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In this paper, using the production matrix of a Riordan array, we obtain a recurrence relation for polynomial sequence associated
with the Riordan array, and we also show that the general term for the sequence can be expressed as the characteristic polynomial of
the principal submatrix of the productionmatrix. As applications, a unified determinant expression for the four kinds of Chebyshev
polynomials is given.

1. Introduction

The concept of a Riordan array is very useful in combina-
torics. The infinite triangles of Pascal, Catalan, Motzkin, and
Schröder are important andmeaningful examples of Riordan
array, and many others have been proposed and developed
(see, e.g., [1–7]). In the recent literature, Riordan arrays have
attracted the attention of various authors from many points
of view andmany examples and generalizations can be found
(see, e.g., [8–12]).

A Riordan array denoted by (𝑔(𝑡), 𝑓(𝑡)) is an infinite
lower triangular matrix such that its column 𝑘 (𝑘 =
0, 1, 2, . . .) has generating function 𝑔(𝑡)𝑓(𝑡)𝑘, where 𝑔(𝑡) =
∑
∞

𝑛=0
𝑔𝑛𝑡
𝑛 and 𝑓(𝑡) = ∑∞

𝑛=0
𝑓𝑛𝑡
𝑛 are formal power series with

𝑔0 = 1, 𝑓0 = 0, and 𝑓1 ̸= 0. That is, the general term of matrix
𝑅 = (𝑔(𝑡), 𝑓(𝑡)) is 𝑟𝑛,𝑘 = [𝑡

𝑛]𝑔(𝑡)𝑓(𝑡)
𝑘; here [𝑡𝑛]ℎ(𝑡) denotes

the coefficient of 𝑡𝑛 in power series ℎ(𝑡). Given a Riordan
array (𝑔(𝑡), 𝑓(𝑡)) and column vector 𝐵 = (𝑏0, 𝑏1, 𝑏2, . . .)

𝑇, the
product of (𝑔(𝑡), 𝑓(𝑡)) and 𝐵 gives a column vector whose
generating function is 𝑔(𝑡) 𝑏(𝑓(𝑡)), where 𝑏(𝑡) = ∑∞

𝑛=0
𝑏𝑛𝑡
𝑛.

If we identify a vector with its ordinary generating function,
the composition rule can be rewritten as

(𝑔 (𝑡) , 𝑓 (𝑡)) 𝑏 (𝑡) = 𝑔 (𝑡) 𝑏 (𝑓 (𝑡)) . (1)

This property is called the fundamental theorem for Riordan
arrays and this leads to the matrix multiplication for Riordan
arrays:

(𝑔 (𝑡) , 𝑓 (𝑡)) (ℎ (𝑡) , 𝑙 (𝑡)) = (𝑔 (𝑡) ℎ (𝑓 (𝑡)) , 𝑙 (𝑓 (𝑡))) . (2)

The set of all Riordan arrays forms a group under the previos
operation of a matrix multiplication. The identity element of
the group is (1, 𝑡). The inverse element of (𝑔(𝑡), 𝑓(𝑡)) is

(𝑔 (𝑡) , 𝑓 (𝑡))
−1
= (

1

𝑔 (𝑓 (𝑡))
, 𝑓 (𝑡)) , (3)

where 𝑓(𝑡) is compositional inverse of 𝑓(𝑡).
A Riordan array 𝑅 = (𝑔(𝑡), 𝑓(𝑡)) = (𝑟𝑛,𝑘)𝑛,𝑘≥0 can be

characterized by two sequences 𝐴 = (𝑎𝑖)𝑖≥0 and 𝑍 = (𝑧𝑖)𝑖≥0
such that, for 𝑛, 𝑘 ≥ 0

𝑟𝑛+1,0 = 𝑧0𝑟𝑛,0 + 𝑧1𝑟𝑛,1 + 𝑧2𝑟𝑛,2 + ⋅ ⋅ ⋅ ,

𝑟𝑛+1,𝑘+1 = 𝑎0𝑟𝑛,𝑘 + 𝑎1𝑟𝑛,𝑘+1 + 𝑎2𝑟𝑛,𝑘+2 + ⋅ ⋅ ⋅ .
(4)

If 𝐴(𝑡) and 𝑍(𝑡) are the generating functions for the 𝐴- and
𝑍-sequences, respectively, then it follows that [9, 13]

𝑔 (𝑡) =
1

1 − 𝑡𝑍 (𝑓 (𝑡))
, 𝑓 (𝑡) = 𝑡𝐴 (𝑓 (𝑡)) . (5)
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If the inverse of 𝑅 = (𝑔(𝑡), 𝑓(𝑡)) is 𝑅−1 = (𝑑(𝑡), ℎ(𝑡)), then the
𝐴- and 𝑍-sequences of 𝑅 are

𝐴 (𝑡) =
𝑡

ℎ (𝑡)
, 𝑍 (𝑡) =

1

ℎ (𝑡)
(1 − 𝑑 (𝑡)) . (6)

For an invertible lower triangularmatrix𝑅, its production
matrix (also called its Stieltjesmatrix; see [11, 14]) is thematrix
𝑃 = 𝑅−1𝑅, where 𝑅 is the matrix 𝑅with its first row removed.
The production matrix 𝑃 can be characterized by the matrix
equality 𝑅𝑃 = 𝐷𝑅, where 𝐷 = (𝛿𝑖+1,𝑗)𝑖,𝑗≥0 (𝛿 is the usual
Kronecker delta).

Lemma 1 (see [14]). Assume that𝑅 = (𝑟𝑛,𝑘) is an infinite lower
triangularmatrixwith 𝑟𝑛,𝑛 ̸= 0.Then𝑅 is a Riordan array if and
only if its production matrix 𝑃 is of the form

𝑃 =
(
(

(

𝑧0 𝑎0 0 0 0 0 ⋅ ⋅ ⋅

𝑧1 𝑎1 𝑎0 0 0 0 ⋅ ⋅ ⋅

𝑧2 𝑎2 𝑎1 𝑎0 0 0 ⋅ ⋅ ⋅

𝑧3 𝑎3 𝑎2 𝑎1 𝑎0 0 ⋅ ⋅ ⋅

𝑧4 𝑎4 𝑎3 𝑎2 𝑎1 𝑎0 ⋅ ⋅ ⋅
...

...
...

...
...

...
. . .

)
)

)

, (7)

where (𝑎0, 𝑎1, 𝑎2, . . .) is the A-sequence and (𝑧0, 𝑧1, 𝑧2, . . .) is the
Z-sequence of the Riordan array 𝑅.

Definition 2. Let (𝑟𝑛(𝑥))𝑛≥0 be a sequence of polynomials
where 𝑟𝑛(𝑥) is of degree 𝑛 and 𝑟𝑛(𝑥) = ∑

𝑛

𝑘=0
𝑟𝑛,𝑘𝑥
𝑘. We say

that (𝑟𝑛(𝑥))𝑛≥0 is a polynomial sequence of Riordan type if
the coefficient matrix (𝑟𝑛,𝑘)𝑛,𝑘≥0 is an element of the Riordan
group; that is, there exists a Riordan array (𝑔(𝑡), 𝑓(𝑡)) such
that (𝑟𝑛,𝑘)𝑛,𝑘≥0 = (𝑔(𝑡), 𝑓(𝑡)). In this case, we say that
(𝑟𝑛(𝑥))𝑛≥0 is the polynomial sequence associated with the
Riordan array (𝑔(𝑡), 𝑓(𝑡)).

Letting 𝑟𝑛(𝑥) = ∑
𝑛

𝑘=0
𝑟𝑛,𝑘𝑥
𝑘, 𝑛 ≥ 0, then in matrix form

we have

(

𝑟0,0 0 0 0 ⋅ ⋅ ⋅

𝑟1,0 𝑟1,1 0 0 ⋅ ⋅ ⋅

𝑟2,0 𝑟2,1 𝑟2,2 0 ⋅ ⋅ ⋅

𝑟3,0 𝑟3,1 𝑟3,2 𝑟3,3 ⋅ ⋅ ⋅
...

...
...

...
. . .

)(

1

𝑥

𝑥2

𝑥3

...

)=(

𝑟0 (𝑥)

𝑟1 (𝑥)

𝑟2 (𝑥)

𝑟3 (𝑥)
...

).

(8)

Hence, by using (1), we have the following lemma.

Lemma 3. Let (𝑟𝑛(𝑥))𝑛≥0 be the polynomial sequence asso-
ciated with a Riordan array (𝑔(𝑡), 𝑓(𝑡)), and let 𝑟(𝑡, 𝑥) =
∑
∞

𝑛=0
𝑟𝑛(𝑥)𝑡

𝑛 be its generating function. Then

𝑟 (𝑡, 𝑥) =
𝑔 (𝑡)

1 − 𝑥𝑓 (𝑡)
. (9)

In [15], Luzón introduced a new notation 𝑇(𝑓 | 𝑔) to
represent the Riordan arrays and gave a recurrence relation
for the family of polynomials associated to Riordan arrays.
In recent works [16, 17], a new definition by means of a
determinant form for Appell polynomials is given. Sequences

of Appell polynomials are special of the Sheffer sequences
[18]. In [19], the author obtains a determinant representation
for the Sheffer sequence. The aim of this work is to propose a
similar approach for polynomial sequences of Riordan type,
which are special of the generalized Sheffer sequences [12,
18]. A determinant representation for polynomial sequences
of Riordan type is obtained by using production matrix
of Riordan array. In fact, we will show that the general
formula for the polynomial sequences of Riordan type can
be expressed as the characteristic polynomial of the principal
submatrix of the production matrix. As applications, deter-
minant expressions for some classical polynomial sequences
such as Fibonacci, Pell, and Chebyshev are derived, and
a unified determinant expression for the four kinds of
Chebyshev polynomials [20, 21] is established.

2. Main Theorem

In this section we are going to develop our main theorem.

Theorem 4. Let 𝑅 = (𝑔(𝑡), 𝑓(𝑡)) be a Riordan array with the
Z-sequence (𝑧𝑖)𝑖≥0 and the A-sequence (𝑎𝑖)𝑖≥0. Let (𝑝𝑛(𝑥))𝑛≥0 be
the polynomial sequence associated with 𝑅−1. Then (𝑝𝑛(𝑥))𝑛≥0
satisfies the recurrence relation:

𝑎0𝑝𝑛 (𝑥) = 𝑥𝑝𝑛−1 (𝑥) − 𝑎1𝑝𝑛−1 (𝑥) − 𝑎2𝑝𝑛−2 (𝑥)

− ⋅ ⋅ ⋅ − 𝑎𝑛−1𝑝1 (𝑥) − 𝑧𝑛−1𝑝0 (𝑥) , 𝑛 > 1,
(10)

with initial condition 𝑝0(𝑥) = 1, and 𝑎0𝑝1(𝑥) = 𝑥 − 𝑧0. In
general, for all 𝑛 ≥ 1,𝑝𝑛(𝑥) is given by the followingHessenberg
determinant:
𝑝𝑛 (𝑥)

= (−1)
𝑛
𝑎
−𝑛

0

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧0 − 𝑥 𝑎0 0 0 0 ⋅ ⋅ ⋅ 0 0

𝑧1 𝑎1 − 𝑥 𝑎0 0 0 ⋅ ⋅ ⋅ 0 0

𝑧2 𝑎2 𝑎1 − 𝑥 𝑎0 0 ⋅ ⋅ ⋅ 0 0

𝑧3 𝑎3 𝑎2 𝑎1 − 𝑥 𝑎0 ⋅ ⋅ ⋅ 0 0

𝑧4 𝑎4 𝑎3 𝑎2 𝑎1 − 𝑥 ⋅ ⋅ ⋅ 0 0

...
...

...
...

...
. . .

...
...

𝑧𝑛−2 𝑎𝑛−2 𝑎𝑛−3 𝑎𝑛−4 𝑎𝑛−5 ⋅ ⋅ ⋅ 𝑎1 − 𝑥 𝑎0
𝑧𝑛−1 𝑎𝑛−1 𝑎𝑛−2 𝑎𝑛−3 𝑎𝑛−4 ⋅ ⋅ ⋅ 𝑎2 𝑎1 − 𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(11)

Proof. Let 𝑅 = (𝑔(𝑡), 𝑓(𝑡)) and 𝑅−1 = (𝑔(𝑡), 𝑓(𝑡))−1 =
(𝑑(𝑡), ℎ(𝑡)). Then from definition and (3), we have 𝑔(0) = 1
and 𝑑(𝑡) = 1/𝑔(𝑓(𝑡)). Hence 𝑑(0) = 1 and 𝑝0(𝑥) = 1. Letting
𝐸 = (1, 𝑥, 𝑥2, . . . )

𝑇, then 𝑅−1𝐸 = (𝑝0(𝑥), 𝑝1(𝑥), 𝑝2(𝑥), . . . )
𝑇

and 𝐷𝐸 = (𝑥, 𝑥2, 𝑥3, . . . )𝑇, where 𝐷 = (𝛿𝑖+1,𝑗). Letting 𝑃
be the production matrix of 𝑅, then 𝑅𝑃 = 𝐷𝑅, and 𝑃𝑅−1 =
𝑅−1𝐷. Thus 𝑃𝑅−1𝐸 = 𝑅−1𝐷𝐸, and 𝑃𝑅−1𝐸 = 𝑥𝑅−1𝐸. In matrix
form, we have

(

𝑧0 𝑎0 0 0 0 ⋅ ⋅ ⋅

𝑧1 𝑎1 𝑎0 0 0 ⋅ ⋅ ⋅

𝑧2 𝑎2 𝑎1 𝑎0 0 ⋅ ⋅ ⋅

𝑧3 𝑎3 𝑎2 𝑎1 𝑎0 ⋅ ⋅ ⋅
...

...
...

...
...

. . .

)(

𝑝0 (𝑥)

𝑝1 (𝑥)

𝑝2 (𝑥)

𝑝3 (𝑥)
...

)=(

𝑥𝑝0 (𝑥)

𝑥𝑝1 (𝑥)

𝑥𝑝2 (𝑥)

𝑥𝑝3 (𝑥)
...

).

(12)
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Using the block matrix method, we get

𝑝0 (𝑥)(

𝑧0
𝑧1
𝑧2
𝑧3
...

)+(

𝑎0 0 0 0 ⋅ ⋅ ⋅

𝑎1 𝑎0 0 0 ⋅ ⋅ ⋅

𝑎2 𝑎1 𝑎0 0 ⋅ ⋅ ⋅

𝑎3 𝑎2 𝑎1 𝑎0 ⋅ ⋅ ⋅
...

...
...

...
. . .

)

×(

𝑝1 (𝑥)

𝑝2 (𝑥)

𝑝3 (𝑥)

𝑝4 (𝑥)
...

)=(

𝑥𝑝0 (𝑥)

𝑥𝑝1 (𝑥)

𝑥𝑝2 (𝑥)

𝑥𝑝3 (𝑥)
...

).

(13)

Since

(

𝑥𝑝0 (𝑥)

𝑥𝑝1 (𝑥)

𝑥𝑝2 (𝑥)

𝑥𝑝3 (𝑥)
...

)=(

𝑥𝑝0 (𝑥)

0

0

0
...

)+(

0

𝑥𝑝1 (𝑥)

𝑥𝑝2 (𝑥)

𝑥𝑝3 (𝑥)
...

),

(

0

𝑥𝑝1 (𝑥)

𝑥𝑝2 (𝑥)

𝑥𝑝3 (𝑥)
...

)=(

0 0 0 0 ⋅ ⋅ ⋅

𝑥 0 0 0 ⋅ ⋅ ⋅

0 𝑥 0 0 ⋅ ⋅ ⋅

0 0 𝑥 0 ⋅ ⋅ ⋅
...

...
...

...
. . .

)(

𝑝1 (𝑥)

𝑝2 (𝑥)

𝑝3 (𝑥)

𝑝4 (𝑥)
...

).

(14)

The previous matrix equation can be rewritten as

(

𝑎0 0 0 0 ⋅ ⋅ ⋅

𝑎1 − 𝑥 𝑎0 0 0 ⋅ ⋅ ⋅

𝑎2 𝑎1 − 𝑥 𝑎0 0 ⋅ ⋅ ⋅

𝑎3 𝑎2 𝑎1 − 𝑥 𝑎0 ⋅ ⋅ ⋅
...

...
...

...
. . .

)(

𝑝1 (𝑥)

𝑝2 (𝑥)

𝑝3 (𝑥)

𝑝4 (𝑥)
...

)

= 𝑝0 (𝑥)(

𝑥 − 𝑧0
−𝑧1
−𝑧2
−𝑧3
...

).

(15)

Therefore, 𝑎0𝑝1(𝑥) = 𝑥 − 𝑧0, and for 𝑛 > 1, we have

𝑎𝑛−1𝑝1 (𝑥) + ⋅ ⋅ ⋅ + 𝑎2𝑝𝑛−2 (𝑥) + (𝑎1 − 𝑥) 𝑝𝑛−1 (𝑥) + 𝑎0𝑝𝑛 (𝑥)

= −𝑧𝑛−1𝑝0 (𝑥) ,

(16)

or equivalently

𝑎0𝑝𝑛 (𝑥) = (𝑥 − 𝑎1) 𝑝𝑛−1 (𝑥) − 𝑎2𝑝𝑛−2 (𝑥)

− ⋅ ⋅ ⋅ − 𝑎𝑛−1𝑝1 (𝑥) − 𝑧𝑛−1𝑝0 (𝑥) .
(17)

By applying the Cramer’s rule, we can work out the
unknown 𝑝𝑛(𝑥) operating with the first 𝑛 equations in (15):

𝑝𝑛 (𝑥) = 𝑎
−𝑛

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎0 0 0 0 0 ⋅ ⋅ ⋅ 0 (𝑥 − 𝑧0) 𝑝0 (𝑥)

𝑎1 − 𝑥 𝑎0 0 0 0 ⋅ ⋅ ⋅ 0 −𝑧1𝑝0 (𝑥)

𝑎2 𝑎1 − 𝑥 𝑎0 0 0 ⋅ ⋅ ⋅ 0 −𝑧2𝑝0 (𝑥)

𝑎3 𝑎2 𝑎1 − 𝑥 𝑎0 0 ⋅ ⋅ ⋅ 0 −𝑧3𝑝0 (𝑥)

𝑎4 𝑎3 𝑎2 𝑎1 − 𝑥 𝑎0 ⋅ ⋅ ⋅ 0 −𝑧4𝑝0 (𝑥)
...

...
...

...
...

. . .
...

...
𝑎𝑛−2 𝑎𝑛−3 𝑎𝑛−4 𝑎𝑛−5 𝑎𝑛−6 ⋅ ⋅ ⋅ 𝑎0 −𝑧𝑛−2𝑝0 (𝑥)

𝑎𝑛−1 𝑎𝑛−2 𝑎𝑛−3 𝑎𝑛−4 𝑎𝑛−5 ⋅ ⋅ ⋅ 𝑎1 − 𝑥 −𝑧𝑛−1𝑝0 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑝0 (𝑥) 𝑎
−𝑛

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎0 0 0 0 0 ⋅ ⋅ ⋅ 0 𝑥 − 𝑧0
𝑎1 − 𝑥 𝑎0 0 0 0 ⋅ ⋅ ⋅ 0 −𝑧1
𝑎2 𝑎1 − 𝑥 𝑎0 0 0 ⋅ ⋅ ⋅ 0 −𝑧2
𝑎3 𝑎2 𝑎1 − 𝑥 𝑎0 0 ⋅ ⋅ ⋅ 0 −𝑧3
𝑎4 𝑎3 𝑎2 𝑎1 − 𝑥 𝑎0 ⋅ ⋅ ⋅ 0 −𝑧4
...

...
...

...
...

. . .
...

...
𝑎𝑛−2 𝑎𝑛−3 𝑎𝑛−4 𝑎𝑛−5 𝑎𝑛−6 ⋅ ⋅ ⋅ 𝑎0 −𝑧𝑛−2
𝑎𝑛−1 𝑎𝑛−2 𝑎𝑛−3 𝑎𝑛−4 𝑎𝑛−5 ⋅ ⋅ ⋅ 𝑎1 − 𝑥 −𝑧𝑛−1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(18)

After transferring the last column to the first position, an
operation which introduces the factor (−1)𝑛−1, the theorem
follows.

Corollary 5. Let 𝑅 = (𝑔(𝑡), 𝑓(𝑡)) be a Riordan array
with production matrix 𝑃. Let (𝑝𝑛(𝑥))𝑛≥0 be the polynomial

sequence associated with𝑅−1 = (𝑔(𝑡), 𝑓(𝑡))−1.Then 𝑝0(𝑥) = 1,
and for all 𝑛 ≥ 1,

𝑝𝑛 (𝑥) = 𝑎
−𝑛

0
det (𝑥𝐼𝑛 − 𝑃𝑛) , (19)

where 𝑎0 = 𝑝0,1, 𝑃𝑛 is the principal submatrix of order 𝑛 of the
production matrix 𝑃 and 𝐼𝑛 is the identity matrix of order 𝑛.
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3. Applications

A useful application of Theorem 4 is to find the determinant
expression of a well-known sequence. We illustrate the ideal
in the following examples. In the final paragraph, we will
give a unified determinant expression for the four kinds of
Chebyshev polynomials.

Example 6. Considering the Riordan array A = (1/(1 +

𝑟𝑡
2), 𝑎𝑡/(1 + 𝑟𝑡2)), we have (1/(1 + 𝑟𝑡2), 𝑎𝑡/(1 + 𝑟𝑡2))(1/(1 −
𝑥𝑡)) = 1/(1 − 𝑎𝑥𝑡 + 𝑟𝑡2). The generating functions of the 𝐴-
and 𝑍-sequences ofA−1 are

𝐴 (𝑡) =
1 + 𝑟𝑡2

𝑎
, 𝑍 (𝑡) =

𝑟𝑡

𝑎
. (20)

Let (𝑝𝑛(𝑥))𝑛≥0 be the polynomial sequence associated
withA = (1/(1 + 𝑟𝑡2), 𝑎𝑡/(1 + 𝑟𝑡2)). Then (𝑝𝑛(𝑥))𝑛≥0 satisfies
the recurrence relation:

𝑝𝑛 (𝑥) = 𝑎𝑥𝑝𝑛−1 (𝑥) − 𝑟𝑝𝑛−2 (𝑥) , 𝑛 ≥ 2, (21)

with initial condition 𝑝0(𝑥) = 1, and 𝑝1(𝑥) = 𝑎𝑥. In general,
𝑝𝑛(𝑥) is also given by the following Hessenberg determinant:

𝑝𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑎𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

𝑟 −𝑎𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 𝑟 −𝑎𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 𝑟 −𝑎𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 𝑟 −𝑎𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −𝑎𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(22)

If 𝑎 = 1, 𝑟 = −1, then 𝑝𝑛(𝑥) becomes the Fibonacci
polynomials:

𝐹𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

−1 −𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 −1 −𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 −1 −𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 −1 −𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

. (23)

If 𝑎 = 2, 𝑟 = −1, then 𝑝𝑛(𝑥) gives the Pell polynomials:

𝑃𝑛 (𝑥) = 𝐹𝑛 (2𝑥)

= (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−2𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

−1 −2𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 −1 −2𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 −1 −2𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 −1 −2𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −2𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(24)

In case 𝑎 = 2, 𝑟 = 1, 𝑝𝑛(𝑥) becomes the Chebyshev
polynomials of the second kind:

𝑈𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−2𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

1 −2𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 1 −2𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 −2𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 −2𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −2𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(25)

Example 7. Considering the Riordan arrayB = ((1−𝑏𝑡2)/(1+
𝑟𝑡2), 𝑎𝑡/(1 + 𝑟𝑡2)), we have ((1 − 𝑏𝑡2)/(1 + 𝑟𝑡2), 𝑎𝑡/(1 +
𝑟𝑡2))(1/(1−𝑥𝑡)) = (1−𝑏𝑡2)/(1−𝑎𝑥𝑡+𝑟𝑡2).Then the generating
functions of the 𝐴- and 𝑍-sequences ofB−1 are

𝐴 (𝑡) =
1 + 𝑟𝑡2

𝑎
, 𝑍 (𝑡) =

(𝑏 + 𝑟) 𝑡

𝑎
. (26)

Let (𝑝𝑛(𝑥))𝑛≥0 be the polynomial sequence associated
withB = ((1 − 𝑏𝑡2)/(1 + 𝑟𝑡2), 𝑎𝑡/(1 + 𝑟𝑡2)). Then (𝑝𝑛(𝑥))𝑛≥0
satisfies the recurrence relation:

𝑝𝑛 (𝑥) = 𝑎𝑥𝑝𝑛−1 (𝑥) − 𝑟𝑝𝑛−2 (𝑥) , 𝑛 ≥ 3, (27)

with initial condition 𝑝0(𝑥) = 1, and 𝑝1(𝑥) = 𝑎𝑥, 𝑝2(𝑥) =
𝑎2𝑥2 − 𝑏 − 𝑟.

In general,𝑝𝑛(𝑥) is also given by the followingHessenberg
determinant:

𝑝𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−𝑎𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

𝑏 + 𝑟 −𝑎𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 𝑟 −𝑎𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 𝑟 −𝑎𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 𝑟 −𝑎𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −𝑎𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(28)

If 𝑎 = 2, 𝑏 = 𝑟 = 1, then 𝑝𝑛(𝑥) become the Chebyshev
polynomials of the first kind 2𝑇𝑛(𝑥) − 0

𝑛:

2𝑇𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−2𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

2 −2𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 1 −2𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 −2𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 −2𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −2𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(29)
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In case 𝑎 = 3, 𝑏 = 0, 𝑟 = 2, 𝑝𝑛(𝑥) give the Fermat
polynomials (see [15]):

𝑓𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−3𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

2 −3𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 2 −3𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 2 −3𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 2 −3𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −3𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(30)

Example 8. Considering the Riordan arrayC = ((1−𝑏𝑡)/(1+
𝑟𝑡2), 𝑎𝑡/(1+𝑟𝑡2)), we have ((1−𝑏𝑡)/(1+𝑟𝑡2), 𝑎𝑡/(1+𝑟𝑡2))(1/(1−
𝑥𝑡)) = (1 − 𝑏𝑡)/(1 − 𝑎𝑥𝑡 + 𝑟𝑡2). The generating functions of
the 𝐴- and 𝑍-sequences ofC−1 are

𝐴 (𝑡) =
1 + 𝑟𝑡2

𝑎
, 𝑍 (𝑡) =

𝑏 + 𝑟𝑡

𝑎
. (31)

Let (𝑝𝑛(𝑥))𝑛≥0 be the polynomial sequence associated
with C = ((1 − 𝑏𝑡)/(1 + 𝑟𝑡2), 𝑎𝑡/(1 + 𝑟𝑡2)). Then (𝑝𝑛(𝑥))𝑛≥0
satisfies the recurrence relation:

𝑝𝑛 (𝑥) = 𝑎𝑥𝑝𝑛−1 (𝑥) − 𝑟𝑝𝑛−2 (𝑥) , 𝑛 ≥ 3, (32)

with initial condition 𝑝0(𝑥) = 1, and 𝑝1(𝑥) = 𝑎𝑥 − 𝑏, 𝑝2(𝑥) =
𝑎2𝑥2 + 𝑎𝑏𝑥 − 𝑟.

In general,𝑝𝑛(𝑥) is also given by the followingHessenberg
determinant:

𝑝𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏 − 𝑎𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

𝑟 −𝑎𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 𝑟 −𝑎𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 𝑟 −𝑎𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 𝑟 −𝑎𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −𝑎𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(33)

If 𝑎 = 2, 𝑏 = 1, 𝑟 = 1, then 𝑝𝑛(𝑥) becomes the Chebyshev
polynomials of the third kind 𝑉𝑛(𝑥):

𝑉𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 2𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

1 −2𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 1 −2𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 −2𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 −2𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −2𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(34)

If 𝑎 = 2, 𝑏 = −1, 𝑟 = 1, then 𝑝𝑛(𝑥) gives the Chebyshev
polynomials of the fourth kind𝑊𝑛(𝑥):

𝑊𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−1 − 2𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0
1 −2𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0
0 1 −2𝑥 1 0 0 ⋅ ⋅ ⋅ 0
0 0 1 −2𝑥 1 0 ⋅ ⋅ ⋅ 0
0 0 0 1 −2𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1
0 0 0 0 0 0 ⋅ ⋅ ⋅ −2𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(35)

Finally, considering the Riordan array D = ((1 − 𝑏𝑡 −

𝑐𝑡2)/(1+𝑡2), 𝑎𝑡/(1+𝑡2)), we have ((1−𝑏𝑡−𝑐𝑡2)/(1+𝑡2), 𝑎𝑡/(1+
𝑡2))(1/(1 − 𝑥𝑡)) = (1 − 𝑏𝑡 − 𝑐𝑡2)/(1 − 𝑎𝑥𝑡 + 𝑡2). Then the
generating functions of the 𝐴- and 𝑍-sequences ofD−1 are

𝐴 (𝑡) =
1 + 𝑡2

𝑎
, 𝑍 (𝑡) =

𝑏 + (𝑐 + 1) 𝑡

𝑎
. (36)

Let (𝑝𝑛(𝑥))𝑛≥0 be the polynomial sequence associated
withD = ((1 − 𝑏𝑡 − 𝑐𝑡2)/(1 + 𝑡2), 𝑎𝑡/(1 + 𝑡2)). Then (𝑝𝑛(𝑥))𝑛≥0
satisfies the recurrence relation:

𝑝𝑛 (𝑥) = 𝑎𝑥𝑝𝑛−1 (𝑥) − 𝑝𝑛−2 (𝑥) , 𝑛 ≥ 3, (37)

with initial condition 𝑝0(𝑥) = 1, and 𝑝1(𝑥) = 𝑎𝑥 − 𝑏,
𝑝2(𝑥) = 𝑎𝑥𝑝1(𝑥) − (𝑐 + 1)𝑝0(𝑥) = 𝑎

2𝑥2 − 𝑎𝑏𝑥 − 𝑐 − 1. For
𝑛 ≥ 1, we have

𝑝𝑛 (𝑥) = (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏 − 𝑎𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

𝑐 + 1 −𝑎𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 1 −𝑎𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 −𝑎𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 −𝑎𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −𝑎𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(38)

Therefore we can give, now, the following.

Definition 9. TheChebyshev polynomial of degree 𝑛, denoted
by 𝐶𝑛(𝑥, 𝑎, 𝑏, 𝑐), is defined by

𝐶0 (𝑥, 𝑎, 𝑏, 𝑐) = 1,

𝐶𝑛 (𝑥, 𝑎, 𝑏, 𝑐)

= (−1)
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏 − 𝑎𝑥 1 0 0 0 0 ⋅ ⋅ ⋅ 0

𝑐 + 1 −𝑎𝑥 1 0 0 0 ⋅ ⋅ ⋅ 0

0 1 −𝑎𝑥 1 0 0 ⋅ ⋅ ⋅ 0

0 0 1 −𝑎𝑥 1 0 ⋅ ⋅ ⋅ 0

0 0 0 1 −𝑎𝑥 1 ⋅ ⋅ ⋅ 0
...

...
...

...
...

...
. . .

...
0 0 0 0 0 0 ⋅ ⋅ ⋅ 1

0 0 0 0 0 0 ⋅ ⋅ ⋅ −𝑎𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

𝑛 ≥ 1,

(39)
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where 𝐶𝑛(𝑥, 𝑎, 𝑏, 𝑐) is represented by a Hessenberg determi-
nant of order 𝑛.

Note that 𝐶𝑛(𝑥, 2, 0, 1) = 2𝑇𝑛(𝑥), 𝐶𝑛(𝑥, 2, 0, 0) = 𝑈𝑛(𝑥),
𝐶𝑛(𝑥, 2, 1, 0) = 𝑉𝑛(𝑥), and 𝐶𝑛(𝑥, 2, −1, 0) = 𝑊𝑛(𝑥). Hence,
Definition 9 can be considered as a unified form for the four
kinds of Chebyshev polynomials.
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