166,−0.014646], [0.0625, 0, 0, 0, 1]),
P4 = (1 � 5 � 4),

T9 = T ([25.85714, 2.85714,−14.71429,−6.7142857,−76.71429], [25.85714, 0, 0, 0, 0]),
T10 = T ([0.038674,−0.004273, 0.02248, 0.00513, 0.125856], [0.038674, 0, 0, 0, 1]),
P5 = (1 � 5).

Here T (v,w) denotes the Toeplitz matrix whose first row is v ∈ C
n and first column

is w ∈ C
n .
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