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Let {𝑢
𝑛
} be a higher-order linear recursive sequence. In this paper, we use the properties of error estimation and the analytic method

to study the reciprocal sums of higher power of higher-order sequences. Then we establish several new and interesting identities
relating to the infinite and finite sums.

1. Introduction

The so-called Fibonacci zeta function and Lucas zeta func-
tion, defined by

𝜁
𝐹
(𝑠) =

∞

∑
𝑛=1

1

𝐹𝑠
𝑛

, 𝜁
𝐿
(𝑠) =

∞

∑
𝑛=1

1

𝐿𝑠
𝑛

, (1)

where the𝐹
𝑛
and 𝐿

𝑛
denote the Fibonacci numbers and Lucas

numbers, have been considered in several different ways;
see [1, 2]. Ohtsuka and Nakamura [3] studied the partial
infinite sums of reciprocal Fibonacci numbers and proved the
following conclusions:

⌊(

∞

∑
𝑘=𝑛

1

𝐹
𝑘

)

−1

⌋ = {
𝐹
𝑛−2

if 𝑛 is even, 𝑛 ≥ 2,
𝐹
𝑛−2
− 1 if 𝑛 is odd, 𝑛 ≥ 1,

⌊(

∞

∑
𝑘=𝑛

1

𝐹2
𝑘

)

−1

⌋ = {
𝐹
𝑛−1
𝐹
𝑛
− 1 if 𝑛 is even, 𝑛 ≥ 2,

𝐹
𝑛−1
𝐹
𝑛

if 𝑛 is odd, 𝑛 ≥ 1,

(2)

where ⌊⋅⌋ denotes the floor function.
Further, Wu and Zhang [4, 5] generalized these identities

to the Fibonacci polynomials and Lucas polynomials. Various
properties of the Fibonacci polynomials and Lucas polynomi-
als have been studied by many authors; see [6–13].

Recently, some authors considered the nearest integer of
the sums of reciprocal Fibonacci numbers and other well-
known sequences and obtained several meaningful results;

see [14–16]. In particular, in [16], Kılıç and Arıkan studied a
problem which is a little different from that of [3], namely,
that of determining the nearest integer to (∑∞

𝑘=𝑛
(1/V
𝑘
))
−1.

Specifically, suppose that ‖𝑥‖ = ⌊𝑥 + (1/2)⌋ (the nearest
integer function) and {V

𝑛
}
𝑛≥0

is an integer sequence satisfying
the recurrence formula

V
𝑛
= 𝑝V
𝑛−1
+ 𝑞V
𝑛−2
+ V
𝑛−3
+ ⋅ ⋅ ⋅ + V

𝑛−𝑘
, (3)

for any positive integer 𝑝 ≥ 𝑞 and 𝑛 > 𝑘. Then we can
conclude that there exists a positive integer 𝑛

0
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

∞

∑
𝑘=𝑛

1

V
𝑘

)

−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= V
𝑛
− V
𝑛−1
, (4)

for all 𝑛 > 𝑛
0
.

In [17], Wu and Zhang unified the above results by
proving the following conclusion that includes all the results,
[3–8, 15, 16], as special cases.

Proposition 1. For any positive integer 𝑛 > 𝑚, the 𝑚th-order
linear recursive sequence {𝑢

𝑛
} is defined as follows:

𝑢
𝑛
= 𝑎
1
𝑢
𝑛−1
+ 𝑎
2
𝑢
𝑛−2
+ ⋅ ⋅ ⋅ + 𝑎

𝑚−1
𝑢
𝑛−𝑚+1

+ 𝑎
𝑚
𝑢
𝑛−𝑚
, (5)

with initial values 𝑢
𝑖
∈ N for 0 ≤ 𝑖 < 𝑚 and at least one of them

not being zero. For any positive real number 𝛽 > 2 and any
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positive integer 𝑎
1
≥ 𝑎
2
≥ ⋅ ⋅ ⋅ ≥ 𝑎

𝑚
≥ 1, there exists a positive

integer 𝑛
1
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

1

𝑢
𝑘

)

−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 𝑢
𝑛
− 𝑢
𝑛−1
, (𝑛 ≥ 𝑛

1
) . (6)

In particular, taking 𝛽 → +∞, there exists a positive integer
𝑛
2
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

∞

∑
𝑘=𝑛

1

𝑢
𝑘

)

−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 𝑢
𝑛
− 𝑢
𝑛−1
, (𝑛 ≥ 𝑛

2
) . (7)

It seems difficult to deal with (∑
∞

𝑘=𝑛
(1/𝑢
𝑠

𝑘
))
−1 for all

integers 𝑠 ≥ 2, because it is quite unclear a priori what the
shape of the result might be. In [18], Xu and Wang applied
the method of undetermined coefficients and constructed
a number of delicate inequalities in order to study the
infinite sum of the cubes of reciprocal Pell numbers and then
obtained the following meaningful result.

Proposition 2. For any positive integer 𝑛 ≥ 1, we have the
identity

⌊(

∞

∑
𝑘=𝑛

1

𝑃3
𝑘

)

−1

⌋

=

{{{{{{

{{{{{{

{

𝑃
2

𝑛
𝑃
𝑛−1
+ 3𝑃
𝑛
𝑃
2

𝑛−1
+ ⌊−

61

82
𝑃
𝑛
−
91

82
𝑃
𝑛−1
⌋

𝑖𝑓 𝑛 𝑖𝑠 𝑒V𝑒𝑛, 𝑛 ≥ 2,

𝑃
2

𝑛
𝑃
𝑛−1
+ 3𝑃
𝑛
𝑃
2

𝑛−1
+ ⌊
61

82
𝑃
𝑛
+
91

82
𝑃
𝑛−1
⌋

𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑, 𝑛 ≥ 1.

(8)

To find and prove this result is a substantial achievement
since such a complex formula would not be clear beforehand
that a result would even be possible. However, there is no
research considering the higher power (𝑠 > 2) of reciprocal
sums of some recursive sequences. The main purpose of this
paper is using the properties of error estimation and the
analytic method to study the higher power of the reciprocal
sums of {𝑢

𝑛
} and obtain several new and interesting identities.

The results are as follows.

Theorem 3. Let {𝑢
𝑛
} be an 𝑚th-order sequence defined by

(5) with the restrictions 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
∈ N and 𝑎

1
≥ 𝑎
2
≥

⋅ ⋅ ⋅ ≥ 𝑎
𝑚
≥ 2. For any real number 𝛽 > 2 and positive

integer 1 ≤ 𝑠 < ⌊log
(𝛼/𝑎
1
)
𝛼𝑑⌋, where 𝛼, 𝛼

1
, . . . , 𝛼

𝑚−1
are

the roots of the characteristic equation of 𝑢
𝑛
and 𝑑−1 =

max {|𝛼
1
|, |𝛼
2
|, . . . , |𝛼

𝑚−1
|}, then there exists a positive integer

𝑛
3
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝑢𝑠
𝑘

)

−1

− (
𝑢
𝑠

𝑛

𝑎𝑠𝑛
1

−
𝑢
𝑠

𝑛−1

𝑎𝑠𝑛−𝑠
1

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0, (𝑛 ≥ 𝑛
3
) . (9)

Taking 𝛽 → +∞, fromTheorem 3 we may immediately
deduce the following.

Corollary 4. Let {𝑢
𝑛
} be an𝑚th-order sequence defined by (5)

with the restrictions 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
∈ N and 𝑎

1
≥ 𝑎
2
≥ ⋅ ⋅ ⋅ ≥

𝑎
𝑚
≥ 2. For positive integer 1 ≤ 𝑠 < ⌊log

(𝛼/𝑎
1
)
𝛼𝑑⌋, where

𝛼, 𝛼
1
, . . . , 𝛼

𝑚−1
are the roots of the characteristic equation of

𝑢
𝑛
and 𝑑−1 = max{|𝛼

1
|, |𝛼
2
|, . . . , |𝛼

𝑚−1
|}, then there exists a

positive integer 𝑛
4
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

∞

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝑢𝑠
𝑘

)

−1

− (
𝑢
𝑠

𝑛

𝑎𝑠𝑛
1

−
𝑢
𝑠

𝑛−1

𝑎𝑠𝑛−𝑠
1

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0, (𝑛 ≥ 𝑛
4
) . (10)

For positive real number 1 < 𝛽 ≤ 2, whether there exits
an identity for

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝑢𝑠
𝑘

)

−1󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(11)

is an interesting open problem.

2. Several Lemmas

To complete the proof of our theorem, we need two lemmas.

Lemma 5. Let 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
∈ N with 𝑎

1
≥ 𝑎
2
≥ ⋅ ⋅ ⋅ ≥ 𝑎

𝑚
≥ 1

and𝑚 ∈ N with𝑚 ≥ 2. Then for the polynomial

𝑓 (𝑥) = 𝑥
𝑚

− 𝑎
1
𝑥
𝑚−1

− 𝑎
2
𝑥
𝑚−2

− ⋅ ⋅ ⋅ − 𝑎
𝑚−1
𝑥 − 𝑎
𝑚
, (12)

we have the following:

(I) polynomial 𝑓(𝑥) has exactly one positive real zero 𝛼
with 𝑎

1
< 𝛼 < 𝑎

1
+ 1;

(II) other𝑚−1 zeros of 𝑓(𝑥) lie within the unit circle in the
complex plane.

Proof. See Lemma 1 of [16].

Lemma 6. Let 𝑚 ≥ 2 and {𝑢
𝑛
}
𝑛≥0

be an integer sequence
satisfying the recurrence formula (5). Then for any positive
integer 𝑠, we have

𝑢
𝑠

𝑛
= 𝑐
𝑠

𝛼
𝑠𝑛

+ 𝑂 (𝛼
𝑠𝑛−𝑛

𝑑
−𝑛

) (𝑛 󳨀→ ∞) , (13)

where 𝑐 > 0, 𝑑 > 1, and 𝑎
1
< 𝛼 < 𝑎

1
+1 is the positive real zero

of 𝑓(𝑥).

Proof. From Lemma 2 of [16], the closed formula of 𝑢
𝑛
is

given by

𝑢
𝑛
= 𝑐𝛼
𝑛

+ 𝑂 (𝑑
−𝑛

) (𝑛 󳨀→ ∞) , (14)

where 𝑐 > 0, 𝑑 > 1, 𝑎
1
< 𝛼 < 𝑎

1
+ 1, and 𝛼 is the positive

real zero of 𝑓(𝑥). Now we prove Lemma 6 by mathematical
induction. From formula (14), we have

𝑢
2

𝑛
= 𝑐
2

𝛼
2𝑛

+ 𝑂 (𝑑
−2𝑛

) + 𝑂 (𝛼
𝑛

𝑑
−𝑛

) = 𝑐
2

𝛼
2𝑛

+ 𝑂 (𝛼
𝑛

𝑑
−𝑛

) .

(15)

That is, the lemmaholds for 𝑠 = 2. Suppose that for all integers
2 ≤ 𝑠 ≤ 𝑘 we have

𝑢
𝑠

𝑛
= 𝑐
𝑠

𝛼
𝑠𝑛

+ 𝑂 (𝛼
𝑠𝑛−𝑛

𝑑
−𝑛

) (𝑛 󳨀→ ∞) . (16)
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Then for 𝑠 = 𝑘 + 1 we have

𝑢
𝑘+1

𝑛
= (𝑐
𝑘

𝛼
𝑘𝑛

+ 𝑂 (𝛼
𝑘𝑛−𝑛

𝑑
−𝑛

)) ⋅ (𝑐𝛼
𝑛

+ 𝑂 (𝑑
−𝑛

))

= 𝑐
𝑘+1

𝛼
𝑘𝑛+𝑛

+ 𝑂 (𝛼
𝑘𝑛

𝑑
−𝑛

)

+ 𝑂 (𝛼
𝑘𝑛

𝑑
−𝑛

) + 𝑂 (𝛼
𝑘𝑛−𝑛

𝑑
−2𝑛

)

= 𝑐
𝑘+1

𝛼
(𝑘+1)𝑛

+ 𝑂 (𝛼
𝑘𝑛

𝑑
−𝑛

) .

(17)

That is, Lemma 6 also holds for 𝑠 = 𝑘 + 1. This completes
the proof of Lemma 6 by mathematical induction.

3. Proof of Theorem 3

In this section, we shall complete the proof of Theorem 3.
From the geometric series as 𝜖 → 0, we have

1

1 ± 𝜖
= 1 ∓ 𝜖 + 𝑂 (𝜖

2

) = 1 + 𝑂 (𝜖) . (18)

Using Lemma 6, we have

𝑎
𝑠𝑘

1

𝑢𝑠
𝑘

=
𝑎
𝑠𝑘

1

𝑐𝑠𝛼𝑠𝑘 + 𝑂 (𝛼𝑠𝑘−𝑘𝑑−𝑘)

=
𝑎
𝑠𝑘

1

𝑐𝑠𝛼𝑠𝑘 (1 + 𝑂 (𝛼−𝑘𝑑−𝑘))
=
𝑎
𝑠𝑘

1

𝑐𝑠𝛼𝑠𝑘
(1 + 𝑂 (𝛼

−𝑘

𝑑
−𝑘

))

=
𝑎
𝑠𝑘

1

𝑐𝑠𝛼𝑠𝑘
+ 𝑂(

𝑎
𝑠𝑘

1

𝛼𝑠𝑘+𝑘𝑑𝑘
) .

(19)

Consequently,

⌊𝛽𝑛⌋

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝑢𝑠
𝑘

=
1

𝑐𝑠

⌊𝛽𝑛⌋

∑
𝑘=𝑛

(
𝑎
1

𝛼
)
𝑠𝑘

+ 𝑂(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝛼𝑠𝑘+𝑘𝑑𝑘
)

=
𝛼
𝑠

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠𝑛

−
1

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠⌊𝛽𝑛⌋

+ 𝑂(
𝑎
𝑠𝑛

1

𝛼𝑠𝑛+𝑛𝑑𝑛
)

=
𝛼
𝑠

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠𝑛

+ 𝑂(
𝑎
𝑠𝑛

1

𝛼𝑠𝑛
⋅
𝑎
𝑠⌊𝛽𝑛⌋−𝑠𝑛

1

𝛼𝑠⌊𝛽𝑛⌋−𝑠𝑛
)

+ 𝑂(
𝑎
𝑠𝑛

1

𝛼𝑠𝑛
⋅
1

𝛼𝑛𝑑𝑛
)

=
𝛼
𝑠

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠𝑛

+ 𝑂(
𝑎
𝑠𝑛

1

𝛼𝑠𝑛
⋅ ℎ) ,

(20)

where ℎ = max {(𝑎𝑠⌊𝛽𝑛⌋−𝑠𝑛
1

/𝛼
𝑠⌊𝛽𝑛⌋−𝑠𝑛

), (1/𝛼
𝑛

𝑑
𝑛

)}.

Taking the reciprocal of this expression yields

(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝑢𝑠
𝑘

)

−1

= (1) × (
𝛼
𝑠

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠𝑛

⋅ (1 + 𝑂(
𝑎
𝑠𝑛

1
ℎ

𝛼𝑠𝑛
⋅
𝛼
𝑠𝑛

𝑎𝑠𝑛
1

)))

−1

=
𝑐
𝑠

(𝛼
𝑠

− 𝑎
𝑠

1
)

𝛼𝑠
⋅ (
𝛼

𝑎
1

)

𝑠𝑛

⋅ (1 + 𝑂 (ℎ))

=
𝑐
𝑠

𝛼
𝑠𝑛

𝑎𝑠𝑛
1

−
𝑐
𝑠

𝛼
𝑠𝑛−𝑠

𝑎𝑠𝑛−𝑠
1

+ 𝑂(
𝛼
𝑠𝑛

𝑎𝑠𝑛
1

⋅ ℎ)

=
𝑢
𝑠

𝑛

𝑎𝑠𝑛
1

−
𝑢
𝑠

𝑛−1

𝑎𝑠𝑛−𝑠
1

+ 𝑂(
𝛼
𝑠𝑛

𝑎𝑠𝑛
1

⋅ ℎ) .

(21)

Case 1. If ℎ = (𝑎𝑠⌊𝛽𝑛⌋−𝑠𝑛
1

/𝛼
𝑠⌊𝛽𝑛⌋−𝑠𝑛

), then for any real number
𝛽 > 2 and positive integer 𝑠 we have

𝛼
𝑠𝑛

𝑎𝑠𝑛
1

⋅ ℎ =
𝛼
𝑠𝑛

𝑎𝑠𝑛
1

⋅
𝑎
𝑠⌊𝛽𝑛⌋−𝑠𝑛

1

𝛼𝑠⌊𝛽𝑛⌋−𝑠𝑛
= (

𝑎
1

𝛼
)
𝑠⌊𝛽𝑛⌋−2𝑠𝑛

< 1. (22)

Case 2. If ℎ = (1/𝛼𝑛𝑑𝑛), for any positive integer 𝑎
1
≥ 2, 1 <

(𝛼/𝑎
1
) < 𝛼𝑑 holds. Then for any positive integer 𝑠 with

1 ≤ 𝑠 < ⌊log
(𝛼/𝑎
1
)
𝛼𝑑⌋ , (23)

we have

𝛼
𝑠𝑛

𝑎𝑠𝑛
1

⋅ ℎ =
𝛼
𝑠𝑛−𝑛

𝑎𝑠𝑛
1
𝑑𝑛
= (

𝛼
𝑠−1

𝑎𝑠
1
𝑑
)

𝑛

< 1. (24)

In both cases, it follows that for any real number 𝛽 > 2
and positive integer 1 ≤ 𝑠 < ⌊log

(𝛼/𝑎
1
)
𝛼𝑑⌋ there exists 𝑛 ≥ 𝑛

3

sufficiently large so that the modulus of the last error term of
identity (21) becomes less than 1/2. This completes the proof
of Theorem 3.

Proof of Corollary 4. From identity (19), we have

𝑎
s𝑘
1

𝑢𝑠
𝑘

=
𝑎
𝑠𝑘

1

𝑐𝑠𝛼𝑠𝑘
+ 𝑂(

𝑎
𝑠𝑘

1

𝛼𝑠𝑘+𝑘𝑑𝑘
) . (25)

Consequently,

∞

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝑢𝑠
𝑘

=
1

𝑐𝑠

∞

∑
𝑘=𝑛

(
𝑎
1

𝛼
)
𝑠𝑘

+ 𝑂(

∞

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝛼𝑠𝑘+𝑘𝑑𝑘
)

=
𝛼
𝑠

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠𝑛

+ 𝑂(
𝑎
𝑠𝑛

1

𝛼𝑠𝑛+𝑛𝑑𝑛
) .

(26)
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Taking the reciprocal of this expression yields

(

∞

∑
𝑘=𝑛

𝑎
𝑠𝑘

1

𝑢𝑠
𝑘

)

−1

=
1

(𝛼𝑠/𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)) ⋅ (𝑎

1
/𝛼)
𝑠𝑛

⋅ (1 + 𝑂 (1/𝛼𝑛𝑑𝑛))

=
𝑐
𝑠

(𝛼
𝑠

− 𝑎
𝑠

1
)

𝛼𝑠
⋅ (
𝛼

𝑎
1

)

𝑠𝑛

⋅ (1 + 𝑂(
1

𝛼𝑛𝑑𝑛
))

=
𝑐
𝑠

𝛼
𝑠𝑛

𝑎𝑠𝑛
1

−
𝑐
𝑠

𝛼
𝑠𝑛−𝑠

𝑎𝑠𝑛−𝑠
1

+ 𝑂(
𝛼
𝑠𝑛−𝑛

𝑎𝑠𝑛
1
𝑑𝑛
)

=
𝑢
𝑠

𝑛

𝑎𝑠𝑛
1

−
𝑢
𝑠

𝑛−1

𝑎𝑠𝑛−𝑠
1

+ 𝑂(
𝛼
𝑠𝑛−𝑛

𝑎𝑠𝑛
1
𝑑𝑛
) .

(27)

For any positive integer 𝑠 with

1 ≤ 𝑠 < ⌊log
(𝛼/𝑎
1
)
𝛼𝑑⌋ , (28)

we have

𝛼
𝑠𝑛−𝑛

𝑎𝑠𝑛
1
𝑑𝑛
= (

𝛼
𝑠−1

𝑎𝑠
1
𝑑
)

𝑛

< 1. (29)

So there exists 𝑛 ≥ 𝑛
4
sufficiently large so that the modulus

of the last error term of identity (27) becomes less than 1/2.
This completes the proof of Corollary 4.

4. Computation

We can determine the power 𝑠 of different sequence 𝑢
𝑛
by

MATHEMATICA as the following examples.

Example 7. Let 𝑢
𝑛
be the second-order linear recursive

sequence (see Table 1).

Example 8. Let 𝑢
𝑛

be the third-order linear recursive
sequence (see Table 2).

Example 9. Let 𝑢
𝑛
be the fifth-order linear recursive sequence

(see Table 3).

Therefore, we may immediately deduce the following
corollaries.

Corollary 10. Let 𝑃
𝑛
= 2𝑃
𝑛−1
+ 𝑃
𝑛−2

be the Pell numbers. For
any real number 𝛽 > 2 and positive integer 1 ≤ 𝑠 < 9, there
exists a positive integer 𝑛

5
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

2
𝑠𝑘

𝑃𝑠
𝑘

)

−1

− (
𝑃
𝑠

𝑛

2𝑠𝑛
−
𝑃
𝑠

𝑛−1

2𝑠𝑛−𝑠
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0, (𝑛 ≥ 𝑛
5
) . (30)

Corollary 11. Let T
𝑛
= 4𝑇
𝑛−1
+3𝑇
𝑛−2
+2𝑇
𝑛−3

be the generalized
Tribonacci numbers. For any real number 𝛽 > 2 and positive
integer 1 ≤ 𝑠 < 11, there exists a positive integer 𝑛

6
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

4
𝑠𝑘

𝑇𝑠
𝑘

)

−1

− (
𝑇
𝑠

𝑛

4𝑠𝑛
−
𝑇
𝑠

𝑛−1

4𝑠𝑛−𝑠
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0, (𝑛 ≥ 𝑛
6
) . (31)

Table 1

𝑢
𝑛

𝛼 𝑑 log
𝛼/𝑎1

𝛼𝑑

𝑢
𝑛
= 2𝑢
𝑛−1
+ 𝑢
𝑛−2

2.4142 2.4142 9.3653
𝑢
𝑛
= 3𝑢
𝑛−1
+ 𝑢
𝑛−2

3.3028 3.3028 24.8500
𝑢
𝑛
= 4𝑢
𝑛−1
+ 𝑢
𝑛−2

4.2361 4.2361 50.3460
𝑢
𝑛
= 5𝑢
𝑛−1
+ 𝑢
𝑛−2

5.1926 5.1926 87.1630

Table 2

𝑢
𝑛

𝛼 𝑑 log
𝛼/𝑎1

𝛼𝑑

𝑢
𝑛
= 2𝑢
𝑛−1
+ 𝑢
𝑛−2
+ 𝑢
𝑛−3

2.5468 1.5959 5.8020
𝑢
𝑛
= 3𝑢
𝑛−1
+ 2𝑢
𝑛−2
+ 𝑢
𝑛−3

3.6274 1.9044 10.1772
𝑢
𝑛
= 4𝑢
𝑛−1
+ 3𝑢
𝑛−2
+ 2𝑢
𝑛−3

4.7246 1.5370 11.9086
𝑢
𝑛
= 5𝑢
𝑛−1
+ 4𝑢
𝑛−2
+ 3𝑢
𝑛−3

5.8074 1.2050 12.9970

Table 3

𝑢
𝑛

𝛼 𝑑
log
𝛼/𝑎1

𝛼𝑑

𝑢
𝑛
= 2𝑢
𝑛−1
+ 𝑢
𝑛−2
+ 𝑢
𝑛−3
+ 𝑢
𝑛−4
+ 𝑢
𝑛−5

2.6083 1.1855 4.2511

𝑢
𝑛
= 3𝑢
𝑛−1
+ 3𝑢
𝑛−2
+ 2𝑢
𝑛−3
+ 2𝑢
𝑛−4
+ 𝑢
𝑛−5
3.9300 1.3189 6.0936

𝑢
𝑛
= 4𝑢
𝑛−1
+ 3𝑢
𝑛−2
+ 𝑢
𝑛−3
+ 𝑢
𝑛−4
+ 𝑢
𝑛−5

4.6959 1.4156 11.8100

𝑢
𝑛
= 5𝑢
𝑛−1
+ 3𝑢
𝑛−2
+ 2𝑢
𝑛−3
+ 𝑢
𝑛−4
+ 𝑢
𝑛−5

5.6055 1.4828 18.5257

Corollary 12. Let 𝑢
𝑛
= 5𝑢
𝑛−1
+ 3𝑢
𝑛−2
+ 2𝑢
𝑛−3
+𝑢
𝑛−4
+𝑢
𝑛−5

be
a fifth-order sequence. For any real number 𝛽 > 2 and positive
integer 1 ≤ 𝑠 < 18, there exists a positive integer 𝑛

7
such that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

5
𝑠𝑘

𝑢𝑠
𝑘

)

−1

− (
𝑢
𝑠

𝑛

5𝑠𝑛
−
𝑢
𝑠

𝑛−1

5𝑠𝑛−𝑠
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= 0, (𝑛 ≥ 𝑛
7
) . (32)

5. Related Results

The following results are obtained similarly.

Theorem 13. Let {𝑢
𝑛
} be an 𝑚th-order sequence defined by

(5) with the restrictions 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
∈ N and 𝑎

1
≥ 𝑎
2
≥

⋅ ⋅ ⋅ ≥ 𝑎
𝑚

≥ 2. Let 𝑝 and 𝑞 be positive integers with
0 ≤ 𝑞 < 𝑝. For any real number 𝛽 > 2 and positive
integer 1 ≤ 𝑠 < ⌊log

(𝛼/𝑎
1
)
𝛼
𝑝

𝑑
𝑝

⌋, where 𝛼, 𝛼
1
, . . . , 𝛼

𝑚−1

are the roots of the characteristic equation of 𝑢
𝑛
and 𝑑−1 =

max {|𝛼
1
|, |𝛼
2
|, . . . , |𝛼

𝑚−1
|}, then there exist positive integers

𝑛
8
, 𝑛
9
, and 𝑛

10
depending on 𝑎

1
, 𝑎
2
, . . ., and 𝑎

𝑚
such that the

following hold.

(a) ‖(∑⌊𝛽𝑛⌋
𝑘=𝑛
((−𝑎
1
)
𝑠𝑘

/𝑢
𝑠

𝑘
))
−1

−(−1)
𝑠𝑛

(𝑢
𝑠

𝑛
/𝑎
𝑠𝑛

1
+𝑢
𝑠

𝑛−1
/𝑎
𝑠𝑛−𝑠

1
)‖ =

0, (𝑛 ≥ 𝑛
8
).

(b) ‖(∑⌊𝛽𝑛⌋
𝑘=𝑛
(𝑎
𝑠𝑝𝑘+𝑠𝑞

1
/𝑢
𝑠

𝑝𝑘+𝑞
))
−1

− (𝑢
𝑠

𝑝𝑛+𝑞
/𝑎
𝑠𝑝𝑛+𝑠𝑞

1
− 𝑢
𝑠

𝑝𝑛−𝑝+𝑞
/

𝑎
𝑠𝑝𝑛+𝑠𝑞−𝑠𝑝

1
)‖ = 0, (𝑛 ≥ 𝑛

9
).

(c) ‖(∑⌊𝛽𝑛⌋
𝑘=𝑛
((−𝑎
1
)
𝑠𝑝𝑘+𝑠𝑞

/𝑢
𝑠

𝑝𝑘+𝑞
))
−1

− (−1)
𝑠𝑝𝑛+𝑠𝑞

(𝑢
𝑠

𝑝𝑛+𝑞
/

𝑎
𝑠𝑝𝑛+𝑠𝑞

1
+ 𝑢
𝑠

𝑝𝑛−𝑝+𝑞
/𝑎
𝑠𝑝𝑛+𝑠𝑞−𝑠𝑝

1
)‖ = 0, (𝑛 ≥ 𝑛

10
).

For 𝛽 → +∞, we deduce the following identity of infinite sum
as special case of Theorem 13.
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Corollary 14. Let {𝑢
𝑛
} be an 𝑚th-order sequence defined by

(5) with the restrictions 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
∈ N and 𝑎

1
≥ 𝑎
2
≥

⋅ ⋅ ⋅ ≥ 𝑎
𝑚
≥ 2. Let 𝑝 and 𝑞 be positive integers with 0 ≤

𝑞 < 𝑝. For any positive integer 1 ≤ 𝑠 < ⌊log
(𝛼/𝑎
1
)
𝛼𝑑⌋, where

𝛼, 𝛼
1
, . . . , 𝛼

𝑚−1
are the roots of the characteristic equation of 𝑢

𝑛

and 𝑑−1 = max {|𝛼
1
|, |𝛼
2
|, . . . , |𝛼

𝑚−1
|}, then there exist positive

integers 𝑛
11
, 𝑛
12
, and 𝑛

13
depending on 𝑎

1
, 𝑎
2
, . . ., and 𝑎

𝑚
such

that the following hold.

(d) ‖(∑∞
𝑘=𝑛
((−𝑎
1
)
𝑠𝑘

/𝑢
𝑠

𝑘
))
−1

−(−1)
𝑠𝑛

(𝑢
𝑠

𝑛
/𝑎
𝑠𝑛

1
+𝑢
𝑠

𝑛−1
/𝑎
𝑠𝑛−𝑠

1
)‖ =

0, (𝑛 ≥ 𝑛
11
).

(e) ‖(∑∞
𝑘=𝑛
(𝑎
𝑠𝑝𝑘+𝑠𝑞

1
/𝑢
𝑠

𝑝𝑘+𝑞
))
−1

− (𝑢
𝑠

𝑝𝑛+𝑞
/𝑎
𝑠𝑝𝑛+𝑠𝑞

1
− 𝑢
𝑠

𝑝𝑛−𝑝+𝑞
/

𝑎
𝑠𝑝𝑛+𝑠𝑞−𝑠𝑝

1
)‖ = 0, (𝑛 ≥ 𝑛

12
).

( f) ‖(∑∞
𝑘=𝑛
((−𝑎
1
)
𝑠𝑝𝑘+𝑠𝑞

/𝑢
𝑠

𝑝𝑘+𝑞
))
−1

− (−1)
𝑠𝑝𝑛+𝑠𝑞

(𝑢
𝑠

𝑝𝑛+𝑞
/

𝑎
𝑠𝑝𝑛+𝑠𝑞

1
+ 𝑢
𝑠

𝑝𝑛−𝑝+𝑞
/𝑎
𝑠𝑝𝑛+𝑠𝑞−𝑠𝑝

1
)‖ = 0, (𝑛 ≥ 𝑛

13
).

Proof. We shall prove only (c) in Theorem 13 and other
identities are proved similarly. From identity (19), we have

(−𝑎
1
)
𝑠𝑝𝑘+𝑠𝑞

𝑢𝑠
𝑝𝑘+𝑞

=
(−𝑎
1
)
𝑠𝑝𝑘+𝑠𝑞

𝑐𝑠𝛼𝑠𝑝𝑘+𝑠𝑞
(1 + 𝑂 (𝛼

−𝑝𝑘−𝑞

𝑑
−𝑝𝑘−𝑞

)) . (33)

Consequently,

⌊𝛽𝑛⌋

∑
𝑘=𝑛

(−𝑎
1
)
𝑠𝑝𝑘+𝑠𝑞

𝑢𝑠
𝑠𝑝𝑘+𝑠𝑞

=
1

𝑐𝑠

⌊𝛽𝑛⌋

∑
𝑘=𝑛

(
−𝑎
1

𝛼
)
𝑠𝑝𝑘+𝑠𝑞

+ 𝑂(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

𝑎
𝑠𝑝𝑘+𝑠𝑞

1

𝛼𝑠𝑝𝑘+𝑠𝑞+𝑝𝑘+𝑞𝑑𝑝𝑘+𝑞
)

=
(−1)
𝑠𝑝𝑛+𝑠𝑞

⋅ 𝛼
𝑠

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠𝑝𝑛+𝑠𝑞

−
(−1)
𝑠𝑝𝑛+𝑠𝑞

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)

⋅ (
𝑎
1

𝛼
)
𝑠𝑝⌊𝛽𝑛⌋+𝑠𝑞

+ 𝑂(
𝑎
𝑠𝑝𝑛

1

𝛼𝑠𝑝𝑛+𝑝𝑛𝑑𝑝𝑛
)

=
(−1)
𝑠𝑝𝑛+𝑠𝑞

⋅ 𝛼
𝑠

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠𝑝𝑛+𝑠𝑞

+ 𝑂(
𝑎
𝑠𝑝𝑛

1

𝛼𝑠𝑝𝑛
⋅
𝑎
𝑠𝑝⌊𝛽𝑛⌋−𝑠𝑝𝑛

1

𝛼𝑠𝑝⌊𝛽𝑛⌋−𝑠𝑝𝑛
)

+ 𝑂(
𝑎
𝑠𝑝𝑛

1

𝛼𝑠𝑝𝑛
⋅

1

𝛼𝑝𝑛𝑑𝑝𝑛
)

=
(−1)
𝑠𝑝𝑛+𝑠𝑞

⋅ 𝛼
𝑠

𝑐𝑠 (𝛼𝑠 − 𝑎𝑠
1
)
⋅ (
𝑎
1

𝛼
)
𝑠𝑝𝑛+𝑠𝑞

+ 𝑂(
𝑎
𝑠𝑝𝑛

1

𝛼𝑠𝑝𝑛
⋅ ℎ
𝑝

) ,

(34)

where ℎ = max {(𝑎𝑠⌊𝛽𝑛⌋−𝑠𝑛
1

/𝛼
𝑠⌊𝛽𝑛⌋−𝑠𝑛

), (1/𝛼
𝑛

𝑑
𝑛

)}.

Taking the reciprocal of this expression yields

(

⌊𝛽𝑛⌋

∑
𝑘=𝑛

(−𝑎
1
)
𝑠𝑝𝑘+𝑠𝑞

𝑢𝑠
𝑝𝑘+𝑞

)

−1

= (−1)
𝑠𝑝𝑛+𝑠𝑞

⋅
𝑐
𝑠

(𝛼
𝑠

− 𝑎
𝑠

1
)

𝛼𝑠
⋅ (
𝛼

𝑎
1

)

𝑠𝑝𝑛+𝑠𝑞

⋅ (1 + 𝑂 (ℎ
𝑝

))

=
𝑢
𝑠

𝑝𝑛+𝑞

𝑎
𝑠𝑝𝑛+𝑠𝑞

1

+
𝑢
𝑠

𝑝𝑛−𝑝+𝑞

𝑎
𝑠𝑝𝑛+𝑠𝑞−𝑠𝑝

1

+ 𝑂(
𝛼
𝑠𝑝𝑛

𝑎
𝑠𝑝𝑛

1

⋅ ℎ
𝑝

) .

(35)

Case 1. If ℎ = (𝑎𝑠⌊𝛽𝑛⌋−𝑠𝑛
1

)/(𝛼
𝑠⌊𝛽𝑛⌋−𝑠𝑛

), then for any real number
𝛽 > 2 and positive integer 𝑠 we have

𝛼
𝑠𝑛

𝑎𝑠𝑛
1

⋅ ℎ
𝑝

=
𝛼
𝑠𝑛

𝑎𝑠𝑛
1

⋅
𝑎
𝑠𝑝⌊𝛽𝑛⌋−𝑠𝑝𝑛

1

𝛼𝑠𝑝⌊𝛽𝑛⌋−𝑠𝑝𝑛
= (

𝑎
1

𝛼
)
𝑠𝑝⌊𝛽𝑛⌋−𝑠𝑝𝑛−𝑠𝑛

< 1.

(36)

Case 2. If ℎ = (1/𝛼𝑛𝑑𝑛), for any positive integer 𝑎
1
≥ 2, 1 <

(𝛼/𝑎
1
) < 𝛼𝑑 holds. Then for any positive integer 𝑠 with

1 ≤ s < ⌊log
(𝛼/𝑎
1
)
𝛼
𝑝

𝑑
𝑝

⌋ , (37)

we have

𝛼
𝑠𝑛

𝑎𝑠𝑛
1

⋅ ℎ
𝑝

=
𝛼
𝑠𝑛−𝑝𝑛

𝑎𝑠𝑛
1
𝑑𝑝𝑛

= (
𝛼
𝑠−𝑝

𝑎𝑠
1
𝑑𝑝
)

𝑛

< 1. (38)

In both cases, it follows that for any real number𝛽 > 2 and
positive integer 1 ≤ 𝑠 < ⌊log

(𝛼/𝑎
1
)
𝛼
𝑝

𝑑
𝑝

⌋, there exists 𝑛 ≥ 𝑛
10

sufficiently large so that the modulus of the last error term of
identity (35) becomes less than 1/2. This completes the proof
of Theorem 13(c).
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