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This paper presents a simple approach to invert the matrix Pn + In by applying the Euler
polynomials and Bernoulli numbers, where Pn is the Pascal matrix.
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1. Introduction

The Pascal matrix has been known since ancient times, and it arises in many different
areas of mathematics. However, it has been studied carefully only recently, see [1, 3–5].
For any integer n > 0, the n×n Pascal matrix Pn is defined with the binomial coefficients
by

Pn(i, j)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
i− 1

j− 1

⎞

⎠ if i≥ j ≥ 1,

0 otherwise.

(1.1)

It is known that the n×n inverse matrix P−1
n is given by

Pn(i, j)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(−1)i− j

⎛

⎝
i− 1

j− 1

⎞

⎠ if i≥ j ≥ 1,

0 otherwise.

(1.2)

The Hadamard product A ◦B of two matrices is the matrix obtained by coordinate-
wise multiplication: (A ◦B)(i, j)= A(i, j)B(i, j). Let Γn be the n×n lower triangular ma-
trices defined by

Γn(i, j)=
⎧
⎨

⎩

(−1)i− j if i≥ j ≥ 1,

0 otherwise,
(1.3)
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2 Explicit inverse of the Pascal matrix plus one

then the inverse of the Pascal matrix can be represented as the Hadamard product P−1
n =

Pn ◦Γn. For example, if n= 5, then

P5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

1 1 0 0 0

1 2 1 0 0

1 3 3 1 0

1 4 6 4 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

P−1
5 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

−1 1 0 0 0

1 −2 1 0 0

−1 3 −3 1 0

1 −4 6 −4 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

1 1 0 0 0

1 2 1 0 0

1 3 3 1 0

1 4 6 4 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

◦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0

−1 1 0 0 0

1 −1 1 0 0

−1 1 −1 1 0

1 −1 1 −1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(1.4)

Now we consider the sum of the Pascal matrix and the identity matrix Pn + In, where
In is the n× n identity matrix. We call Pn + In the Pascal matrix plus one simply. An
interesting fact is that the inverse of Pn + In is related to Pn closely. For instance,

P6 + I6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 0 0 0 0 0

1 2 0 0 0 0

1 2 2 0 0 0

1 3 3 2 0 0

1 4 6 4 2 0

1 5 10 10 5 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(
P6 + I6

)−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

0 0 0 0 0

−1
4

1
2

0 0 0 0

0 −2
4

1
2

0 0 0

1
8

0 −3
4

1
2

0 0

0
4
8

0 −4
4

1
2

0

−1
4

0
10
8

0 −5
4

1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
1 1 0 0 0 0
1 2 1 0 0 0
1 3 3 1 0 0
1 4 6 4 1 0
1 5 10 10 5 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

◦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

0 0 0 0 0

−1
4

1
2

0 0 0 0

0 −1
4

1
2

0 0 0

1
8

0 −1
4

1
2

0 0

0
1
8

0 −1
4

1
2

0

−1
4

0
1
8

0 −1
4

1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(1.5)

This suggests that there may exist a sequence of constants {an}∞n=0 such that (Pn +
In)−1 = Pn ◦Δn, where the matrix Δn is a lower triangular matrix with generic element
Δn(i, j) = ai− j when i ≥ j. Aggarwala and Lamoureux [2] have showed that these con-
stants are values of the Dirichlet eta function evaluated at negative integers, or more gen-
erally, certain polylogarithm functions evaluated at the number −1. In this note, we will
give a new simple approach to invert the matrix Pn + In by applying the Euler polyno-
mials. As a result, we will show that these constants are values of the Euler polynomials
evaluated at the number 0.

The Euler polynomials En(x) are defined by means of the following generating func-
tion (see [7]):

∞∑

n=0

En(x)
tn

n!
= 2etx

et + 1
, (1.6)

since
∑∞

n=0(En(x + 1) + En(x))(tn/n!) = ∑∞
n=0En(x + 1)(tn/n!) +

∑∞
n=0En(x)(tn/n!) =

2et(x+1)/(et + 1) + 2etx/(et + 1) = 2etx = ∑∞
n=0 2xn(tn/n!). Comparing the coefficients of

tn/n! in this equation, we obtain

En(x+ 1) +En(x)= 2xn, n≥ 0. (1.7)

The following lemmas are well known and can be found in [9], we give a short proof
for the sake of completeness.

Lemma 1.1. For all n≥ 0,

En(x+ y)=
n∑

k=0

(
n

k

)

Ek(x)yn−k, (1.8)

En(x+ 1)=
n∑

k=0

(
n

k

)

Ek(x). (1.9)

Proof.
∑∞

n=0En(x + y)(tn/n!) = 2et(x+y)/(et + 1) = (2etx/(et + 1))ety = (
∑∞

n=0En(x)(tn/

n!))(
∑∞

n=0 y
n(tn/n!)) =∑∞

n=0(
∑n

k=0

(
n
k

)

Ek(x)yn−k)(tn/n!). Comparing the coefficients of
tn/n! in this equation, we obtain (1.8). In particular, when y = 1, we get (1.9).



4 Explicit inverse of the Pascal matrix plus one

From (1.7) and (1.9), we obtain

1
2

n∑

k=0

(
n

k

)

Ek(x) +
1
2
En(x)= xn, n≥ 0. (1.10)

If we set x = 0 in (1.8), we get En(y)=∑n
k=0

(
n
k

)

En−k(0)yk, that is,

En(x)=
n∑

k=0

(
n

k

)

En−k(0)xk, n≥ 0. (1.11)

Let E(x) and X(x) be the n× 1 matrices defined by E(x)= [E0(x),E1(x), . . . ,En−1(x)]T ,
X(x)= [1,x, . . . ,xn−1]T , and let Ēn be n×n lower triangular matrices defined by

Ēn(i, j)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
i− 1

j− 1

⎞

⎠Ei− j(0) if i≥ j ≥ 1,

0 otherwise.

(1.12)

Then (1.10), (1.11) can be represented as matrix equations, respectively,

1
2

(
Pn + In

)
E(x)= X(x),

E(x)= ĒnX(x).
(1.13)

Thus, we have

(
Pn + In

)−1

= 1
2
Ēn

= 1
2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
0
0

)

E0(0) 0 0 ··· 0

(
1
0

)

E1(0)

(
1
1

)

E0(0) 0 ··· 0

(
2
0

)

E2(0)

(
2
1

)

E1(0)

(
2
2

)

E0(0) ··· 0

...
...

...
. . .

...

(
n− 1

0

)

En−1(0)

(
n− 1

1

)

En−2(0)

(
n− 1

2

)

En−3(0) ···
(
n− 1
n− 1

)

E0(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(1.14)
�
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The Bernoulli numbers Bn are defined by (see [7])

∞∑

n=0

Bn
tn

n!
= t

et − 1
. (1.15)

It is known (see [6, 8]) that the Euler polynomials can be expressed by the Bernoulli num-
bers as

En(x)= 1
n+ 1

n+1∑

k=1

(
2− 2k+1)

(
n+ 1
k

)

Bkx
n+1−k. (1.16)

Putting x = 0 in (1.16) gives

En(0)= 2
(
1− 2n+1

)
Bn+1

n+ 1
, (1.17)

for all integers n ≥ 0. Therefore, we obtain an explicit inverse of the Pascal matrix plus
one as follows.

Theorem 1.2. For n≥ 1, the n×n inverse matrix Qn = (Pn + In)−1 is given by

Qn(i, j)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

⎛

⎝
i− 1

j− 1

⎞

⎠Ei− j(0) if i≥ j ≥ 1,

0 if i < j;

(1.18)

or

Qn(i, j)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
i− 1

j− 1

⎞

⎠

(
1− 2i− j+1

)
Bi− j+1

i− j + 1
if i≥ j ≥ 1,

0 if i < j.

(1.19)

In view of the Hadamard product, the inverse matrix (Pn + In)−1 is the Hadamard
product of the Pascal matrix Pn and the matrix Δn, where Δn is the n×n lower triangular
matrices defined by

Δn(i, j)=
⎧
⎪⎨

⎪⎩

1
2
Ei− j(0) if i≥ j ≥ 1,

0 if i < j;
(1.20)

or

Δn(i, j)=

⎧
⎪⎪⎨

⎪⎪⎩

(
1− 2i− j+1

)
Bi− j+1

i− j + 1
if i≥ j ≥ 1,

0 if i < j.
(1.21)



6 Explicit inverse of the Pascal matrix plus one

The two functions, Euler(n,x) and Bernoulli(n), in the combinat library of the com-
puter algebra system Maple are very useful in obtaining the matrix Qn. For example, for
n= 8, we get

Q8 = (P8 + I8)−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
2

0 0 0 0 0 0 0

−1
4

1
2

0 0 0 0 0 0

0 −1
2

1
2

0 0 0 0 0

1
8

0 −3
4

1
2

0 0 0 0

0
1
2

0 −1
1
2

0 0 0

−1
4

0
5
4

0 −5
4

1
2

0 0

0 −3
2

0
5
2

0 −3
2

1
2

0

17
16

0 −21
4

0
35
8

0 −7
4

1
2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (1.22)

Note that Qn(i, j)= 0 whenever i < j or i= j + 2, j + 4, j + 6, . . . .
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