ON CONTINUED FRACTION EXPANSIONS WHOSE ELEMENTS ARE ALL ONES

GREGORY WULCZYN

Bucknell University, Lewisburg, Pennsylvania 17837

I. EVEN PERIOD EXPANSIONS

1. NUMBER THEORY REVIEW. Here is an example of an even continued fraction expansion of \sqrt{D}, D a nonsquare integer, with $D=13$.

$$
\begin{gathered}
\sqrt{13}=3+\sqrt{13}-3=3+\frac{\sqrt{13}+3}{4} \\
\frac{\sqrt{13}+3}{4}=1+\frac{\sqrt{13}-1}{4}=1+\frac{\sqrt{13}+1}{3} \\
\frac{\sqrt{13}+1}{3}=1+\frac{\sqrt{13}-2}{3}=1+\frac{\sqrt{13}+2}{3} \\
\frac{\sqrt{13}+2}{3}=1+\frac{\sqrt{13}-1}{3}=1+\frac{\sqrt{13}+1}{4} \\
\frac{\sqrt{13}+1}{4}=1+\frac{\sqrt{13}-3}{4}=1+\frac{\sqrt{13}+1}{1}
\end{gathered}
$$

Hence $\sqrt{13}=<3,1,1,1,1,6>$ and the solution of the Pellian equations $x^{2}-D y^{2}=d_{i}$ can be found from the table.

continued fraction elements c_{i}	3	1	1	1	1	6
signed denominators d_{i}	-4	3	-3	4	-1	
p convergents p_{i}	3	$\underline{4}$	$\underline{7}$	11	18	
q convergents q_{i}	1	$\underline{2}$	$\underline{2}$	3	5	

The q convergents are the Fibonacci numbers. The primitive solution of $x^{2}-13 y^{2}=-1$ is picked up from the half period. Thus

$$
y=1^{2}+2^{2}=5 ; \quad x=4 \times 1+7 \times 2=18
$$

In general for period 2r,

$$
y=q_{r}^{2}+q_{r-1}^{2}=q_{2 r-1} ; \quad x=p_{r-1} q_{r-1}+p_{r} q_{r}=q_{2 r-1} .
$$

Also the representation of D as the sum of two squares can be found as

$$
D=d_{r}^{2}+\left(D-d_{r}^{2}\right)=d_{r}^{2}+t^{2}
$$

where d_{r} is the middle denominator. Thus $13=3^{2}+2^{2}$. Finally for $D=5$ (modulo 8), since a signed denominator is ± 4, the convergents under the -4 column are the coefficients of the cubic root of unity

$$
\frac{3+\sqrt{13}}{2}
$$

in the field $(1, \sqrt{13})$.
Since the period is even the x_{0} of the quadratic congruence $x_{0}^{2} \equiv-1(\bmod 13)$ is given by $x_{0} \equiv x \equiv 18 \equiv 5($ modulo 13).
2. FIBONACCI RELATIONS TO BE USED.
(a)

$$
\begin{gathered}
\left(F_{n}, F_{n+1}\right)=1 \\
F_{2 n}^{2}+1=F_{2 n-1} F_{2 n+1} \\
F_{n}^{2}+F_{n+1}^{2}=F_{2 n+1}
\end{gathered}
$$

(b)
(c)

It may be noted that no odd Fibonacci number is ever divisible by a prime of the form $p=4 s+3$ since from (b) $x^{2} \equiv-1(\bmod p)$ which is impossible.
3. EVEN VARIABLE DIFFERENCE TABLE: $D=m^{2}+k$

The supposition $\left(m F_{2 n+1}+F_{2 n}\right)^{2}-F_{2 n+1}^{2}\left(m^{2}+k\right)=-1$ leads to

$$
\begin{gathered}
2 m F_{2 n} F_{2 n+1}+F_{2 n}^{2}-k F_{2 n+1}^{2}=-1 \\
2 m F_{2 n} F_{2 n+1}-k F_{2 n+1}^{2}=-\left(F_{2 n}^{2}+1\right)=-F_{2 n-1} F_{2 n+1} \\
2 m F_{2 n}-k F_{2 n+1}=F_{2 n-1}
\end{gathered}
$$

Recalling that $\left(F_{n}, F_{n+1}\right)=1$ and that $F_{3 n}$ is always even this linear diophantine equation will have an infinite number of positive integer solutions for m and k unless $2 n+1 \equiv 0(\bmod 3)$.

Example. $\quad D=m^{2}+k, \quad \sqrt{D}=\langle m, 1,1,1,1,1,1,2 m\rangle$

$$
(13 m+8)^{2}-169\left(m^{2}+k\right)=-1
$$

$$
16 m-13 k=-5, \quad k=m+\frac{3 m+5}{13}
$$

$$
m=7, \quad k=7+2=9, \quad D=58, \quad \sqrt{58}=\langle 7,1,1,1,1,1,1,14\rangle, \quad x^{2}-58 y=-1
$$

has primitive solution

$$
x=13 m+8=99, \quad y=13
$$

$m=13+7=20, \quad k=20+5=25, \quad D=425, \quad \sqrt{425}=\langle 20,1,1,1,1,1,1,40\rangle, \quad x^{2}-425 y^{2}=-1$ has primitive solution

$$
x=13 m+8=268, \quad y=13
$$

In general if

$$
\left.D=169 m^{2}-140 m+29, \quad \sqrt{D}=<13 m-6,1,1,1,1,1,1,26 m-12\right\rangle
$$

and the primitive solution of $x^{2}-D y^{2}=-1$ is given by $x=169 m-70, y=13$.

> II. ODD PERIOD EXPANSIONS
4. NUMBER THEORY REVIEW. Let $D=135$

$$
\begin{aligned}
& \sqrt{135}=11+\sqrt{135}-11=11+\frac{\sqrt{135}+11}{14} \\
& \frac{\sqrt{135}+11}{14}=1+\frac{\sqrt{135}-3}{14}=1+\frac{\sqrt{135}+3}{9} \\
& \frac{\sqrt{135}+3}{9}=1+\frac{\sqrt{135}-6}{9}=1+\frac{\sqrt{135}+6}{11} \\
& \frac{\sqrt{135}+6}{11}=1+\frac{\sqrt{135}-5}{11}=1+\frac{\sqrt{135}+5}{10}
\end{aligned}
$$

[continued on next page.]

$$
\begin{gathered}
\frac{\sqrt{135}+5}{10}=1+\frac{\sqrt{135}-5}{10}=1+\frac{\sqrt{135}+5}{11} \\
\frac{\sqrt{135}+5}{11}=1+\frac{\sqrt{135}-6}{11}=1+\frac{\sqrt{135}+6}{9} \\
\frac{\sqrt{135}+6}{9}=1+\frac{\sqrt{135}-3}{9}=1+\frac{\sqrt{135}+3}{14} \\
\frac{\sqrt{135}+3}{14}=1+\frac{\sqrt{135}-11}{14}=1+\sqrt{135}+11 \\
\sqrt{135}+11=22 \\
\sqrt{135}=<11,1,1,1,1,1,1,1,22\rangle .
\end{gathered}
$$

The solutions of the Pellian equations $x^{2}-D y^{2}=d_{i}$ can be found from the table.

c. f. elements	c_{i}	11	1	1	1	1	1	1	1	22
signed denominators	d_{i}	-14	9	-11	10	-11	9	-14	1	
p convergents	p_{i}	11	12	23	35	58	93	151	244	
q convergents	q_{i}	1	1	2	3	5	8	13	21	

The primitive solution of $x^{2}-135 y^{2}=1$ is given by $x=p_{8}=244, y=q_{8}=21$. It can also be picked up from the half period. If the period is $2 r+1, y=\left(q_{r}+q_{r-2}\right) q_{r-1}$. Here

$$
\begin{gathered}
y=3(2+5)=21 \\
x=q_{r-1} p_{r-2}+q_{r} p_{r-1}
\end{gathered}
$$

Here $x=3 \times 23+5 \times 35=244$.
5. FIBONACCI IDENTITIES TO BE USED.
(b)

$$
\begin{align*}
& \left(F_{r-2}+F_{r}\right) F_{r-1}=F_{2 r-2} \tag{a}\\
& F_{2 n-1}^{2}-1=F_{2 n} F_{2 n-2}
\end{align*}
$$

6. ODD VARIABLE DIFFERENCE TABLE: $D=m^{2}+k$

The supposition $\left(m F_{2 r}+F_{2 r-1}\right)^{2}-F_{2 r}^{2}(m+k)=1$ leads to

$$
\begin{gathered}
2 m F_{2 r} F_{2 r-1}+F_{2 r-1}^{2}-k F_{2 r}^{2}=1 \\
2 m F_{2 r} F_{2 r-1}-F_{2 r}^{2} k=-\left(F_{2 r-1}^{2}-1\right)=-F_{2 r} F_{2 r-2} \\
2 m F_{2 r-1}-k F_{2 r}=-F_{2 r-2}
\end{gathered}
$$

Since $\left(F_{2 r}, F_{2 r-1}\right)=1$, this linear diophantine equation will have an infinite number of positive integer solutions unless r is a multiple of 3 . When $r=3 t, F_{2 r}$ is even, but $F_{2 r-2}$ is odd.
Example: $\quad D=m^{2}+k, \sqrt{D}=\langle m, 1,1,1,2 m\rangle(3 m+2)^{2}-9\left(m^{2}+k\right)=1$

$$
\begin{gathered}
4 m-3 k=-1, \quad k=m+\frac{m+1}{3} \\
m=2, \quad k=3, \quad D=7, \quad \sqrt{7}=\langle 2,1,1,1,4\rangle
\end{gathered}
$$

$x^{2}-7 y^{2}=1$ has solution $x=3 \times 2+2=8 \quad y=3$.

$$
\text { Since } \quad m=2+3=5, \quad k=5+2=7, \quad D=32 \text { follows from } k=m+\frac{m+1}{3} \text {. }
$$

$x^{2}-32 y^{2}=1$ has primitive solution $x=3 \times 5+2=17, y=3$. In general,

$$
D=9 m^{2}-2 m, \quad \sqrt{D}=\langle 3 m-1,1,1,1,6 m-2\rangle
$$

The primitive solution of $x^{2}-D y^{2}=1$ is tiven by $x=9 m-1, \quad y=3$.
7. $D=m^{2}+k, \quad 2 m F_{r}-k F_{r+1}=-F_{r-1}$

$$
\begin{gathered}
\sqrt{D}=m+\sqrt{D}-m=m+\frac{\sqrt{D}+m}{k} \\
\frac{\sqrt{D}+m}{k}=1+\frac{\sqrt{D}-(k-m)}{k}=1+\frac{\sqrt{D}+k-m}{2 m+1-k} \\
\frac{\sqrt{D}+k-m}{2 m+1-k}=1+\frac{\sqrt{D}-(3 m+1-2 k)}{2 m+1-k}=1+\frac{\sqrt{D}+3 m+1-2 k}{4 k-4 m-1} \\
\frac{\sqrt{D}+3 m+1-2 k}{4 k-4 m-1}=1+\frac{\sqrt{D}-(6 k-7 m-2)}{4 k-4 m+1}=1+\frac{\sqrt{D}+6 k-7 m-2}{12 m-9 k+4} \\
\frac{\sqrt{D}+F_{s} F_{s-1} k-\left(1+2 F_{1} F_{2}+\cdots+2 F_{s-2} F_{s-1}\right) m-\left(F_{1}^{2}+F_{2}^{2}+\cdots+F_{s-2}^{2}\right)}{2 m F_{s} F_{s-1}-k F_{s}^{2}+F_{s-1}^{2}}
\end{gathered}
$$

(A)

$$
=1+\frac{\sqrt{D}-\left[\left(1+2 F_{1} F_{2}+\cdots+2 F_{s-1} F_{s} m\right)-F_{s} F_{s+1} k+\left(F_{1}^{2} F_{2}^{2}+\cdots+F_{s-1}\right)\right]}{2 m F_{s} F_{s-1}-k F_{s}^{2}+F_{s-1}^{2}}
$$

$$
=1+\frac{D+(\mathrm{A})}{k F_{s+1}^{2}-2 m F_{s} F_{s+1}-F_{s}^{2}} .
$$

For this last assumption to be valid,

$$
\left(2 m F_{s} F_{s-1}-k F_{s}^{2}+F_{s-1}^{2}\right)\left(k F_{s+1}^{2}-2 m F_{s+1} F_{s}-F_{s}^{2}\right) \equiv m^{2}+k-(\mathrm{A})^{2}
$$

This identity will be proved by equating coefficients:

1. Coefficient of $-m^{2}$
$4 F_{s}^{2} F_{s-1} F_{s+1}=4 F_{s}^{2}\left[F_{s}^{2}+(-1)^{s}\right]=4 F_{s}^{4}+4(-1)^{s} F_{s}^{2}=\frac{4}{25}\left(L_{4 s}+L_{2 s}-4\right)=\left[F_{s+2} F_{s}-F_{s+1} F_{s-2}\right]^{2}-1$.
2. Coefficient of $-k^{2}$

$$
F_{s}^{2} F_{s+1}^{2}=F_{s}^{2} F_{s+1}^{2}
$$

3. Constant term:

$$
-F_{s}^{2} F_{s-1}^{2}=-\left(F_{1}^{2}+F_{2}^{2}+\cdots+F_{s-1}^{2}\right)^{2}
$$

4. Coefficient of $2 m k$

$$
\begin{gathered}
F_{s-1} F_{s} F_{s+1}^{2}+F_{s}^{3} F_{s+1}=F_{s} F_{s+1}\left(F_{s-1} F_{s+1}+F_{s}^{2}\right)=\left[2 L_{2 s}+(-1)^{s}\right] F_{s} F_{s+1} \\
F_{s} F_{s+1}\left(1+2 F_{1} F_{2}+\cdots+2 F_{s-1} F_{s}=F_{s} F_{s+1}\left(F_{s+2} F_{s}-F_{s+1} F_{s-2}\right)=\left[2 L_{2 s}+(-1)^{s}\right] \cdot F_{s} F_{s+1}\right.
\end{gathered}
$$

5. Coefficient of k.

$$
\begin{gathered}
2 F_{s} F_{s+1}\left(F_{1}^{2}+F_{2}^{2}+\cdots+F_{s-1}^{2}\right)+1=2 F_{s}^{2} F_{s-1} F_{s+1}+1=1+2 F_{s}^{2}\left[F_{s}^{2}+(-1)^{s}\right]=2 F_{s}^{4}+2 F_{s}^{2}(-1)^{s}+1 \\
F_{s-1}^{2} F_{s+1}^{2}+F_{s}^{4}=F_{s}^{4}+\left[F_{s}^{2}+(-1)^{s}\right]^{2}=2 F_{s}^{4}+2(-1)^{s} F_{s}^{2}+1
\end{gathered}
$$

6. Coefficient of $-2 m$

$$
\begin{aligned}
& F_{s}^{3} F_{s-1}+F_{s-1}^{2} F_{s} F_{s+1}=F_{s-1} F_{s}\left[F_{s}^{2}+F_{s-1} F_{s+1}\right]=F_{s-1} F_{s}\left[F_{s}\left(F_{s+2}-F_{s+1}\right)+F_{s-1} F_{s+1}\right] \\
&=F_{s-1} F_{s}\left[F_{s} F_{s+2}-F_{s+1}\left(F_{s}-F_{s-1}\right)\right]=F_{s-1} F_{s}\left(F_{s} F_{s+2}-F_{s+1} F_{s-2}\right) \\
&\left(F_{1}^{2}+F_{2}^{2}+\ldots+F_{s-1}^{2}\right)\left(1+2 F_{1} F_{2}+2 F_{s} F_{3}+\ldots+2 F_{s-1} F_{s}=F_{s-1} F_{s}\left[F_{s} F_{s+2}-F_{s+1} F_{s-2}\right]\right.
\end{aligned}
$$

In proving this identity the following Fibonacci identities were used:
(a)
(b)

$$
\begin{gathered}
1+2 F_{1} F_{2}+\ldots+2 F_{s-1} F_{s}=F_{s} F_{s+2}-F_{s+1} F_{s-2} \\
F_{1}^{2}+F_{2}^{2}+\ldots+F_{s}^{2}=F_{s-1} F_{s} \\
F_{s-1} F_{s+1}=F_{s}^{2}+(-1)^{s}
\end{gathered}
$$

(c)

*** *

A MORE GENERAL FIBONACCI MULTIGRADE

DONALDCROSS
St. Luke's College, Exeter, England

In a recent article I gave examples of multigrades based on Fibonacci series in which

$$
F_{n+2}=F_{n+1}+F_{n}
$$

Here I first give a more general multigrade for series in which
Consider

$$
F_{n+2}=y F_{n+1}+x F_{n} .
$$

By inspection we notice that

$$
\begin{array}{llllll}
1 & 3 & 7 & 17 & 47 & \text { (where } x=1, y=2 \text {). } . ~
\end{array}
$$

$$
\begin{gathered}
1^{m}+3^{m}+3^{m}+7^{m}=0^{m}+4^{m}+4^{m}+6^{m} \\
3^{m}+7^{m}+7^{m}+17^{m}=0^{m}+10^{m}+10^{m}+14^{m}, \text { etc. } \\
\text { (where } m=1,2) .
\end{gathered}
$$

We can look at other series of a like kind:

$$
\begin{array}{llllll}
1 & 3 & 10 & 33 & 109 & \text { (where } x=1, y=3 \text {). }
\end{array}
$$

Here

$$
\begin{aligned}
& 1^{m}+3^{m}+3^{m}+3^{m}+10^{m}+10^{m}=0^{m}+0^{m}+7^{m}+7^{m}+7^{m}+9^{m} \\
& 3^{m}+10^{m}+10^{m}+10^{m}+33^{m}+33^{m}=0^{m}+0^{m}+23^{m}+23^{m}+23^{m}+30^{m}, \text { etc. } \\
& \text { (where } m=1,2) \\
& 1 \quad 3 \quad 11 \quad 39 \quad 139 \quad \text { (where } x=2, y=3 \text {). }
\end{aligned}
$$

Here

$$
\begin{aligned}
& 1^{m}+1^{m}+3^{m}+3^{m}+3^{m}+11^{m}+11^{m}+11^{m}=0^{m}+0^{m}+0^{m}+8^{m}+8^{m}+8^{m}+10^{m}+10^{m} \\
& 3^{m}+3^{m}+11^{m}+11^{m}+11^{m}+39^{m}+39^{m}+39^{m}=0^{m}+0^{m}+0^{m}+28^{m}+28^{m}+28^{m}+36^{m}+36^{m}, \text { etc. }
\end{aligned}
$$ (where $m=1,2$)

The general series

$$
a \quad b \quad a x+b y \quad b x+a x y+b y^{2}
$$

gives

$$
\begin{gathered}
x(a)^{m}+y(b)^{m}+(x+y-2)(a x+b y)^{m}=(x+y-2) 0^{m}+y(a x+b y-b)^{m}+x(a x+b y-a)^{m} \\
\text { (where } m=1,2) .
\end{gathered}
$$

Continued on page 66.

