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�ewill generali�e the de�nitions of Eulerian numbers and Eulerian polynomials to general arithmetic progressions. �nder the new
de�nitions, we have been successful in extending several well�known properties of traditional Eulerian numbers and polynomials
to the general Eulerian polynomials and numbers.

1. Introduction

Bernoulli [1, pages 95–97] had introduced his famous Ber-
noulli numbers, denoted by 𝐵𝐵2𝑟𝑟 (𝐵𝐵2𝑟𝑟𝑟𝑟 = 0 for 𝑟𝑟 𝑟 𝑟) to
evaluate the sum of the 𝑛𝑛th power of the �rst 𝑚𝑚 integers. He
then proved the following summation formula:

𝑚𝑚

𝑖𝑖=𝑟
𝑖𝑖𝑛𝑛 =

𝑚𝑚𝑛𝑛𝑟𝑟

𝑛𝑛 𝑟 𝑟
𝑟
𝑚𝑚𝑛𝑛

2

𝑟
𝑟

𝑛𝑛 𝑟 𝑟

⌊𝑟𝑟𝑟2𝑟

𝑟𝑟=𝑟

𝑛𝑛 𝑟 𝑟2𝑟𝑟 𝑚𝑚𝑛𝑛𝑛2𝑟𝑟𝑟𝑟(𝑛𝑟)𝑟𝑟𝑟𝑟𝐵𝐵2𝑟𝑟,

(1)

when 𝑛𝑛,𝑚𝑚 𝑟 𝑟.
Two decades later, Euler [2] studied the alternating sum

∑𝑚𝑚
𝑖𝑖=𝑟(𝑛𝑟)

𝑖𝑖𝑖𝑖𝑛𝑛. He ended up with giving the following general
result [3, (2.8), page 259]:

𝑚𝑚

𝑖𝑖=𝑟
𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 =

𝑛𝑛

𝑙𝑙=𝑟
(𝑛𝑟)𝑛𝑛𝑟𝑙𝑙 𝑛𝑛𝑙𝑙

𝑡𝑡𝑚𝑚𝑟𝑟𝑚𝑚𝑙𝑙

(𝑡𝑡 𝑛 𝑟)𝑛𝑛𝑛𝑙𝑙𝑟𝑟
𝐴𝐴𝑛𝑛𝑛𝑙𝑙 (𝑡𝑡)

𝑟 (𝑛𝑟)𝑛𝑛
𝑡𝑡 𝑡𝑡𝑚𝑚 𝑛 𝑟
(𝑡𝑡 𝑛 𝑟)𝑛𝑛𝑟𝑟

𝐴𝐴𝑛𝑛 (𝑡𝑡) .

(2)

Another simpli�ed form of∑𝑚𝑚
𝑖𝑖=𝑟 𝑖𝑖

𝑛𝑛𝑡𝑡𝑖𝑖 is the following [3, (3.3),
page 263]:

𝑚𝑚

𝑖𝑖=𝑟
𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 = 𝑛𝑡𝑡 𝑚𝑚𝑟𝑟

𝑛𝑛

𝑘𝑘=0

𝑛𝑛𝑘𝑘
𝑚𝑚𝑛𝑛𝑛𝑘𝑘

(𝑟 𝑛 𝑡𝑡)𝑘𝑘𝑟𝑟
𝐴𝐴𝑘𝑘 (𝑡𝑡)

𝑟
𝑡𝑡

(𝑟 𝑛 𝑡𝑡)𝑛𝑛𝑟𝑟
𝐴𝐴𝑛𝑛 (𝑡𝑡) ,

(3)

where 𝐴𝐴𝑛𝑛(𝑡𝑡), (𝑛𝑛 = 0, 𝑟, 2,𝑛) are called Eulerian polynomials
and are recursively de�ned by [3, (2.7), page 264]:

𝐴𝐴0 (𝑡𝑡) ∶= 𝑟,

𝐴𝐴𝑛𝑛 (𝑡𝑡) =
𝑛𝑛𝑛𝑟

𝑘𝑘=0

𝑛𝑛𝑘𝑘𝐴𝐴𝑘𝑘 (𝑡𝑡) (𝑡𝑡 𝑛 𝑟)
𝑛𝑛𝑛𝑟𝑛𝑘𝑘.

(4)

Note that for ∑𝑚𝑚
𝑖𝑖=𝑟 𝑖𝑖

𝑛𝑛𝑡𝑡𝑖𝑖, if we put 𝑡𝑡 = 𝑛𝑟, then ∑𝑚𝑚
𝑖𝑖=𝑟 𝑖𝑖

𝑛𝑛𝑡𝑡𝑖𝑖
becomes the alternating sum of the 𝑛𝑛th power of the �rst 𝑚𝑚
positive integers. Furthermore, as𝑚𝑚 𝑚 𝑚, we have [3, (3.2),
page 263]:

𝐴𝐴𝑛𝑛 (𝑡𝑡)
(𝑟 𝑛 𝑡𝑡)𝑛𝑛𝑟𝑟

=
𝑚

𝑗𝑗=0
𝑡𝑡𝑗𝑗𝑗𝑗 𝑟 𝑟𝑛𝑛 (𝑛𝑛 𝑟 0) . (5)
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Each Eulerian polynomial can be presented as a generat-
ing function of Eulerian numbers𝐴𝐴𝑛𝑛𝑛𝑛𝑛 [4], also introduced by
Euler, as

𝐴𝐴𝑛𝑛 (𝑡𝑡) =
𝑛𝑛𝑛𝑛

𝑛𝑛=𝑘
𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑡𝑡

𝑛𝑛. (6)

Furthermore, the corresponding exponential generating
function [3, (3.1), page 262] is

𝐴𝐴 (𝑡𝑡𝑛 𝑡𝑡) = 
𝑛𝑛𝑛𝑘
𝐴𝐴𝑛𝑛 (𝑡𝑡)

𝑡𝑡𝑛𝑛

𝑛𝑛𝑛
=

𝑡𝑡 𝑛 𝑛
𝑡𝑡 𝑛 𝑡𝑡𝑡 (𝑡𝑡 (𝑡𝑡 𝑛 𝑛))

. (7)

e following combinatorial de�nition of Eulerian num-
bers was discovered by Riordan in the 1950s.

�e�nition �. A Eulerian number 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 is the number of per-
mutations 𝑝𝑝𝑛𝑝𝑝2𝑝𝑝3 …𝑝𝑝𝑛𝑛 of the �rst 𝑛𝑛 numbers {𝑛𝑛 2𝑛… 𝑛 𝑛𝑛𝑛
that have 𝑛𝑛 ascents (or descents), that is, 𝑛𝑛 places where 𝑝𝑝𝑗𝑗 <
𝑝𝑝𝑗𝑗𝑗𝑛 (or 𝑝𝑝𝑗𝑗 > 𝑝𝑝𝑗𝑗𝑗𝑛), 𝑛 ≤ 𝑗𝑗 ≤ 𝑛𝑛 𝑛 𝑛.

Example 2. When 𝑛𝑛 = 3𝑛 𝑛𝑛 = 𝑛, and 𝐴𝐴3𝑛𝑛 = 4, because there
are four permutations with only one ascent:

𝑛32𝑛 2𝑛3𝑛 23𝑛𝑛 3𝑛2𝑛 (8)

then𝐴𝐴𝑛𝑛𝑛𝑛𝑛 satis�es the recurrence:𝐴𝐴𝑛𝑛𝑛𝑘 = 𝑛, (𝑛𝑛 𝑛 𝑘)𝑛 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 = 𝑘
(𝑛𝑛 𝑛 𝑛𝑛) and

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 = (𝑛𝑛 𝑗 𝑛)𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛

𝑗 (𝑛𝑛 𝑛 𝑛𝑛)𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑛 ≤ 𝑛𝑛 ≤ 𝑛𝑛 𝑛 𝑛) .
(9)

It is well known that Eulerian numbers have the following
symmetric property:

Proposition 3. Given a positive integer 𝑛𝑛, and 𝑘 ≤ 𝑛𝑛 ≤ 𝑛𝑛 𝑛 𝑛,
𝐴𝐴𝑛𝑛𝑛𝑛𝑛 = 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛.

Proof. It is obvious because if a permutation has 𝑛𝑛 ascents
then its reverse has 𝑛𝑛 𝑛 𝑛 𝑛 𝑛𝑛 ascents.

Furthermore, the values of𝐴𝐴𝑛𝑛𝑛𝑛𝑛 can be expressed in a form
of a triangular array as shown in Table 1.

Besides the recursive formula (9), 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 can be calculated
directly by the following analytic formula [3, (3.5), page 264]:

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 =
𝑛𝑛

𝑖𝑖=𝑘
(𝑛𝑛)𝑖𝑖(𝑛𝑛 𝑛 𝑖𝑖 𝑗 𝑛)𝑛𝑛 𝑛𝑛 𝑗 𝑛𝑖𝑖 

(𝑘 ≤ 𝑛𝑛 ≤ 𝑛𝑛 𝑛 𝑛) .

(10)

Since the 1950s, Carlitz ([5, 6]) and his successors have
generalized Euler’s results to 𝑞𝑞-sequences {𝑛𝑛 𝑞𝑞𝑛 𝑞𝑞2𝑛 𝑞𝑞3𝑛…𝑛.
�nder Carlitz’s de�nition, the 𝑞𝑞-Eulerian numbers 𝐴𝐴𝑛𝑛𝑛𝑛𝑛(𝑞𝑞)
are given by

[𝑥𝑥]𝑛𝑛 =
𝑛𝑛𝑛𝑛

𝑛𝑛=𝑘
𝐴𝐴𝑛𝑛𝑛𝑛𝑛 𝑞𝑞 

𝑥𝑥 𝑗 𝑛𝑛 𝑛 𝑛
𝑛𝑛  (𝑛𝑛 𝑛 𝑛) 𝑛 (11)

T 1: First few values of Eulerian numbers 𝐴𝐴𝑛𝑛𝑛 𝑛𝑛.

k =
0 1 2 3 4 5

n = 1 1
2 1 1
3 1 4 1
4 1 11 11 1
5 1 26 66 26 1
6 1 57 302 302 57 1

where

[𝑥𝑥] =
𝑛 𝑛 𝑞𝑞𝑥𝑥

𝑛 𝑛 𝑞𝑞
𝑛

𝑥𝑥𝑛𝑛 =
𝑛 𝑛 𝑞𝑞𝑥𝑥 𝑛 𝑛 𝑞𝑞𝑥𝑥𝑛𝑛⋯𝑛 𝑛 𝑞𝑞𝑥𝑥𝑛𝑛𝑛𝑗𝑛

𝑛 𝑛 𝑞𝑞 𝑛 𝑛 𝑞𝑞2⋯ 𝑛 𝑛 𝑞𝑞𝑛𝑛
.

(12)

en the 𝑞𝑞-Eulerian polynomials 𝐴𝐴𝑛𝑛(𝑡𝑡𝑛 𝑞𝑞) are de�ned as

𝐴𝐴𝑛𝑛 𝑡𝑡𝑛 𝑞𝑞 =
𝑛𝑛𝑛𝑛

𝑛𝑛=𝑘
𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑡𝑡

𝑛𝑛 (𝑛𝑛 𝑛 𝑛) . (13)

Like the traditional Eulerian numbers, the 𝑞𝑞-Eulerian num-
bers 𝐴𝐴𝑛𝑛𝑛𝑛𝑛(𝑞𝑞) have the following recursive formula:

𝐴𝐴𝑛𝑛𝑘 𝑞𝑞 = 𝑛𝑛 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 𝑞𝑞 = 𝑘 if (𝑛𝑛 ≤ 𝑘 or 𝑛𝑛 𝑛 𝑛𝑛) 𝑛

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 𝑞𝑞 = 𝑞𝑞
𝑛𝑛𝑛𝑛𝑛𝑛𝑛 [𝑛𝑛 𝑗 𝑛]𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑞𝑞

𝑗 [𝑛𝑛 𝑛 𝑛𝑛]𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑞𝑞 (𝑛𝑛 𝑛 𝑛) .

(14)

Similarly to the traditional Eulerian numbers, we can also
construct a triangular array for 𝑞𝑞-Eulerian numbers as in
Table 2.

�e�nition �. Given a permutation 𝜋𝜋 = 𝑝𝑝𝑛𝑝𝑝2𝑝𝑝3 …𝑝𝑝𝑛𝑛 of the
�rst 𝑛𝑛 numbers {𝑛𝑛 2𝑛 3𝑛 𝑛… 𝑛 𝑛𝑛𝑛, de�ne functions

maj𝜋𝜋 = 
𝑝𝑝𝑗𝑗>𝑝𝑝𝑗𝑗𝑗𝑛

𝑗𝑗𝑛

𝑎𝑎 (𝑛𝑛𝑛 𝑛𝑛𝑛 𝑖𝑖) = # 𝜋𝜋 𝜋 maj𝜋𝜋 = 𝑖𝑖 and 𝜋𝜋 has 𝑛𝑛 ascents .
(15)

In 1974, Carlitz [6] completed his study of his 𝑞𝑞-Eulerian
numbers by giving a combinatorial meaning to his 𝑞𝑞-Eulerian
numbers:

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 𝑞𝑞 = 𝑞𝑞
((𝑚𝑚𝑛𝑛𝑛𝑗𝑛)(𝑚𝑚𝑛𝑛𝑛))𝑚2

𝑛𝑛(𝑛𝑛𝑛𝑛𝑛𝑛𝑛)

𝑖𝑖=𝑘

𝑎𝑎 (𝑛𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛𝑛 𝑖𝑖) 𝑞𝑞𝑖𝑖𝑛 (16)

where functions 𝑎𝑎(𝑛𝑛𝑛 𝑛𝑛𝑛 𝑖𝑖) are as de�ned in �e�nition 4. Inter-
ested readers can �nd more details about the history of Eule-
rian numbers, Eulerian polynomials, and the corresponding
concepts in 𝑞𝑞-environment from [3].

In this paper, instead of studying 𝑞𝑞-sequences, we will
generalize Euler’s work on Eulerian numbers and Eulerian
polynomials to any general arithmetic progression:

{𝑎𝑎𝑛 𝑎𝑎 𝑗 𝑎𝑎𝑛 𝑎𝑎 𝑗 2𝑎𝑎𝑛 𝑎𝑎 𝑗 3𝑎𝑎𝑛…𝑛 . (17)
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T 2: First values of 𝑞𝑞𝑞 Eulerian numbers 𝐴𝐴𝑛𝑛𝑛 𝑛𝑛(𝑞𝑞𝑞.

k =
0 1 2 3

n = 1 1
2 𝑞𝑞 1
3 𝑞𝑞3 2𝑞𝑞2 + 2𝑞𝑞 1
4 𝑞𝑞6 3𝑞𝑞5 + 5𝑞𝑞4 + 3𝑞𝑞3 3𝑞𝑞3 + 5𝑞𝑞2 + 3𝑞𝑞 1

In Section 2, we will give a new de�nition of general
Eulerian numbers based on a given arithmetic progression as
de�ned in (17). �nder the new de�nition, some well-known
combinatorial properties of traditional Eulerian numbers
become special cases of our more general results. In Section
3, we will de�ne general Eulerian polynomials.en, (2), (3),
(4), (5), (6), (7), (9), and (10) become special cases of our
more general results.

2. General Eulerian Numbers

e traditional Eulerian numbers𝐴𝐴𝑛𝑛𝑛𝑛𝑛, play an important role
in the well-knownWorpitzky’s identity [7]:

𝑥𝑥𝑛𝑛 =
𝑛𝑛𝑞𝑛

𝑛𝑛=𝑘

𝑥𝑥 + 𝑛𝑛𝑛𝑛 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛 𝑛 𝑛𝑛 (18)

�efore we give a general de�nition of Eulerian numbers
based on a given arithmetic progression (17), we shall
mention a property associated with the traditional Eulerian
numbers 𝐴𝐴𝑛𝑛𝑛𝑛𝑛.

Proposition 5. Let 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 be the traditional Eulerian numbers
as de�ned in �e�nition �, then

𝑚𝑚

𝑖𝑖=𝑛
𝑖𝑖𝑛𝑛 =

𝑛𝑛𝑞𝑛

𝑛𝑛=𝑘
𝐴𝐴𝑛𝑛𝑛𝑛𝑛 

𝑚𝑚 + 𝑛𝑛 + 𝑛
𝑛𝑛 + 𝑛  𝑛 (19)

Proof. See [8, (4), page 348].

Given an arithmetic progression (17), we want to de�ne
general Eulerian numbers 𝐴𝐴𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑛 𝑎𝑎𝑞 so that the important
properties of traditional Eulerian numbers such as the recur-
sive formula (9), the triangular array (Table 1), Worpitzky’s
Identity (18), and Proposition 5, and so forth, become special
cases of more general results under the new de�nition.

�e�nition �. General Eulerian numbers𝐴𝐴𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑛 𝑎𝑎𝑞 associated
with an arithmetic progression as in (17) are de�ned as
𝐴𝐴𝑘𝑛𝑞𝑛 = 𝑛𝑛 𝐴𝐴𝑛𝑛𝑛𝑛𝑛 = 𝑘 (𝑛𝑛 𝑛 𝑛𝑛 or 𝑛𝑛 𝑘 𝑞2𝑞 and

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑞 = (𝑞𝑎𝑎 + (𝑛𝑛 + 2𝑞 𝑎𝑎𝑞𝐴𝐴𝑛𝑛𝑞𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑞

+ (𝑎𝑎 + (𝑛𝑛 𝑞 𝑛𝑛 𝑞 𝑛𝑞 𝑎𝑎𝑞𝐴𝐴𝑛𝑛𝑞𝑛𝑛𝑛𝑛𝑞𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑞

(𝑘 𝑘 𝑛𝑛 𝑘 𝑛𝑛 𝑞 𝑛𝑞 𝑛

(20)

Like the traditional Eulerian numbers and 𝑞𝑞-Eulerian
numbers, the �rst general Eulerian numbers can be presented
in the form of a triangular array as in Table 3.

We intentionally choose 𝑛𝑛 values to start with 𝑞𝑛, because
by doing so Table 1 becomes the special case of Table 3 when
𝑎𝑎 = 𝑎𝑎 = 𝑛 in the arithmetic progression:

{𝑎𝑎𝑛 𝑎𝑎 + 𝑎𝑎𝑛 𝑎𝑎 + 2𝑎𝑎𝑛 𝑎𝑎 + 3𝑎𝑎𝑛𝑎} 𝑛 (21)
In otherwords, Table 1 corresponds to the sequence of natural
numbers:

{𝑛𝑛 2𝑛 3𝑛 4𝑛𝑎} 𝑛 (22)
erefore when 𝑎𝑎 = 𝑎𝑎 = 𝑛, the entries in the �rst column of
Table 3 become zeroes e�cept initially de�ned𝐴𝐴𝑘𝑛𝑞𝑛(𝑎𝑎𝑛 𝑎𝑎𝑞 = 𝑛.

With the new �e�nition 6, we are able to prove the
following two properties. Again note that if 𝑎𝑎 = 𝑎𝑎 = 𝑛, then
the following identity is just the conventional Worpitzky’s
identity.

Lemma 7 (General Worpitzky’s Identity). Given an arith-
metic progression as in (17),

(𝑎𝑎 + (𝑖𝑖 𝑞 𝑛𝑞 𝑎𝑎𝑞𝑛𝑛 =
𝑛𝑛𝑞𝑛

𝑗𝑗=𝑞𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎𝑞 
𝑖𝑖 + 𝑗𝑗
𝑛𝑛  𝑛 𝑖𝑖 𝑛 𝑛𝑛 (23)

Proof. We will prove Lemma 7 by induction on 𝑛𝑛.
(i) When 𝑛𝑛 = 𝑛, using the values in Table 3,

𝑎𝑎 + (𝑖𝑖 𝑞 𝑛𝑞 𝑎𝑎 = 𝐴𝐴𝑛𝑛𝑞𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑞 
𝑖𝑖 𝑞 𝑛
𝑛 

+ 𝐴𝐴𝑛𝑛𝑘 (𝑎𝑎𝑛 𝑎𝑎𝑞 
𝑖𝑖
𝑛 𝑛

(24)

(ii) Now suppose

(𝑎𝑎 + (𝑖𝑖 𝑞 𝑛𝑞 𝑎𝑎𝑞𝑛𝑛 =
𝑛𝑛𝑞𝑛

𝑗𝑗=𝑞𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎𝑞 
𝑖𝑖 + 𝑗𝑗
𝑛𝑛  then𝑛

(𝑎𝑎 + (𝑖𝑖 𝑞 𝑛𝑞 𝑎𝑎𝑞𝑛𝑛+𝑛

= 



𝑛𝑛𝑞𝑛

𝑗𝑗=𝑞𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎𝑞 
𝑖𝑖 + 𝑗𝑗
𝑛𝑛 


(𝑎𝑎 + (𝑖𝑖 𝑞 𝑛𝑞 𝑎𝑎𝑞

=
𝑛𝑛𝑞𝑛

𝑗𝑗=𝑞𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎𝑞 𝑎𝑎 
𝑖𝑖 + 𝑗𝑗
𝑛𝑛  𝑞 𝑗𝑗 + 2 𝑎𝑎𝑖𝑖 + 𝑗𝑗𝑛𝑛 

+ 𝑖𝑖 + 𝑗𝑗 + 𝑛 𝑎𝑎𝑖𝑖 + 𝑗𝑗𝑛𝑛 

=
𝑛𝑛𝑞𝑛

𝑗𝑗=𝑞𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎𝑞 𝑎𝑎 
𝑖𝑖 + 𝑗𝑗 + 𝑛
𝑛𝑛 + 𝑛  𝑞 𝑎𝑎 𝑖𝑖 + 𝑗𝑗𝑛𝑛 + 𝑛

+ 𝑛𝑛 𝑞 𝑗𝑗 𝑞 𝑛 𝑎𝑎𝑖𝑖 + 𝑗𝑗 + 𝑛𝑛𝑛 + 𝑛 

+
𝑛𝑛𝑞𝑛

𝑗𝑗=𝑞𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎𝑞 𝑗𝑗 + 2 𝑎𝑎
𝑖𝑖 + 𝑗𝑗
𝑛𝑛 + 𝑛

=
𝑛𝑛𝑞𝑛

𝑗𝑗=𝑞𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎𝑞 𝑎𝑎 + 𝑛𝑛 𝑞 𝑗𝑗 𝑞 𝑛 𝑎𝑎 
𝑖𝑖 + 𝑗𝑗 + 𝑛
𝑛𝑛 + 𝑛 
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𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 𝑛𝑎𝑎 + 𝑗𝑗 + 𝑗 𝑎𝑎 
𝑖𝑖 + 𝑗𝑗
𝑛𝑛 + 𝑛

𝑗
𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎) 𝑎𝑎 + 𝑛𝑛 𝑛 𝑗𝑗 𝑎𝑎 + 𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎)

× 𝑛𝑎𝑎 + 𝑗𝑗 + 𝑗 𝑎𝑎   𝑖𝑖 + 𝑗𝑗𝑛𝑛 + 𝑛

𝑗
𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛+𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑖𝑖 + 𝑗𝑗
𝑛𝑛 + 𝑛 .

(25)

By (20) With Lemma 7, we can prove the following Lemma
which is a generalization of Proposition 5.

Lemma 8. Given an arithmetic progression as in (17),
𝑚𝑚

𝑖𝑖𝑗𝑛
(𝑎𝑎 + (𝑖𝑖 𝑛 𝑛) 𝑎𝑎)𝑛𝑛

𝑗
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑚𝑚 + 𝑗𝑗 + 𝑛
𝑛𝑛 + 𝑛  .

(26)

Proof. We will prove Lemma 8 by induction on𝑚𝑚.
(i) When𝑚𝑚 𝑗 𝑛, by Lemma 7,

(𝑎𝑎 + (𝑛 𝑛 𝑛) 𝑎𝑎)𝑛𝑛 𝑗
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑛 + 𝑗𝑗
𝑛𝑛 

𝑗
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑛 + 𝑗𝑗
𝑛𝑛 

+
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑛 + 𝑗𝑗
𝑛𝑛 + 𝑛 𝑛

(27)

since  𝑛+𝑗𝑗𝑛𝑛+𝑛  𝑗 0, for 𝑗𝑗 𝑗 𝑛𝑛𝑛 0𝑛 𝑛𝑛𝑗 𝑛 𝑛𝑛 𝑛 𝑛. erefore,

[𝑎𝑎 + (𝑛 𝑛 𝑛) 𝑎𝑎]𝑛𝑛 𝑗
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑛 + 𝑗𝑗 + 𝑛
𝑛𝑛 + 𝑛  𝑛 (28)

which �nishes the base case𝑚𝑚 𝑗 𝑛.
(ii) Now suppose
𝑚𝑚

𝑖𝑖𝑗𝑛
(𝑎𝑎 + (𝑖𝑖 𝑛 𝑛) 𝑎𝑎)𝑛𝑛 𝑗

𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑚𝑚 + 𝑗𝑗 + 𝑛
𝑛𝑛 + 𝑛  . (29)

(iii) en from Table 3, �e�nition 6, and Lemma 7,
𝑚𝑚+𝑛

𝑖𝑖𝑗𝑛
(𝑎𝑎 + (𝑖𝑖 𝑛 𝑛) 𝑎𝑎)𝑛𝑛

𝑗
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑚𝑚 + 𝑗𝑗 + 𝑛
𝑛𝑛 + 𝑛  + (𝑎𝑎 + 𝑚𝑚𝑎𝑎)𝑛𝑛

𝑗
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑚𝑚 + 𝑗𝑗 + 𝑛
𝑛𝑛 + 𝑛  + 𝑚𝑚 + 𝑗𝑗 + 𝑛

𝑛𝑛 

𝑗
𝑛𝑛𝑛𝑛

𝑗𝑗𝑗𝑛𝑛

𝐴𝐴𝑛𝑛𝑛𝑗𝑗 (𝑎𝑎𝑛 𝑎𝑎) 
𝑚𝑚 + 𝑛 + 𝑗𝑗 + 𝑛

𝑛𝑛 + 𝑛  .

(30)

egeneral Eulerian numbers𝐴𝐴𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑛 𝑎𝑎) can be calculated
directly from the following formula, which is a generalization
of (10).

Lemma 9. For a given arithmetic progression {𝑎𝑎𝑛 𝑎𝑎 + 𝑎𝑎𝑛 𝑎𝑎 +
𝑗𝑎𝑎𝑛 𝑎𝑎 + 𝑑𝑎𝑎𝑛𝑗𝑑, the general Eulerian numbers satisfy

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎) 𝑗
𝑛𝑛+𝑛

𝑖𝑖𝑗0
(𝑛𝑛)𝑖𝑖[(𝑛𝑛 + 𝑗 𝑛 𝑖𝑖) 𝑎𝑎 𝑛 𝑎𝑎]𝑛𝑛 𝑛𝑛 + 𝑛𝑖𝑖  . (31)

Proof. e following proof is given by inductions on both 𝑛𝑛
and 𝑛𝑛.

For 𝑛𝑛 𝑗 0𝑛 𝑛𝑛 𝑗 𝑛𝑛, 𝐴𝐴0𝑛𝑛𝑛(𝑎𝑎𝑛 𝑎𝑎) 𝑗 (𝑛𝑛)
0(𝑎𝑎 𝑛 𝑎𝑎)0  𝑛0  𝑗 𝑛.

For 𝑛𝑛 𝑗 𝑛𝑛 𝑛𝑛 𝑗 𝑛𝑛,𝐴𝐴𝑛𝑛𝑛𝑛(𝑎𝑎𝑛 𝑎𝑎) 𝑗 (𝑛𝑛)
0(𝑎𝑎𝑛𝑎𝑎)𝑛  𝑗0  𝑗 𝑎𝑎𝑛𝑎𝑎.

For 𝑛𝑛 𝑗 𝑛𝑛 𝑛𝑛 𝑗 0, 𝐴𝐴𝑛𝑛0(𝑎𝑎𝑛 𝑎𝑎) 𝑗 (𝑛𝑛)0(𝑗𝑎𝑎 𝑛 𝑎𝑎)𝑛  𝑗0  +
(𝑛𝑛)𝑛(𝑎𝑎 𝑛 𝑎𝑎)𝑛  𝑗𝑛  𝑗 𝑎𝑎.

Now suppose 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛(𝑎𝑎𝑛 𝑎𝑎) 𝑗 𝑎𝑛𝑛+𝑛
𝑖𝑖𝑗0 (𝑛𝑛)

𝑖𝑖[(𝑛𝑛 + 𝑗 𝑛 𝑖𝑖)𝑎𝑎 𝑛
𝑎𝑎]𝑛𝑛𝑛𝑛 ( 𝑛𝑛𝑖𝑖 ). en from the recursive formula (20),

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎)

𝑗 [𝑛𝑎𝑎 + (𝑛𝑛 + 𝑗) 𝑎𝑎]𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎)

+ [𝑎𝑎 + (𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛) 𝑎𝑎]𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎)

𝑗 [𝑛𝑎𝑎 + (𝑛𝑛 + 𝑗) 𝑎𝑎]

×
𝑛𝑛+𝑛

𝑖𝑖𝑗0
(𝑛𝑛)𝑖𝑖 [(𝑛𝑛 + 𝑗 𝑛 𝑖𝑖) 𝑎𝑎 𝑛 𝑎𝑎]𝑛𝑛𝑛𝑛 𝑛𝑛𝑖𝑖

+ [𝑎𝑎 + (𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛) 𝑎𝑎]
𝑛𝑛+𝑛

𝑖𝑖𝑗𝑛
(𝑛𝑛)𝑖𝑖𝑛𝑛

× [(𝑛𝑛 + 𝑗 𝑛 𝑖𝑖) 𝑎𝑎 𝑛 𝑎𝑎]𝑛𝑛𝑛𝑛  𝑛𝑛
𝑖𝑖 𝑛 𝑛 by induction

𝑗 [(𝑛𝑛 + 𝑗) 𝑎𝑎 𝑛 𝑎𝑎]𝑛𝑛 𝑛𝑛0

+
𝑛𝑛+𝑛

𝑖𝑖𝑗𝑛
(𝑛𝑛)𝑖𝑖[(𝑛𝑛 + 𝑗 𝑛 𝑖𝑖) 𝑎𝑎 𝑛 𝑎𝑎]𝑛𝑛𝑛𝑛

× (𝑛𝑛 + 𝑗) 𝑎𝑎 𝑛𝑛𝑖𝑖 𝑛 (𝑛𝑛 𝑛 𝑛𝑛 𝑛 𝑛) 𝑎𝑎 
𝑛𝑛

𝑖𝑖 𝑛 𝑛

𝑛𝑎𝑎𝑛𝑛𝑖𝑖 𝑛 𝑎𝑎
𝑛𝑛

𝑖𝑖 𝑛 𝑛 ;

(32)
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T 3: First values of general Eulerian numbers 𝐴𝐴𝑛𝑛𝑛 𝑛𝑛(𝑎𝑎𝑛 𝑎𝑎𝑎.

k =
−1 0 1 2 3

n = 0 1
1 𝑎𝑎 − 𝑎𝑎 𝑎𝑎
2 (𝑎𝑎 − 𝑎𝑎𝑎2 −2𝑎𝑎2 + 2𝑎𝑎𝑎𝑎 + 𝑎𝑎2 𝑎𝑎2

3 (𝑎𝑎 − 𝑎𝑎𝑎3 3𝑎𝑎3 − 6𝑎𝑎2𝑎𝑎 + 𝑑𝑎𝑎3 −3𝑎𝑎3 + 3𝑎𝑎2𝑎𝑎 + 3𝑎𝑎𝑎𝑎2 + 𝑎𝑎3 𝑎𝑎3

4 (𝑎𝑎 − 𝑎𝑎𝑎𝑑 −𝑑𝑎𝑎𝑑 + 12𝑎𝑎3𝑎𝑎 − 6𝑎𝑎2𝑎𝑎2 − 12𝑎𝑎𝑎𝑎3 + 11𝑎𝑎𝑑 6𝑎𝑎𝑑 − 12𝑎𝑎3𝑎𝑎 − 6𝑎𝑎2𝑎𝑎2 + 12𝑎𝑎𝑎𝑎3 + 11𝑎𝑎𝑑 −𝑑𝑎𝑎𝑑+𝑑𝑎𝑎3𝑎𝑎 + 6𝑎𝑎2𝑎𝑎2 + 𝑑𝑎𝑎𝑎𝑎3 + 𝑎𝑎𝑑 𝑎𝑎𝑑

Note that

(𝑛𝑛 + 2𝑎 𝑎𝑎 𝑛𝑛𝑖𝑖 − (𝑛𝑛 − 𝑛𝑛 − 1𝑎 𝑎𝑎 
𝑛𝑛

𝑖𝑖 − 1 − 𝑎𝑎
𝑛𝑛
𝑖𝑖 − 𝑎𝑎

𝑛𝑛
𝑖𝑖 − 1

= (𝑛𝑛 + 2𝑎 𝑎𝑎𝑛𝑛𝑖𝑖 − (𝑛𝑛 − 𝑛𝑛 − 1𝑎 𝑎𝑎 
𝑛𝑛

𝑖𝑖 − 1 − 𝑎𝑎
𝑛𝑛 + 1
𝑖𝑖 

= (𝑛𝑛 + 2𝑎 𝑎𝑎𝑛𝑛𝑖𝑖 + (𝑛𝑛 + 2𝑎 𝑎𝑎 
𝑛𝑛

𝑖𝑖 − 1

− (𝑛𝑛 + 1𝑎 𝑎𝑎  𝑛𝑛
𝑖𝑖 − 1 − 𝑎𝑎

𝑛𝑛 + 1
𝑖𝑖 

= (𝑛𝑛 + 2𝑎 𝑎𝑎𝑛𝑛 + 1𝑖𝑖  − 𝑖𝑖𝑎𝑎 𝑛𝑛 + 1𝑖𝑖  − 𝑎𝑎𝑛𝑛 + 1𝑖𝑖 

= [(𝑛𝑛 + 2 − 𝑖𝑖𝑎 𝑎𝑎 − 𝑎𝑎] 𝑛𝑛 + 1𝑖𝑖  .

(33)

Combine the results above, we have

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 =
𝑛𝑛+1

𝑖𝑖=𝑖
(−1𝑎𝑖𝑖 [(𝑛𝑛 + 2 − 𝑖𝑖𝑎 𝑎𝑎 − 𝑎𝑎]𝑛𝑛 𝑛𝑛 + 1𝑖𝑖  . (34)

3. General Eulerian Polynomials

�e�nition ��. We de�ne the general Eulerian polynomials
associated to an arithmetic progression as in (17) as

𝑇𝑇𝑛𝑛 (𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎 =
𝑛𝑛−1

𝑛𝑛=−1

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1. (35)

�e�nition 10 is a generalization of the traditional Eule-
rian polynomials as in (6). e following lemma gives the
relation between the general Eulerian polynomials and the
traditional Eulerian polynomials.

Lemma11. Let𝑇𝑇𝑛𝑛(𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎 be the general Eulerian polynomials
as in �e�nition ��, 𝑇𝑇𝑖(𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎 = 1. en

𝑇𝑇𝑛𝑛 (𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎 =
𝑛𝑛−1

𝑛𝑛=−1

𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1

=
𝑛𝑛

𝑗𝑗=𝑖

𝑛𝑛𝑗𝑗 𝑎𝑎
𝑗𝑗𝐴𝐴𝑗𝑗 (𝑡𝑡𝑎 (𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑎

𝑛𝑛−𝑗𝑗𝑛

(36)

where 𝐴𝐴𝑗𝑗(𝑡𝑡𝑎𝑛 𝑗𝑗 = 𝑖𝑛 1𝑛 2𝑛𝑡 𝑛 𝑛𝑛 are traditional Eulerian
polynomials as de�ned in (4) and (6).

Proof. (i) When 𝑛𝑛 = 𝑖, 𝑇𝑇𝑖(𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎 =  𝑖𝑖  𝑎𝑎
𝑖𝐴𝐴𝑖(𝑡𝑡𝑎(𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑎

𝑖 = 1.
(ii) Now suppose

𝑇𝑇𝑛𝑛 (𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎 =
𝑛𝑛

𝑗𝑗=𝑖

𝑛𝑛𝑗𝑗 𝑎𝑎
𝑗𝑗𝐴𝐴𝑗𝑗 (𝑡𝑡𝑎 (𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑎

𝑛𝑛−𝑗𝑗. en𝑛

𝑇𝑇𝑛𝑛+1 (𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎 =
𝑛𝑛

𝑛𝑛=−1

𝐴𝐴𝑛𝑛+1𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1 by de�nition

=
𝑛𝑛

𝑛𝑛=−1

(𝑎𝑎 + (𝑛𝑛 − 𝑛𝑛𝑎 𝑎𝑎𝑎𝐴𝐴𝑛𝑛𝑛𝑛𝑛−1 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1

+
𝑛𝑛

𝑛𝑛=−1

(−𝑎𝑎 + (𝑛𝑛 + 2𝑎 𝑎𝑎𝑎𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1

=
𝑛𝑛−1

𝑛𝑛=−1

(𝑎𝑎 + (𝑛𝑛 − 𝑛𝑛 − 1𝑎 𝑎𝑎𝑎𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+2

+
𝑛𝑛−1

𝑛𝑛=−1

(−𝑎𝑎 + (𝑛𝑛 + 2𝑎 𝑎𝑎𝑎𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1

=
𝑛𝑛−1

𝑛𝑛=−1

(𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑎𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1

+
𝑛𝑛−1

𝑛𝑛=−1

𝑎𝑎 (𝑛𝑛𝑡𝑡 − 𝑡𝑡 + 2𝑎𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1

+
𝑛𝑛−1

𝑛𝑛=−1

𝑎𝑎 (1 − 𝑡𝑡𝑎 𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1

(37)
= (𝑎𝑎𝑡𝑡 − 𝑎𝑎𝑎 𝑇𝑇𝑛𝑛 (𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎

+ (𝑎𝑎𝑛𝑛𝑡𝑡 − 𝑎𝑎𝑡𝑡 + 2𝑎𝑎𝑎 𝑇𝑇𝑛𝑛 (𝑡𝑡𝑛 𝑎𝑎𝑛 𝑎𝑎𝑎

+
𝑛𝑛−1

𝑛𝑛=−1

𝑎𝑎 (1 − 𝑡𝑡𝑎 𝑛𝑛𝐴𝐴𝑛𝑛𝑛𝑛𝑛 (𝑎𝑎𝑛 𝑎𝑎𝑎 𝑡𝑡
𝑛𝑛+1.

(38)
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�ote that by de�nition, 𝑇𝑇𝑛𝑛(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡 𝑡
𝑛𝑛𝑛𝑛
𝑘𝑘𝑡𝑛𝑛 𝐴𝐴𝑛𝑛𝑡𝑘𝑘(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡

𝑘𝑘𝑘𝑛.
So 𝑇𝑇′𝑛𝑛(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡 𝑡

𝑛𝑛𝑛𝑛
𝑘𝑘𝑡𝑛𝑛(𝑘𝑘 𝑘 𝑛𝑡𝐴𝐴𝑛𝑛𝑡𝑘𝑘(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡

𝑘𝑘, which implies

𝑡𝑡𝑇𝑇′𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡 𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑘
𝑛𝑛𝑛𝑛

𝑘𝑘𝑡𝑛𝑛

𝑘𝑘𝐴𝐴𝑛𝑛𝑡𝑘𝑘 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡
𝑘𝑘𝑘𝑛. (39)

On the other hand, from [3, (3.4), page 263], we have

𝐴𝐴𝑛𝑛 (𝑡𝑡𝑡 𝑡 [𝑛 𝑘 (𝑛𝑛 𝑛 𝑛𝑡 𝑡𝑡] 𝐴𝐴𝑛𝑛𝑛𝑛 (𝑡𝑡𝑡 𝑘 𝑡𝑡 (𝑛 𝑛 𝑡𝑡𝑡𝐴𝐴
′
𝑛𝑛𝑛𝑛 (𝑡𝑡𝑡 . (40)

With results as in (39) and (40), we have

(𝑡𝑡𝑛𝑛𝑡𝑡 𝑛 𝑡𝑡𝑡𝑡 𝑘 𝑑𝑡𝑡𝑡 𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑘
𝑛𝑛𝑛𝑛

𝑘𝑘𝑡𝑛𝑛

𝑡𝑡 (𝑛 𝑛 𝑡𝑡𝑡 𝑘𝑘𝐴𝐴𝑛𝑛𝑡𝑘𝑘 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡
𝑘𝑘𝑘𝑛

𝑡 (𝑡𝑡𝑛𝑛𝑡𝑡 𝑘 𝑡𝑡𝑡 𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑘 𝑡𝑡 (𝑛 𝑛 𝑡𝑡𝑡 𝑡𝑡𝑇𝑇
′
𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡

𝑡 (𝑡𝑡𝑛𝑛𝑡𝑡 𝑘 𝑡𝑡𝑡 𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑘 𝑡𝑡 (𝑛 𝑛 𝑡𝑡𝑡 𝑡𝑡
𝑛𝑛

𝑗𝑗𝑡𝑗
𝑡𝑡𝑗𝑗 𝑛𝑛𝑗𝑗

× 𝐴𝐴′
𝑗𝑗 (𝑡𝑡𝑡 (𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡

𝑛𝑛𝑛𝑗𝑗

𝑘𝑡𝑡 𝑛𝑛 𝑛 𝑗𝑗𝐴𝐴𝑗𝑗 (𝑡𝑡𝑡 (𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡
𝑛𝑛𝑛𝑗𝑗𝑛𝑛 by induction

𝑡 (𝑡𝑡𝑛𝑛𝑡𝑡 𝑘 𝑡𝑡𝑡 𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡𝑡 𝑛𝑛 𝑛 𝑗𝑗 𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡

𝑘 𝑡𝑡 (𝑛 𝑛 𝑡𝑡𝑡 𝑡𝑡
𝑛𝑛

𝑗𝑗𝑡𝑗

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝐴𝐴′𝑛𝑛𝑛𝑗𝑗

𝑗𝑗

𝑡
𝑛𝑛

𝑗𝑗𝑡𝑗

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑘𝑛(𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡𝑛𝑛𝑛𝑗𝑗

× 𝑛 𝑘 𝑗𝑗𝑡𝑡𝐴𝐴𝑗𝑗 (𝑡𝑡𝑡 𝑘 𝑡𝑡 (𝑛 𝑛 𝑡𝑡𝑡𝐴𝐴
′
𝑗𝑗 (𝑡𝑡𝑡

𝑡
𝑛𝑛

𝑗𝑗𝑡𝑗

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑘𝑛(𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡𝑛𝑛𝑛𝑗𝑗𝐴𝐴𝑗𝑗𝑘𝑛 (𝑡𝑡𝑡 .

(41)

erefore, expression (37) becomes

𝑇𝑇𝑛𝑛𝑘𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡
𝑛𝑛

𝑗𝑗𝑡𝑗

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑘𝑛(𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡𝑛𝑛𝑛𝑗𝑗𝐴𝐴𝑗𝑗𝑘𝑛 (𝑡𝑡𝑡

𝑘
𝑛𝑛

𝑗𝑗𝑡𝑗

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗(𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡𝑛𝑛𝑛𝑗𝑗𝑘𝑛𝐴𝐴𝑗𝑗 (𝑡𝑡𝑡

𝑡
𝑛𝑛𝑘𝑛

𝑗𝑗𝑡𝑛

 𝑛𝑛
𝑗𝑗 𝑛 𝑛𝑡𝑡

𝑗𝑗(𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡𝑛𝑛𝑘𝑛𝑛𝑗𝑗𝐴𝐴𝑗𝑗 (𝑡𝑡𝑡

𝑘
𝑛𝑛

𝑗𝑗𝑡𝑗

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗(𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡𝑛𝑛𝑛𝑗𝑗𝑘𝑛𝐴𝐴𝑗𝑗 (𝑡𝑡𝑡

𝑡
𝑛𝑛𝑘𝑛

𝑗𝑗𝑡𝑗

𝑛𝑛 𝑘 𝑛𝑗𝑗  𝑡𝑡𝑗𝑗𝐴𝐴𝑗𝑗 (𝑡𝑡𝑡 (𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡
𝑛𝑛𝑘𝑛𝑛𝑗𝑗.

(42)

e following result is a generalization of (7).

Lemma 12. Let 𝑇𝑇𝑛𝑛(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 be as de�ned in Lemma 11. en

𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡 
𝑛𝑛𝑛𝑗
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡

𝑡𝑡𝑛𝑛

𝑛𝑛𝑛

𝑡
(𝑡𝑡 𝑛 𝑛𝑡 exp (𝑡𝑡𝑡𝑡 (𝑡𝑡 𝑛 𝑛𝑡𝑡
𝑡𝑡 𝑛 exp (𝑡𝑡𝑡𝑡 (𝑡𝑡 𝑛 𝑛𝑡𝑡

.

(43)

Proof. From Lemma 11

𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡 
𝑛𝑛𝑛𝑗
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡𝑡

𝑡𝑡𝑛𝑛

𝑛𝑛𝑛

𝑡 
𝑛𝑛𝑛𝑗





𝑛𝑛

𝑗𝑗𝑡𝑗

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝐴𝐴𝑗𝑗 (𝑡𝑡𝑡 (𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡

𝑛𝑛𝑛𝑗𝑗



𝑡𝑡𝑛𝑛

𝑛𝑛𝑛

𝑡 
𝑛𝑛𝑛𝑗






𝑘𝑘𝑘𝑘𝑘𝑡𝑛𝑛
𝑗≤𝑘𝑘≤𝑛𝑛

𝑛𝑛𝑛
𝑘𝑘𝑛 𝑘𝑘𝑛

𝑡𝑡𝑘𝑘𝐴𝐴𝑘𝑘 (𝑡𝑡𝑡 (𝑡𝑡𝑡𝑡 𝑛 𝑡𝑡𝑡
𝑘𝑘 𝑡𝑡

𝑘𝑘 ⋅ 𝑡𝑡𝑘𝑘

𝑛𝑛𝑛




𝑡 
𝑘𝑘𝑛𝑗
𝐴𝐴𝑘𝑘 (𝑡𝑡𝑡

(𝑡𝑡𝑡𝑡𝑡𝑘𝑘

𝑘𝑘𝑛


𝑘𝑘𝑛𝑗

(𝑡𝑡𝑡𝑡 (𝑡𝑡 𝑛 𝑛𝑡𝑡𝑘𝑘

𝑘𝑘𝑛


𝑡
(𝑡𝑡 𝑛 𝑛𝑡 exp (𝑡𝑡𝑡𝑡 (𝑡𝑡 𝑛 𝑛𝑡𝑡
𝑡𝑡 𝑛 exp (𝑡𝑡𝑡𝑡 (𝑡𝑡 𝑛 𝑛𝑡𝑡

.

(44)

Using the results from Lemma 12, we can derive the
following lemma, which is a general version of (5).

Proposition 13. Given an arithmetic progression as in (17), let
𝑇𝑇𝑛𝑛(𝑡𝑡𝑡 𝑡𝑡𝑛𝑡𝑡𝑡 𝑛𝑡𝑡𝑡 be the general Eulerian Polynomials associated
to the arithmetic progression {𝑡𝑡 𝑛 𝑡𝑡𝑡 𝑡𝑡 𝑛 𝑑𝑡𝑡𝑡 𝑡𝑡 𝑛 𝑎𝑡𝑡𝑡𝑎𝑎. en

𝑛
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡 𝑛 𝑡𝑡𝑡 𝑛𝑡𝑡𝑡

(𝑡𝑡 𝑛 𝑛𝑡𝑛𝑛𝑘𝑛
𝑡

∞

𝑗𝑗𝑡𝑗
𝑡𝑡𝑗𝑗𝑡𝑡 𝑘 𝑗𝑗𝑡𝑡𝑛𝑛 (𝑛𝑛 𝑛 𝑗𝑡 . (45)

Proof.

𝑒𝑒𝑡𝑡𝑡𝑡

𝑛 𝑛 𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡
𝑡 𝑒𝑒𝑡𝑡𝑡𝑡

∞

𝑗𝑗𝑡𝑗
𝑡𝑡𝑒𝑒𝑡𝑡𝑡𝑡

𝑗𝑗
𝑡

∞

𝑗𝑗𝑡𝑗
𝑡𝑡𝑗𝑗 𝑒𝑒𝑡𝑡(𝑡𝑡𝑘𝑗𝑗𝑡𝑡𝑡

𝑡
∞

𝑗𝑗𝑡𝑗
𝑡𝑡𝑗𝑗

∞

𝑛𝑛𝑡𝑗

𝑡𝑡𝑛𝑛𝑡𝑡 𝑘 𝑗𝑗𝑡𝑡𝑛𝑛

𝑛𝑛𝑛

𝑡
∞

𝑛𝑛𝑡𝑗

𝑡𝑡𝑛𝑛

𝑛𝑛𝑛


∞

𝑗𝑗𝑡𝑗
𝑡𝑡𝑗𝑗𝑡𝑡 𝑘 𝑗𝑗𝑡𝑡𝑛𝑛 .

(46)

On the other hand, by Lemma 12,
∞

𝑛𝑛𝑡𝑗

𝑛
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡 𝑛 𝑡𝑡𝑡 𝑛𝑡𝑡𝑡

(𝑡𝑡 𝑛 𝑛𝑡𝑛𝑛𝑘𝑛
𝑡𝑡𝑛𝑛

𝑛𝑛𝑛

𝑡
𝑛

𝑡𝑡 𝑛 𝑛

∞

𝑛𝑛𝑡𝑗

𝑛
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡 𝑛 𝑡𝑡𝑡 𝑛𝑡𝑡𝑡

(𝑡𝑡 𝑛 𝑛𝑡𝑛𝑛
𝑡𝑡𝑛𝑛

𝑛𝑛𝑛
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= −
1

𝑡𝑡 − 1

∞

𝑛𝑛=𝑛

𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡 − 𝑡𝑡𝑡 −𝑡𝑡)
𝑛𝑛𝑛


𝑢𝑢

𝑡𝑡 − 1

𝑛𝑛

= −
1

𝑡𝑡 − 1
⋅ (
𝑡𝑡 − 1) 𝑒𝑒(𝑡𝑡−𝑡𝑡)𝑢𝑢

𝑡𝑡 − 𝑒𝑒−𝑡𝑡𝑢𝑢

= −
𝑒𝑒(𝑡𝑡−𝑡𝑡)𝑢𝑢

𝑡𝑡 − 𝑒𝑒−𝑡𝑡𝑢𝑢
=

𝑒𝑒𝑡𝑡𝑢𝑢

1 − 𝑡𝑡𝑒𝑒𝑡𝑡𝑢𝑢
.

(47)

By comparing the coefficients of 𝑢𝑢𝑛𝑛/𝑛𝑛𝑛, we have

−
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡 − 𝑡𝑡𝑡 −𝑡𝑡)

(𝑡𝑡 − 1)𝑛𝑛𝑛1
=

∞

𝑗𝑗=𝑛
𝑡𝑡𝑗𝑗𝑡𝑡 𝑛 𝑗𝑗𝑡𝑡𝑛𝑛 (𝑛𝑛 𝑛 𝑛) . (48)

For the �nite summation ∑𝑚𝑚
𝑖𝑖=1 𝑡𝑡

𝑖𝑖[𝑡𝑡 𝑛 (𝑖𝑖 − 1)𝑡𝑡𝑎𝑛𝑛, we have the
following property which is a generalization of (2) and (3).

Lemma 14. Let 𝑇𝑇𝑛𝑛 be the general Eulerian polynomials as
�e�ne� in �e�nition ��:

𝑚𝑚

𝑖𝑖=1
𝑡𝑡𝑖𝑖[𝑡𝑡 𝑛 (𝑖𝑖 − 1) 𝑡𝑡𝑎𝑛𝑛

=
𝑛𝑛

𝑙𝑙=𝑛
𝑛𝑛𝑙𝑙

𝑡𝑡𝑚𝑚𝑛1(𝑡𝑡𝑚𝑚 − 𝑡𝑡)𝑙𝑙

(𝑡𝑡 − 1)𝑛𝑛−𝑙𝑙𝑛1
𝑇𝑇𝑛𝑛−𝑙𝑙 (𝑡𝑡𝑡 𝑡𝑡𝑡 −𝑡𝑡)

−
𝑡𝑡2

(𝑡𝑡 − 1)𝑛𝑛𝑛1
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 −𝑡𝑡) 𝑡

(49)

𝑚𝑚

𝑖𝑖=1
𝑡𝑡𝑖𝑖[𝑡𝑡 𝑛 (𝑖𝑖 − 1) 𝑡𝑡𝑎𝑛𝑛

=
𝑡𝑡𝑚𝑚𝑛1

(𝑡𝑡 − 1)𝑛𝑛𝑛1
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡 𝑛 𝑡𝑡 (𝑚𝑚 − 1) 𝑡 −𝑡𝑡)

−
𝑡𝑡2

(𝑡𝑡 − 1)𝑛𝑛𝑛1
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 −𝑡𝑡) .

(50)

Proof. We will use (2) and (3) to prove expressions (49) and
(50), respectively.

𝑚𝑚

𝑖𝑖=1
𝑡𝑡𝑖𝑖[𝑡𝑡 𝑛 (𝑖𝑖 − 1) 𝑡𝑡𝑎𝑛𝑛

=
𝑚𝑚

𝑖𝑖=1
𝑡𝑡𝑖𝑖 



𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑛𝑛−𝑗𝑗(𝑖𝑖 − 1)𝑗𝑗𝑡𝑡𝑗𝑗



=
𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗 

𝑚𝑚

𝑖𝑖=1
𝑡𝑡𝑖𝑖(𝑖𝑖 − 1)𝑗𝑗

=
𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗𝑡𝑡 

𝑚𝑚−1

𝑖𝑖=1
𝑖𝑖𝑗𝑗𝑡𝑡𝑖𝑖 .

(51)

For (49), if we use (2) to evaluate ∑𝑚𝑚−1
𝑖𝑖=1 𝑖𝑖𝑗𝑗𝑡𝑡𝑖𝑖, we have

𝑚𝑚

𝑖𝑖=1
𝑡𝑡𝑖𝑖[𝑡𝑡 𝑛 (𝑖𝑖 − 1) 𝑡𝑡𝑎𝑛𝑛

=
𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗𝑡𝑡

× 



𝑗𝑗


𝑙𝑙=1
(−1)𝑗𝑗𝑛𝑙𝑙 𝑗𝑗𝑙𝑙

𝑡𝑡𝑚𝑚(𝑚𝑚 − 1)𝑙𝑙

(𝑡𝑡 − 1)𝑗𝑗−𝑙𝑙𝑛1
𝐴𝐴𝑗𝑗−𝑙𝑙 (𝑡𝑡)

𝑛 (−1)𝑗𝑗
𝑡𝑡𝑚𝑚 − 𝑡𝑡

(𝑡𝑡 − 1)𝑗𝑗𝑛1
𝐴𝐴𝑗𝑗 (𝑡𝑡) 



=
𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗𝑡𝑡

× 



𝑗𝑗


𝑙𝑙=𝑛
(−1)𝑗𝑗𝑛𝑙𝑙 𝑗𝑗𝑙𝑙

𝑡𝑡𝑚𝑚(𝑚𝑚 − 1)𝑙𝑙

(𝑡𝑡 − 1)𝑗𝑗−𝑙𝑙𝑛1
𝐴𝐴𝑗𝑗−𝑙𝑙 (𝑡𝑡)



𝑛
𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗𝑡𝑡(−1)𝑗𝑗

−𝑡𝑡
(𝑡𝑡 − 1)𝑗𝑗𝑛1

𝐴𝐴𝑗𝑗 (𝑡𝑡)

= 𝐼𝐼 𝑛 𝐼𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼 =
𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗𝑡𝑡(−1)𝑗𝑗

−𝑡𝑡
(𝑡𝑡 − 1)𝑗𝑗𝑛1

𝐴𝐴𝑗𝑗 (𝑡𝑡)

=
−𝑡𝑡2

(𝑡𝑡 − 1)𝑛𝑛𝑛1
𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 (−𝑡𝑡)
𝑗𝑗(𝑡𝑡 (𝑡𝑡 − 1))𝑛𝑛−𝑗𝑗𝐴𝐴𝑗𝑗 (𝑡𝑡)

= −
𝑡𝑡2

(𝑡𝑡 − 1)𝑛𝑛𝑛1
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑡𝑡𝑡 −𝑡𝑡) .

(52)

is gives the second term in (49).

𝐼𝐼 =
𝑛𝑛

𝑗𝑗=𝑛

𝑛𝑛𝑗𝑗 𝑡𝑡
𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗𝑡𝑡

×
𝑗𝑗


𝑙𝑙=𝑛
(−1)𝑗𝑗𝑛𝑙𝑙 𝑗𝑗𝑙𝑙

𝑡𝑡𝑚𝑚(𝑚𝑚 − 1)𝑙𝑙

(𝑡𝑡 − 1)𝑗𝑗−𝑙𝑙𝑛1
𝐴𝐴𝑗𝑗−𝑙𝑙 (𝑡𝑡)

=
𝑛𝑛

𝑙𝑙=𝑛

𝑛𝑛

𝑗𝑗=𝑙𝑙
𝑛𝑛𝑗𝑗 𝑡𝑡

𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗𝑡𝑡(−1)𝑗𝑗𝑛𝑙𝑙 𝑗𝑗𝑙𝑙

×
𝑡𝑡𝑚𝑚(𝑚𝑚 − 1)𝑙𝑙

(𝑡𝑡 − 1)𝑗𝑗−𝑙𝑙𝑛1
𝐴𝐴𝑗𝑗−𝑙𝑙 (𝑡𝑡)

=
𝑛𝑛

𝑙𝑙=𝑛

𝑛𝑛

𝑗𝑗=𝑙𝑙

𝑛𝑛𝑛
𝑗𝑗𝑛 𝑛𝑛 − 𝑗𝑗 𝑛

𝑡𝑡𝑗𝑗𝑡𝑡𝑛𝑛−𝑗𝑗𝑡𝑡(−1)𝑗𝑗𝑛𝑙𝑙
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×
𝑗𝑗𝑗

𝑙𝑙𝑗 𝑗𝑗 𝑗 𝑙𝑙 𝑗
𝑡𝑡𝑚𝑚(𝑚𝑚 𝑗 𝑚)𝑙𝑙

(𝑡𝑡 𝑗 𝑚)𝑗𝑗𝑗𝑙𝑙𝑗𝑚
𝐴𝐴𝑗𝑗𝑗𝑙𝑙 (𝑡𝑡)

=
𝑛𝑛

𝑙𝑙=𝑙

𝑛𝑛𝑗𝑙𝑙

𝑘𝑘=𝑙

𝑛𝑛𝑗
(𝑛𝑛 𝑗 𝑘𝑘 𝑗 𝑙𝑙) 𝑗

𝑑𝑑𝑘𝑘𝑗𝑙𝑙𝑎𝑎𝑛𝑛𝑗𝑘𝑘𝑗𝑙𝑙𝑡𝑡(𝑗𝑚)𝑘𝑘

×
𝑚
𝑙𝑙𝑗 𝑘𝑘𝑗

𝑡𝑡𝑚𝑚(𝑚𝑚 𝑗 𝑚)𝑙𝑙

(𝑡𝑡 𝑗 𝑚)𝑘𝑘𝑗𝑚
𝐴𝐴𝑘𝑘 (𝑡𝑡) 𝑘𝑘 = 𝑗𝑗 𝑗 𝑙𝑙

=
𝑛𝑛

𝑙𝑙=𝑙

(𝑚𝑚 𝑗 𝑚)𝑙𝑙𝑛𝑛𝑗 𝑡𝑡𝑚𝑚𝑗𝑚𝑑𝑑𝑙𝑙

𝑙𝑙𝑗 (𝑛𝑛 𝑗 𝑙𝑙) 𝑗

×
𝑛𝑛𝑗𝑙𝑙

𝑘𝑘=𝑙

(𝑗𝑑𝑑)𝑘𝑘𝑎𝑎𝑛𝑛𝑗𝑘𝑘𝑗𝑙𝑙 (𝑛𝑛 𝑗 𝑙𝑙) 𝑗
𝑘𝑘𝑗 (𝑛𝑛 𝑗 𝑘𝑘 𝑗 𝑙𝑙) 𝑗 (𝑡𝑡 𝑗 𝑚)𝑘𝑘𝑗𝑚

𝐴𝐴𝑘𝑘 (𝑡𝑡)

=
𝑛𝑛

𝑙𝑙=𝑙
𝑛𝑛𝑙𝑙

(𝑚𝑚 𝑗 𝑚)𝑙𝑙𝑡𝑡𝑚𝑚𝑗𝑚𝑑𝑑𝑙𝑙

(𝑡𝑡 𝑗 𝑚)𝑛𝑛𝑗𝑙𝑙𝑗𝑚

×
𝑛𝑛𝑗𝑙𝑙

𝑘𝑘=𝑙

𝑛𝑛 𝑗 𝑙𝑙𝑘𝑘  (𝑗𝑑𝑑)𝑘𝑘(𝑎𝑎𝑡𝑡 𝑗 𝑎𝑎)𝑛𝑛𝑗𝑘𝑘𝑗𝑙𝑙𝐴𝐴𝑘𝑘 (𝑡𝑡)

=
𝑛𝑛

𝑙𝑙=𝑙
𝑛𝑛𝑙𝑙

𝑡𝑡𝑚𝑚𝑗𝑚(𝑑𝑑𝑚𝑚 𝑗 𝑑𝑑)𝑙𝑙

(𝑡𝑡 𝑗 𝑚)𝑛𝑛𝑗𝑙𝑙𝑗𝑚
𝑇𝑇𝑛𝑛𝑗𝑙𝑙 (𝑡𝑡𝑡 𝑎𝑎𝑡 𝑗𝑑𝑑) 𝑡

(53)

which gives the �rst term of (49). So we have proved (49) by
using expression (2).

For (50), if we use (3) to evaluate ∑𝑚𝑚𝑗𝑚
𝑖𝑖=𝑚 𝑖𝑖𝑗𝑗𝑡𝑡𝑖𝑖, we have

𝑚𝑚

𝑖𝑖=𝑚
𝑡𝑡𝑖𝑖[𝑎𝑎 𝑗 (𝑖𝑖 𝑗 𝑚) 𝑑𝑑]𝑛𝑛

=
𝑛𝑛

𝑗𝑗=𝑙

𝑛𝑛𝑗𝑗 𝑑𝑑
𝑗𝑗𝑎𝑎𝑛𝑛𝑗𝑗𝑗𝑡𝑡

× 


𝑗𝑡𝑡𝑚𝑚

𝑗𝑗


𝑘𝑘=𝑙

𝑗𝑗𝑘𝑘
(𝑚𝑚 𝑗 𝑚)𝑗𝑗𝑗𝑘𝑘

(𝑚 𝑗 𝑡𝑡)𝑘𝑘𝑗𝑚
𝐴𝐴𝑘𝑘 (𝑡𝑡)

𝑗
𝑡𝑡

(𝑚 𝑗 𝑡𝑡)𝑗𝑗𝑗𝑚
𝐴𝐴𝑗𝑗 (𝑡𝑡) 



= 𝑗𝑡𝑡𝑚𝑚𝑗𝑚
𝑛𝑛

𝑗𝑗=𝑙

𝑛𝑛𝑗𝑗 𝑑𝑑
𝑗𝑗𝑎𝑎𝑛𝑛𝑗𝑗𝑗

𝑗𝑗


𝑘𝑘=𝑙

𝑗𝑗𝑘𝑘
(𝑚𝑚 𝑗 𝑚)𝑗𝑗𝑗𝑘𝑘

(𝑚 𝑗 𝑡𝑡)𝑘𝑘𝑗𝑚
𝐴𝐴𝑘𝑘 (𝑡𝑡)

𝑗
𝑛𝑛

𝑗𝑗=𝑙

𝑛𝑛𝑗𝑗 𝑑𝑑
𝑗𝑗𝑎𝑎𝑛𝑛𝑗𝑗𝑗(𝑚 𝑗 𝑡𝑡)𝑗𝑗𝑗

𝑡𝑡2

𝑚 𝑗 𝑡𝑡
𝐴𝐴𝑗𝑗 (𝑡𝑡)

= 𝐼𝐼𝐼𝐼𝐼𝐼 𝑗 𝐼𝐼𝐼𝐼𝐼

𝐼𝐼𝐼𝐼 =
𝑛𝑛

𝑗𝑗=𝑙

𝑛𝑛𝑗𝑗 𝑑𝑑
𝑗𝑗𝑎𝑎𝑛𝑛𝑗𝑗𝑗(𝑚 𝑗 𝑡𝑡)𝑗𝑗𝑗

𝑡𝑡2

𝑚 𝑗 𝑡𝑡
𝐴𝐴𝑗𝑗 (𝑡𝑡)

=
𝑛𝑛

𝑗𝑗=𝑙

𝑛𝑛𝑗𝑗 (𝑗𝑑𝑑)
𝑗𝑗𝑎𝑎𝑛𝑛𝑗𝑗𝑗(𝑡𝑡 𝑗 𝑚)𝑛𝑛𝑗𝑗𝑗

𝑡𝑡2

(𝑚 𝑗 𝑡𝑡) (𝑡𝑡 𝑗 𝑚)𝑛𝑛
𝐴𝐴𝑗𝑗 (𝑡𝑡)

= 𝑗
𝑡𝑡2

(𝑡𝑡 𝑗 𝑚)𝑛𝑛𝑗𝑚
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑎𝑎𝑡 𝑗𝑑𝑑) 𝑡

(54)

by Lemma 11.us, we have obtained the second part of (50).

𝐼𝐼𝐼𝐼𝐼𝐼 = 𝑗𝑡𝑡𝑚𝑚𝑗𝑚
𝑛𝑛

𝑗𝑗=𝑙

𝑛𝑛𝑗𝑗 𝑑𝑑
𝑗𝑗𝑎𝑎𝑛𝑛𝑗𝑗𝑗

×
𝑗𝑗


𝑘𝑘=𝑙

𝑗𝑗𝑘𝑘
(𝑚𝑚 𝑗 𝑚)𝑗𝑗𝑗𝑘𝑘

(𝑚 𝑗 𝑡𝑡) 𝑘𝑘𝑗𝑚
𝐴𝐴𝑘𝑘 (𝑡𝑡)

= 𝑗𝑡𝑡𝑚𝑚𝑗𝑚
𝑛𝑛

𝑗𝑗=𝑙

𝑗𝑗


𝑘𝑘=𝑙

𝑛𝑛𝑗
𝑗𝑗𝑗 𝑛𝑛 𝑗 𝑗𝑗 𝑗

⋅
𝑗𝑗𝑗

𝑘𝑘𝑗 𝑗𝑗 𝑗 𝑘𝑘 𝑗

× 𝑑𝑑𝑗𝑗𝑎𝑎𝑛𝑛𝑗𝑗𝑗 (
𝑚𝑚 𝑗 𝑚)𝑗𝑗𝑗𝑘𝑘

(𝑚 𝑗 𝑡𝑡) 𝑘𝑘𝑗𝑚
𝐴𝐴𝑘𝑘 (𝑡𝑡)

= 𝑗𝑡𝑡𝑚𝑚𝑗𝑚
𝑛𝑛

𝑘𝑘=𝑙

𝑛𝑛𝑗
𝑘𝑘𝑗 (𝑚 𝑗 𝑡𝑡)𝑘𝑘𝑗𝑚

𝐴𝐴𝑘𝑘 (𝑡𝑡)

×
𝑛𝑛

𝑗𝑗=𝑘𝑘

𝑚
𝑛𝑛 𝑗 𝑗𝑗 𝑗 𝑗𝑗 𝑗 𝑘𝑘 𝑗

(𝑚𝑚 𝑗 𝑚)𝑗𝑗𝑗𝑘𝑘𝑑𝑑𝑗𝑗𝑎𝑎𝑛𝑛𝑗𝑗𝑗

= 𝑗𝑡𝑡𝑚𝑚𝑗𝑚
𝑛𝑛

𝑘𝑘=𝑙

𝑛𝑛𝑗
𝑘𝑘𝑗 (𝑚 𝑗 𝑡𝑡)𝑘𝑘𝑗𝑚

𝐴𝐴𝑘𝑘 (𝑡𝑡)

×
𝑛𝑛𝑗𝑘𝑘

𝑙𝑙=𝑙

𝑚
𝑙𝑙𝑗 (𝑛𝑛 𝑗 𝑘𝑘 𝑗 𝑙𝑙) 𝑗

(𝑚𝑚 𝑗 𝑚)𝑙𝑙𝑑𝑑𝑙𝑙𝑗𝑘𝑘𝑎𝑎𝑛𝑛𝑗𝑙𝑙𝑗𝑘𝑘 𝑙𝑙 = 𝑗𝑗 𝑗 𝑘𝑘

= 𝑗𝑡𝑡𝑚𝑚𝑗𝑚
𝑛𝑛

𝑘𝑘=𝑙

𝑛𝑛𝑘𝑘
𝑑𝑑𝑘𝑘

(𝑚 𝑗 𝑡𝑡)𝑘𝑘𝑗𝑚
𝐴𝐴𝑘𝑘 (𝑡𝑡) (𝑎𝑎 𝑗 𝑑𝑑 (𝑚𝑚 𝑗 𝑚))𝑛𝑛𝑗𝑘𝑘

=
𝑡𝑡𝑚𝑚𝑗𝑚

(𝑡𝑡 𝑗 𝑚)𝑛𝑛𝑗𝑚
𝑛𝑛

𝑘𝑘=𝑙

𝑛𝑛𝑘𝑘 (𝑗𝑑𝑑)
𝑘𝑘(𝑡𝑡 𝑗 𝑚)𝑛𝑛𝑗𝑘𝑘

× 𝐴𝐴𝑘𝑘 (𝑡𝑡) (𝑎𝑎 𝑗 𝑑𝑑 (𝑚𝑚 𝑗 𝑚))𝑛𝑛𝑗𝑘𝑘

=
𝑡𝑡𝑚𝑚𝑗𝑚

(𝑡𝑡 𝑗 𝑚)𝑛𝑛𝑗𝑚
𝑇𝑇𝑛𝑛 (𝑡𝑡𝑡 𝑎𝑎 𝑗 𝑑𝑑 (𝑚𝑚 𝑗 𝑚) 𝑡 𝑗𝑑𝑑) 𝑡

(55)

which gives the �rst term of (50).
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