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We will generalize the definitions of Eulerian numbers and Eulerian polynomials to general arithmetic progressions. Under the new
definitions, we have been successful in extending several well-known properties of traditional Eulerian numbers and polynomials

to the general Eulerian polynomials and numbers.

1. Introduction

Bernoulli 1, pages 95-97] had introduced his famous Ber-
noulli numbers, denoted by B,, (B,,,; = 0forr > 1) to
evaluate the sum of the nth power of the first m integers. He
then proved the following summation formula:

m n+1 n
S
1 = +
o n+l 2
(1
1 /2! n+1 2 1 )
+ — < 5 >mnf r+1(_1)r+ Bzr)

r=1

whenn,m > 1.
Two decades later, Euler [2] studied the alternating sum

3™ (-1)'i". He ended up with giving the following general
result 3, (2.8), page 259]:
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Another simplified form of Y7 i"t' is the following [3, (3.3),
page 263]:
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where A, (t), (n = 0,1,2,...) are called Eulerian polynomials
and are recursively defined by [3, (2.7), page 264]:

Ay () =1,
n-1 4)
n 1k
4,0=Y (}) 4=y
k=0
Note that for Y7, it if we put t = —1, then Y7, i"t'

becomes the alternating sum of the nth power of the first m
positive integers. Furthermore, asm — 00, we have (3, (3.2),
page 263]:

A(t

n+1 Zt] + 1)

(n=0). (5)



Each Eulerian polynomial can be presented as a generat-
ing function of Eulerian numbers A, ; [4], also introduced by
Euler, as

n-1
A, () =Y ALt (6)
k=0

Furthermore, the corresponding exponential generating
function [3, (3.1), page 262] is

t—1

ui’l
Altw) =Y A, (0 = ep@-1)

n>0

)

The following combinatorial definition of Eulerian num-
bers was discovered by Riordan in the 1950s.

Definition 1. A Eulerian number A, is the number of per-
mutations p, p,p; ... p,, of the first n numbers {1,2,...,n}
that have k ascents (or descents), that is, k places where p; <

pjnorp;>p)l<j<n—1.

Example 2. Whenn = 3, k = 1,and A; | = 4, because there
are four permutations with only one ascent:

132,213,231, 312, (8)

then A, | satisfies the recurrence: A, , = 1, (n20), A, ;=0
(k = n) and

A =(k+1) A, 1k

9)
+(n-k)A, 1, (Q<k<n-1).
It is well known that Eulerian numbers have the following
symmetric property:

Proposition 3. Given a positive integer n, and 0 < k <n-—1,
An,k = An,n—l—k'

Proof. It is obvious because if a permutation has k ascents
then its reverse has n — 1 — k ascents. 0

Furthermore, the values of A, ; can be expressed in a form
of a triangular array as shown in Table 1.

Besides the recursive formula (9), A, ; can be calculated
directly by the following analytic formula [3, (3.5), page 264]:

1

k
Ay =YD (k—i 1”<”+.1>
,k ZO< )(k—i+1) o)

(0<k<n-1).

Since the 1950s, Carlitz ([5, 6]) and his successors have
: ; 2 3
generalized Euler’s results to g-sequences {1,49,9°,q,...}.
Under Carlitzs definition, the g-Eulerian numbers A, ;(q)
are given by

n

= x+k-1
W= Y au@ [ e an
k=0
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TaBLE 1: First few values of Eulerian numbers A, ;.

k=
0 1 2 3 4 5
n=1 1
2 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1
where
1 _ X
] = —L,
-9
X x—1 x—n+1 (12)
H (=) (=g (1)
n (1-q)(1-4*)-(1-q")
Then the g-Eulerian polynomials A, (¢, q) are defined as
n-1 B
A, (tq) =D Ayt (nz1). (13)
k=0

Like the traditional Eulerian numbers, the g-Eulerian num-
bers A, () have the following recursive formula:

Aqp (Q) =1
Ay (q) = g k+1] A1k (q) (14)

+n-klA, 1 (q)

Similarly to the traditional Eulerian numbers, we can also
construct a triangular array for g-Eulerian numbers as in
Table 2.

A(q)=0 if (k<Oork=n),

n>1).

Definition 4. Given a permutation 7 = p,p,p; ... p, of the
first n numbers {1, 2, 3,, ..., n}, define functions

maj 7 = Z J
Pj>Pj+1 (15)

a(n, k,i) = #{m | majm =i and 7 has k ascents}.

In 1974, Carlitz [6] completed his study of his g-Eulerian
numbers by giving a combinatorial meaning to his g-Eulerian
numbers:

k(n—k-1) )
A (q) = g N G n—ki)g,  (16)
i=0

where functions a(#, k, i) are as defined in Definition 4. Inter-
ested readers can find more details about the history of Eule-
rian numbers, Eulerian polynomials, and the corresponding
concepts in g-environment from [3].

In this paper, instead of studying g-sequences, we will
generalize Euler’s work on Eulerian numbers and Eulerian
polynomials to any general arithmetic progression:

{a,a+d,a+2d,a+3d,...}. (17)
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TABLE 2: First values of g— Eulerian numbers A, ().

k=
0 1 2 3
n=1 1
2 q 1
3 2
3 q 29" +2q 1
4 q6 3q5 + Sq4 + 3q3 3q3 + qu +3q 1

In Section 2, we will give a new definition of general
Eulerian numbers based on a given arithmetic progression as
defined in (17). Under the new definition, some well-known
combinatorial properties of traditional Eulerian numbers
become special cases of our more general results. In Section
3, we will define general Eulerian polynomials. Then, (2), (3),
(4), (5), (6), (7), (9), and (10) become special cases of our
more general results.

2. General Fulerian Numbers

The traditional Eulerian numbers A, , play an important role
in the well-known Worpitzky’s identity [7]:

n—1
K=Y <x M k) Ao nxl (18)

n
k=0

Before we give a general definition of Eulerian numbers
based on a given arithmetic progression (17), we shall
mention a property associated with the traditional Eulerian
numbers A, ;.

Proposition 5. Let A, ; be the traditional Eulerian numbers
as defined in Definition 1, then

< = m+k+1
Yi' = ZAn,k< a1 > (19)
i=1 k=0

Proof. See [8, (4), page 348]. O

Given an arithmetic progression (17), we want to define
general Eulerian numbers A, ;(a,d) so that the important
properties of traditional Eulerian numbers such as the recur-
sive formula (9), the triangular array (Table 1), Worpitzky’s
Identity (18), and Proposition 5, and so forth, become special
cases of more general results under the new definition.

Definition 6. General Eulerian numbers A, ; (a, d) associated
with an arithmetic progression as in (17) are defined as
Ag =1, A =0(k=znork<-2)and

Apk(a,d) = (a+ (k+2)d) A,y (a,d)
tla+m-k-1)d) A, 1, (ad) (20)
O0<k<n-1).

Like the traditional Eulerian numbers and g-Eulerian
numbers, the first general Eulerian numbers can be presented
in the form of a triangular array as in Table 3.

We intentionally choose k values to start with —1, because
by doing so Table 1 becomes the special case of Table 3 when
a = d = 1 in the arithmetic progression:

{a,a+d,a+2d,a+3d,...}. (21)

In other words, Table 1 corresponds to the sequence of natural
numbers:

(1,2,3,4,...} . (22)

Therefore when a = d = 1, the entries in the first column of
Table 3 become zeroes except initially defined A, _,(a,d) = 1.

With the new Definition 6, we are able to prove the
following two properties. Again note thatifa = d = 1, then
the following identity is just the conventional Worpitzky’s
identity.

Lemma 7 (General Worpitzky’s Identity). Given an arith-
metic progression as in (17),
n—1 . .
) i+ )
a+@i-1)d)" = .ZIA"’j (a,d)( nJ>’ i>1. (23)
j=—

Proof. We will prove Lemma 7 by induction on 7.
(i) When » = 1, using the values in Table 3,

a+(i-1)d=A, (ad) <i‘1 1)
(24)

YA (a,d)(i).

(ii) Now suppose

n—1 . .
(a+@G-1)d)" = ZAn)j(a,d)<l;:]> then,
j=—1

(a+(@-1)d)""

n-1 .
Z A,;(a,d) <’;J>} (a+(i-1)d)

j=1

jglAn,j ) [a<i;j> _ (j+2)d<i;j>
c+jend(’7)]

- Sawa[o(525)-0(12)
+m-j-vd (1]

; EAM (a,d) [(]'+2)d(riz:{>]

j=-1

n-1 . .
- Y Ay @da+ (- j-a) (1)

=



oS @) (- a+(]+z)d)(’+f>

j=—1

= Z [An)j_1 (ad)(a+(n-j)d)+A,;(ad)
j=—1

x(—a+(j+2)d)]<;:{>
- ¥ A (1)),

j=-1
(25)
O

By (20) With Lemma 7, we can prove the following Lemma
which is a generalization of Proposition 5.

Lemma 8. Given an arithmetic progression as in (17),

i(a+ (i-1)d)"

i=1
(26)

= m+j+1

- ZAM(a,d)< e )
j=-1

Proof. We will prove Lemma 8 by induction on .

(i) Whenm = 1, by Lemma 7,

ZAn](a d)<1+]>

j=-1

ZAn](a (') @)

(a+(1-1)d)" =

nl 1+
+ ZA")f(a’d) n+1l)’
{) =0,for j=-1,0,1,...

ZAnJ(ad)(“J”), (28)

j=1

since ( rl,: ,n — 1. Therefore,

[a+(1-1)d]"

which finishes the base case m = 1.

(ii) Now suppose

Ya+i-1)d)" = ZAn](a d)(m+]+1>. (29)
i=1

j=—1

(iii) Then from Table 3, Definition 6, and Lemma 7,

m+1

Y@+ (i-1)d)"
i=1

S a@ d)(m+]+1>+(a+md)"
j=-1
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m+j+1 m+j+1
2o |(") (")
j=1

< m+1+j+1
- ZAn’j(a,d)< ol )
j=-1
(30)

O

The general Eulerian numbers A, ; (a, d) can be calculated
directly from the following formula, which is a generalization
of (10).

Lemma 9. For a given arithmetic progression {a,a + d,a +
2d,a + 3d, ...}, the general Eulerian numbers satisfy

k+1
A(@d)= Y [k +2-i)d-al" (””). (31)

i=0

Proof. The following proof is given by inductions on both n
and k.
Forn=0, k=-1,A,_(a,d) = (—1)0(d - a)o ((1)) =
Forn=1, k=-1,A,_(ad) = (-1)’(d-a)' () = d-a.
Forn = 1, k = 0, A g(a,d) = (-1)°2d - a)' (2) +

-D'd-a)' (2)=
= YRk + 2 - i)d -

Now suppose A,,_; ;(a,d)
al" ' ( ). Then from the recursive formula (20),

A, (a,d)
=[-a+((k+2)d] A, x(a,d)
tla+(n—k-1)dl A, 1x(ad)
=[-a+(k+2)d]
k+1 ; i (n
X ;(—1) ((k+2-i)d-a] (;)

k+1

+la+(n—k-1)d] Y (-1
=1
x[(k+2-i)d—a]"" (i f 1> by induction

= [(k+2)d-al" (’3)

k+1

+ Y (-D[(k+2-i)d-a]""
i=1

<|tk+2d(})-m-k-na(,",)
(5)-2(.))

(32)
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TABLE 3: First values of general Eulerian numbers A, ;(a,d).
k=
-1 0 1 2 3

n=0 1

1 d-a a

2 (d-a) —2a* + 2ad + d* a*

3 (d-a) 3a’ - 6a’d + 4d° -3a’ +3a°d + 3ad’ + d° a

4 (d-a) -4a*+12a°d-6a’d* - 12ad’ + 11d*  6a’ - 12a°d - 6a°d* + 12ad” + 11d*  —da'+4a’d + 6a°d* + 4ad® +d* '
Note that where Aj(t), j = 0,1,2,...,n are traditional Eulerian

n
-1

)

() ko2 3)
() s )
=(k+z)d(§’>+(k+2)d<if1>

~eand(,")-a(")
=(k+z)d("?1>"'d(n?1>‘“<n:1

:[(k+2—i)d—a]<n-;1>.

)

)

(33)
Combine the results above, we have
2 i n+1
A,k (a,d) = Z(—l)' [(k+2—i)d—a]"< ; ) (34)
i=0
O

3. General Eulerian Polynomials

Definition 10. We define the general Eulerian polynomials
associated to an arithmetic progression as in (17) as

n-1

T, (tad) = Y Ay (adt™. (35)
k=—1

Definition 10 is a generalization of the traditional Eule-
rian polynomials as in (6). The following lemma gives the
relation between the general Eulerian polynomials and the
traditional Eulerian polynomials.

Lemmall. LetT,(t,a,d) be the general Eulerian polynomials
as in Definition 10, T(t,a,d) = 1. Then

n-1
T,(tad) = Y Ay (ad
k=-1
(36)

_ (’}) d'A; (1) (at - a)*,

j=0

polynomials as defined in (4) and (6).

Proof. (i) When n =0, Ty(t, a,d) = (9)d"A,(t)(at —a)° = 1.

(ii) Now suppose

T,(tad) =)

y <’]1> dej (t) (at — a)" /. Then,

j=0

n
T, (tad)= Z A,k (ad) g by definition

k=—1

i (@+(n-kd) A, (ad)
k=-1

+ Y (a+ (k+2)d) Ay (a,d) "
k=-1

n-1
Y @+ (n-k-1)d) A, (a,d) "
k=—1

n-1

+ Z (—a+(k+2)d) A, (a,d) T
k=1

n—-1

= Z (at —a) A,k (a,d) Tk

k=—1
n-1

+ Y d(nt—t+2) A,y (a,d) !
k=—1

n-1

+ Y d(1-DkA, (@d) !

k=—1

(at —a)T, (t,a,d)
+ (dnt—dt+2d)T, (t,a,d)

n—-1
+ Y d(1 -t kA (a,d) "
k=-1

(37)

(38)



Note that by definition, T,,(t,a,d) = Y}-'| A, (a, d)t*".
So Tyt a,d) = Y1-' (k + 1) A, 4 (@, d)t*, which implies

n-1
tT, (ta,d) =T, (ba,d) + Y kA, (@d) . (39)
k=-1

On the other hand, from [3, (3.4), page 263], we have
A =[1+n-1DHA,  O+t(1-1A,  (¢). (40)

With results as in (39) and (40), we have

n—-1
(dnt —dt +2d) T, (t,a,d) + Y d(1-1) kA, (ad) £
k=-1

=(dnt+d)T,(ta,d)+d (1 -1)tT, (t,a,d)

= (dnt +d) T, (t,a,d) +d (1~ 1) tidf <’;>
=0

x [A'j ) (at —a)"/
+a(n—j)A; () (at - a)"_j_l] by induction

=(dnt+d)T, (t,a,d)—dt(n-j)T,(t a,d)

- (n j A=
+d(1—t)tz <].>d A
j=0

)

(7) A"V at - a)"/
j=0

x [(1 +j)A; (D) +E(1-1) A (t)]

n

n

-3

<’]’) dNat - a)" A, ().
j=0
(41)

Therefore, expression (37) becomes

n

Ty (tard) = Y (’;) d"at—a)" A, (1)

j=0

+ Z (7) d(at - a)" " A, (1)
=0

n+l . .
j=1

n

+y (7) d(at - a)" 7" A, (1)

j=0

n+l
=y <” JJ“ 1) d’A; (1) (at — )"

j=0
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The following result is a generalization of (7).

Lemma 12. Let T, (t,a,d) be as defined in Lemma 11. Then

T, (t,u,a,d) = ZT" (t,a,d) u_'
nl

n=0

(43)
_(t-1exp(au(t-1))
t—exp(du(t-1))

Proof. From Lemma 11

T,(tuwa,d) = YT, (tad) ”—|
n=>0 n.

n n

- y (’J’) d’A;(t) (at - a)’”] %

n=0 | j=0

1
u

_ n! k luk-
= Z md A (t) (at - a) -

n>0 k+l=n
L 0<k<n

du)k N
_ (ZAka)(,:) )(Z(W(tz! 1)))

k>0 >0

(t—1)exp (au(t -1))
t—exp(du(t-1))

(44)
O

Using the results from Lemma 12, we can derive the
following lemma, which is a general version of (5).

Proposition 13. Given an arithmetic progression as in (17), let
T, (t,a—d,—d) be the general Eulerian Polynomials associated
to the arithmetic progression {a — d,a — 2d,a — 3d, ...}. Then

Tn(t,a—d,—d) S .\

- W = Zt’(a + _]d) (i’l > 0) . (45)
j=0
Proof.
eau _ auoo du j_ = j ula+jd)
— =e te =)t'e
1-— tedu j:O( ) ;
S xu"(a+ jd)"

= j;)t] ;)—n! (46)

- iz—r‘l <§tj(a+jd)”>.

n=0""" j=0

On the other hand, by Lemma 12,
OZ": T,(t,a—d,—d)u"
= (t _ 1)n+1 T’l'

1 Q& T,(ta-d-d)u"
_t—lz t-1)"  a

n=0
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Tn(t,a—d,—d)< u )"

1 o0
:_t—lz

= n! t—1
1 (t-1yee
- r—1 t— e—du
e(a—d)u eau

t—e ] —tedn

(47)
By comparing the coefficients of 1" /n!, we have
T,(t,a—d,—d)
W Zf" a+ ]d) (1’1 > 0) . (48)
O

For the finite summation )", la + (i — 1)d]", we have the
following property which is a generalization of (2) and (3).

Lemma 14. Let T, be the general Eulerian polynomials as
defined in Definition 10:

iti[a+ (i-1d]"

i=1

L m+1
) IZ: ( > % it (ta, —d) (49)
2
- (t_tWTn (t,a,~d),
$itas-nar
-1
tm+1
= an(t;a+d(m_l),_d) (50)
2
N #T (t,a,~d).

Proof. We will use (2) and (3) to prove expressions (49) and
(50), respectively.

iti[a +(@{-1)d]"
i=1

(51)

For (49), if we use (2) to evaluate Y L7t we have

iti[a +(@{-1)d]"
i=1

5 (o

Ajg (1)

1)] 1+1

[Z( () "(m 1)

tm
( 1)]+1

5

j=0

B e

Ajy (t)]

Y\ gj n-j it
+ Z(J)d t(— 1)( )JHAJ(t)

Jj=0

+ (-1 A (1)

t"(m - 1)
1)] I+1

=I1+1I;

II:Z(J)d] nig( 1)JﬁAJ )

=0
i Z( ) CdYa- 0y,
t2
—W’Tn (t, a, —d) .

This gives the second term in (49).

-5

j=0
t"(m - 1)

Xi J+l<> EpTYEn Aja(t
550

)

1=0 j=I
t"(m — 1)
STESTECN ()

! o 4
L_d’a”_]t(—l)”l
i)l

(52)



Lt e 1)
Al (] - l) = 1)j*l+1

Ajg (1)

inz (n— k'—l

=0 k=0

dk+l n—k— lt( 1)

1 t"m-1)

m—(t_l)k*'l Ak(t) k:j—l

B i (m-1)nemd
B Iln-1)!

y n—I (_d)k n—k—1 (H l)'

A
Zkn—k—pre-pe+®
n n (m 1)tm+1dl
;(l) l)n I+1
n-1
x (” ! ) (~d)*(at - a4y (¢)
k=0

) tm+1(dm_ d)l

(t _ l)n—l+1 Tn—l (t> a, —d) S

(53)

which gives the first term of (49). So we have proved (49) by
using expression (2).
For (50), if we use (3) to evaluate Y "} Vil we have

iti[a+(i—l)d]"
i=1
_ Z( )d] n- Jt

me () m=1)"
X |:—t Z(k) WAk(t)

k=0

)
e () (1)
+Z< )df i1 - t)” '%Aj(t)

=11 +1V;

2
v - Z()d’”f(l 07— A0

Journal of Mathematics

n t2
jn=j -  A.
fzo< ) a0
t2
= —WTM (t, a, —d) 5

(54)

by Lemma 11. Thus, we have obtained the second part of (50).
li A\
IIT = ™" ( ) d’a"’
o\
j j-k
() 4y
k=0

k+1 k(t)
_ m+1 j!
- ZZJ (n- J)' k(- k)

j=0k=0
ni(m 1)/7*
wdighil t))k+1 AL(®)
mel X n!
" LY
c 1 ik 1j n—j
_n 1)k gi ni
ey TrEn T
i=
_ m+1n n!
B Sk (- A
n-k 1

P — A () (a+dm-1)"*

x A (1) (a+d(m—-1)"*

tm+1
=— T, (t,atd(m-1),-d),
T bardn=1.-d)
(55)
which gives the first term of (50). O
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