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BINOMIALS TRANSFORMATION FORMULAE

OF SCALED LUCAS NUMBERS

Abstract. The current paper represents a suplement for papers [7] and [8]. Many
of the new summation formulae connecting Lucas numbers with binomials are presented
here. All these relations are obtained by using definition and simple properties of the so
called δ-Lucas numbers.

1. Introduction

The δ-Lucas numbers An(δ) and Bn(δ), n ∈ N ∪ {0}, δ ∈ C, have been
defined in papers [7, 8] in the following way:

An(δ) := 2an(δ)− bn(δ) =

n
∑

k=0

(

n

k

)

(−δ)kLk,(1)

Bn(δ) := an(δ) + 2bn(δ) = −
n
∑

k=0

(

n

k

)

(−δ)kLk−1,(2)

where Ln are the Lucas numbers (L0 := 2, L1 := 1, Ln+2 = Ln+1 + Ln,
n = 0, 1, . . .), whereas an(δ) and bn(δ) are the so called δ-Fibonacci numbers
defined in paper [8] (see also paper [7]) by means of the relation:

(3) (1− αδ)n = an(δ)− αbn(δ), δ ∈ C, n ∈ N ∪ {0},
or, equivalently, by the relation:

(4) (1− βδ)n = an(δ)− βbn(δ), δ ∈ C, n ∈ N ∪ {0},
where:

α :=
1 +

√
5

2
and β :=

1−
√
5

2
.
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We note that:

Ln = αn + βn, n ∈ Z.

From (3) and (4) it follows that δ-Fibonacci numbers an(δ) and bn(δ) satisfy
the following recurrence relations (for X = a or X = b, respectively):

(5) Xn+2(δ) = (2− δ)Xn+1(δ) + (δ2 + δ − 1)Xn(δ).

And as follows from (1) and (2) δ-Lucas numbers also satisfy these recurrence
relations.

Besides of the identities (1) and (2) the name "δ-Lucas numbers", taken
for the polynomialsAn(δ) andBn(δ), is additionally justified by the relations
for the values of δ-Lucas numbers (deduced from (5)):An(1) = Ln, Bn(1) = Ln+1,(6) An(−1) = L2n, Bn(−1) = −L2n−1,(7) An(−2) = L3n, Bn(−2) = −L3n−1,(8)

2nAn

(

− 3

2

)

= L4n, 2nBn

(

− 3

2

)

= −L4n−1,(9)

for every n ∈ N∪{0}. From this and from (1) and (2) for δ = 1,−1,−2,−3

2
,

respectively, we receive eight formulae (30), (31) and the first equalities
of (33), (34), (39), (40), (54) and (55), describing the operation result of
the binomial transformation of scaled Lucas numbers for 4 different values
of argument δ. This way of generating the formulae will be also used in
section 2 (the general difficulty in applying this technique lies in the ability
of generating independently the values An(δ) and Bn(δ) for the specific
values of argument δ).

Another important identity, which will be used in the next section for
generating the binomials transformation formulae of scaled Lucas numbers,
is the following reducing identity (see (5.1) and (5.2) in [8]):

(10) ζnXn

(

δ

ζ

)

=
n
∑

k=0

(

n

k

)

(ζ − 1)n−k
Xk(δ),

for every ζ, δ ∈ C, ζ 6= 0, where Xk(δ) denotes the linear combination of
δ-Fibonacci numbers, i.e.:

Xk(δ) ≡ ϕak(δ) + ψbk(δ),

for some ϕ, ψ ∈ C. In view of (1) and (2) the relation (10) is also satisfied
by δ-Lucas numbers.
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Let us notice that the relation (10) can be given in two new ways as the
mutually inverse relations:

rnXn(δ) =
n
∑

k=0

(

n

k

)

(r − 1)n−k
Xk(rδ),(11)

Xn(rδ) =
n
∑

k=0

(

n

k

)

(1− r)n−krkXk(δ),(12)

for every r, δ ∈ C, r 6= 0. As a consequence, we obtain three special relations:

2nXn(δ) =
n
∑

k=0

(

n

k

)

Xk(2δ),(13)

(−1)nXn(−δ) =
n
∑

k=0

(

n

k

)

(−2)n−k
Xk(δ),(14)

(−1)nXn(2δ) =

n
∑

k=0

(

n

k

)

(−2)kXk(δ).(15)

Moreover, from (10) for δ = r and ζ = r
d we obtain the relation:

(16) rnXn(d) =
n
∑

k=0

(

n

k

)

(r − d)n−kdkXk(r).

Hence, for r = 1, by (6), we obtain:

An(δ) =

n
∑

k=0

(

n

k

)

(1− δ)n−kδkLk,(17)

Bn(δ) =
n
∑

k=0

(

n

k

)

(1− δ)n−kδkLk+1,(18)

for r = −1, by (7), we have:

An(δ) =

n
∑

k=0

(

n

k

)

(δ + 1)n−k(−δ)kL2k,(19)

Bn(δ) = −
n
∑

k=0

(

n

k

)

(δ + 1)n−k(−δ)kL2k−1,(20)
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for r = −2, by (8), we get:

2nAn(δ) =
n
∑

k=0

(

n

k

)

(δ + 2)n−k(−δ)kL3k,(21)

2nBn(δ) = −
n
∑

k=0

(

n

k

)

(δ + 2)n−k(−δ)kL3k−1,(22)

for r = −3

2
, by (9), we receive:

3nAn(δ) =
n
∑

k=0

(

n

k

)(

δ +
3

2

)n−k

(−δ)kL4k,(23)

3nBn(δ) = −
n
∑

k=0

(

n

k

)(

δ +
3

2

)n−k

(−δ)kL4k−1.(24)

At the end of this section we present one more auxiliary result, which
will be used for generating many new identities.

Lemma 1. Let αk,n, βk,n ∈ C, k = 0, 1, . . . , bn + c, b, c, n ∈ N ∪ {0},
a, r0 ∈ Z. Let X,Y,Z ∈ {F,L}. If the following equalities:

(25) Xan+r =
bn+c
∑

k=0

αk,nYk+r =
bn+c
∑

k=0

βk,n(−1)k−r
Zk−r

hold for r = −1, 0 (r = r0, r0 + 1, respectively) and for every n ∈ N ∪ {0},
then these equalities hold for all r ∈ Z and n ∈ N∪{0}. Moreover, if we set:

Un :=

bn+c
∑

k=0

αk,nYk−1 =

bn+c
∑

k=0

βk,n(−1)k+1
Zk+1(26)

and

Vn :=
bn+c
∑

k=0

αk,nYk =
bn+c
∑

k=0

βk,n(−1)kZk,(27)

for every n ∈ N ∪ {0}, then we get:

(28) Fr−1Un + FrVn =

bn+c
∑

k=0

αk,nYk+r =

bn+c
∑

k=0

βk,n(−1)k−r
Zk−r,

for every n ∈ N ∪ {0} and r ∈ Z.

Proof. Only proof of the formula (28) will be given here. We will prove
inductively that for every m ∈ N the equality (28) is an identity with respect
to n ∈ N ∪ {0} for every r ∈ Z, −m+ 1 6 r 6 m.
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For m = 1 the above hypothesis results from (26) and (27). So, let us
assume that the statement is true for some m ∈ N. Then we find:

F−m−1Un + F−mVn = (F−m+1Un + F−m+2Vn)− (F−mUn + F−m+1Vn)

=
bn+c
∑

k=0

αk,n(Yk−m+2 − Yk−m+1)

=

bn+c
∑

k=0

βk,n((−1)k+m
Zk+m−2 + (−1)k+m

Zk+m−1)

=
bn+c
∑

k=0

αk,nYk−m =
bn+c
∑

k=0

βk,n(−1)k+m
Zk+m,

FmUn + Fm+1Vn = (Fm−1Un + FmVn) + (Fm−2Un + Fm−1Vn)

=
bn+c
∑

k=0

αk,n(Yk+m + Yk+m−1)

=
bn+c
∑

k=0

βk,n((−1)k−m
Zk−m − (−1)k−m

Zk−m+1)

=

bn+c
∑

k=0

αk,nYk+m+1 =

bn+c
∑

k=0

βk,n(−1)k−m−1
Zk−m−1.

Thus, in view of the inductive assumption the equality (28) holds for any
n ∈ N ∪ {0} and r ∈ Z, −m 6 r 6 m + 1. It means, by virtue of the
Mathematical Induction Rule, that the equality (28) is true for any n ∈
N ∪ {0} and r ∈ Z.

We note that from Lemma 1 and identities (1), (2), (17), (18), (19)–(24)
the following “mega-identity” can be generated:

(29) Fr−1An(δ) + FrBn(δ) =
n
∑

k=0

(

n

k

)

δk(−1)k−rLk−r

=
n
∑

k=0

(

n

k

)

(1− δ)n−kδkLk+r =
n
∑

k=0

(

n

k

)

(δ + 1)n−kδk(−1)k−rL2k−r

= 2−n
n
∑

k=0

(

n

k

)

(δ + 2)n−kδk(−1)k−rL3k−r

= 3−n
n
∑

k=0

(

n

k

)(

δ +
3

2

)n−k

δk(−1)k−rL4k−r,

which holds for every n ∈ N ∪ {0} and r ∈ Z.
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2. Summation formulae

In this section, by using the identities (1), (2), (17), (18), next Lemma 1
and formulae like (6)–(8) giving the values of δ-Lucas numbers for the spe-
cific values of argument δ, we can deduce the large set of identities of the
summation nature. It will be the basic set of the binomials transformation
formulae of scaled Lucas numbers.

From (1), (2) and (6) we get:

Ln+1 = −
n
∑

k=0

(

n

k

)

(−1)kLk−1,(30)

2L2n+1 =
2n
∑

k=0

(

2n+ 1

k

)

(−1)kLk,(31)

L2n+1 =
1

n+ 1
+

2n
∑

k=1

(

2n+ 1

k − 1

)

(−1)k

k
Lk,(32)

whereas from (1), (2), (17), (18) and (7) we obtain:

L2n =
n
∑

k=0

(

n

k

)

Lk =
n
∑

k=0

(

n

k

)

2n−k(−1)kLk,(33)

L2n−1 =
n
∑

k=0

(

n

k

)

Lk−1 =
n
∑

k=0

(

n

k

)

2n−k(−1)k+1Lk+1,(34)

which, by Lemma 1, implies the general formula:

(35) L2n+r =

n
∑

k=0

(

n

k

)

Lk+r =

n
∑

k=0

(

n

k

)

2n−k(−1)k−rLk−r,

for every n ∈ N ∪ {0} and r ∈ Z.

Furthermore, from formulae (6), (7) and (10) for δ = ζ = 1 we find:

Ln =
n
∑

k=0

(

n

k

)

2n−k(−1)kL2k,(36)

Ln+1 =
n
∑

k=0

(

n

k

)

2n−k(−1)k+1L2k−1,(37)

from which, in view of Lemma 1, we have:

(38) Ln+r =

n
∑

k=0

(

n

k

)

2n−k(−1)k−rL2k−r,

for every r ∈ Z and n ∈ N∪{0}. From (1), (2), (17), (18) and (8) for δ = −2
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we deduce:

L3n =

n
∑

k=0

(

n

k

)

2kLk =

n
∑

k=0

(

n

k

)

3n−k(−2)kLk,(39)

L3n−1 =
n
∑

k=0

(

n

k

)

2kLk−1 = −
n
∑

k=0

(

n

k

)

3n−k(−2)kLk+1.(40)

Hence, using Lemma 1, we obtain:

(41) L3n+r =
n
∑

k=0

(

n

k

)

2kLk+r =
n
∑

k=0

(

n

k

)

3n−k2k(−1)k−rLk−r,

for every r ∈ Z and n ∈ N ∪ {0}. Whereas, from (6), (8) and (10) for
δ = ζ = −2, we get:

(−2)nLn =
n
∑

k=0

(

n

k

)

(−3)n−kL3k,(42)

(−2)nLn+1 = −
n
∑

k=0

(

n

k

)

(−3)n−kL3k−1,(43)

which, by Lemma 1, implies:

(44) 2n(−1)n−rLn−r =
n
∑

k=0

(

n

k

)

(−3)n−kL3k+r,

for every r ∈ Z and n ∈ N ∪ {0}. We note that (44) is the inverse relation
for the second identity (41). Furthermore, from (7), (8) and (10) for δ = −2,
ζ = 2 we get:

2nL2n =
n
∑

k=0

(

n

k

)

L3k,(45)

2nL2n−1 =
n
∑

k=0

(

n

k

)

L3k−1,(46)

which, by Lemma 1, implies:

(47) 2nL2n+r =

n
∑

k=0

(

n

k

)

(−1)rL3k−r,

for every r ∈ Z and n ∈ N ∪ {0}.
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Next, from (1), (2) and Table 1 in [8], we obtain:An(2) = (1 + (−1)n)5⌊n/2⌋ =

n
∑

k=0

(

n

k

)

(−2)kLk,(48)

Bn(2) = (3− 2(−1)n)5⌊n/2⌋ =
n
∑

k=0

(

n

k

)

(−2)kLk−1,(49)

which, by Lemma 1, implies the general formula:

(50) (−1)r+1
(

Lr−1 + Fr − Fr+2(−1)n
)

5⌊n/2⌋ =
n
∑

k=0

(

n

k

)

(−2)kLk−r,

for every n ∈ N ∪ {0} and r ∈ Z. Furthermore, from (1), (2), (17), (18) one
can deduce the identities:

(51)

n
∑

k=0

(

n

k

)

2n−kLk =

n
∑

k=0

(

n

k

)

(−1)k3n−kLk = 2nAn

(

− 1

2

)

=

{

5⌊n/2⌋Ln if n is even,

51+⌊n/2⌋Fn if n is odd,

(52)
n
∑

k=0

(

n

k

)

2n−kLk−1 =
n
∑

k=0

(

n

k

)

(−1)k−13n−kLk+1 = −2nBn

(

− 1

2

)

=

{

5⌊n/2⌋Ln−1 if n is even,

51+⌊n/2⌋Fn−1 if n is odd.

Hence, using Lemma 1, the following relations can be generated:

(53)
n
∑

k=0

(

n

k

)

2n−kLk+r =
n
∑

k=0

(

n

k

)

3n−k(−1)k−rLk−r

=

{

5⌊n/2⌋Ln+r if n is even,

51+⌊n/2⌋Fn+r if n is odd,

for every n ∈ N∪{0} and r ∈ Z. Moreover, from (1), (17), (2), (18) and (9),
we get:

L4n =

n
∑

k=0

(

n

k

)

2n−k3kLk =

n
∑

k=0

(

n

k

)

5n−k(−3)kLk,(54)

L4n−1 =
n
∑

k=0

(

n

k

)

2n−k3kLk−1 = −
n
∑

k=0

(

n

k

)

5n−k(−3)kLk+1.(55)
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Hence, using Lemma 1, the general identities follow:

(56) L4n+r =
n
∑

k=0

(

n

k

)

2n−k3kLk+r =
n
∑

k=0

(

n

k

)

5n−k3k(−1)k−rLk−r,

for every n ∈ N ∪ {0} and r ∈ Z.

Now, from (8), (9) and (11), for δ = −3

2
, ζ = 3

4
we get:

(−3)nL3n =
n
∑

k=0

(

n

k

)

(−2)kL4k,(57)

(−3)nL3n−1 =
n
∑

k=0

(

n

k

)

(−2)kL4k−1,(58)

which by Lemma 1 implies the following identity:

(59) (−3)nL3n+r =
n
∑

k=0

(

n

k

)

(−2)kL4k+r,

for every n ∈ N ∪ {0} and r ∈ Z.

Furthermore, from (1), (17), (2) and (18), the next two series of identities
can be deduced:

(60)
n
∑

k=0

(

n

k

)

3kLk =
n
∑

k=0

(

n

k

)

(−3)k4n−kLk = 4nAn

(

3

4

)

=

{

5⌊n/2⌋L2n if n is even,

51+⌊n/2⌋F2n if n is odd,

(61)
n
∑

k=0

(

n

k

)

3kLk+1 = −
n
∑

k=0

(

n

k

)

(−3)k4n−kLk−1 = 4nBn

(

3

4

)

=

{

5⌊n/2⌋L2n+1 if n is even,

51+⌊n/2⌋F2n+1 if n is odd.

Hence, using Lemma 1 again, the following general identities can be obtained:

(62)
n
∑

k=0

(

n

k

)

3kLk+r =
n
∑

k=0

(

n

k

)

3k4n−k(−1)k−rLk−r

=

{

5⌊n/2⌋L2n+r if n is even,

51+⌊n/2⌋F2n+r if n is odd,

for every n ∈ N ∪ {0} and r ∈ Z.
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At the end of this section we will present few more identities connected
with the complex arguments. By induction one can easily verify that:A2n(−i) = −(2 + i)nin+2Ln = (2i− 1)nLn,(63) A2n+1(−i) = −(2 + i)nin+2(Ln + iLn+1) = (2i− 1)n(Ln + iLn+1),(64) B2n(−i) = (2 + i)nin+2Ln−1 = −(2i− 1)nLn−1,(65) B2n+1(−i) = (2 + i)nin+2(Ln−1 + iLn) = −(2i− 1)n(Ln−1 + iLn).(66)

Proof. Immediately from (5) we have

(67) A2n+2(−i) = (2 + i)
(An+1(−i)−An(−i)

)

,

for every n = 0, 1, . . .. Whereas, from (1) we obtainA0(−i) = 2, A1(−i) = 2 + i,

which is compatible with (63) and (64) for n = 0. Now, let assume that the
equations (63) and (64) hold for every n = 0, 1, . . . , N , where N is a fixed
positive integer. Then, by (67), we have:A2N+2(−i) = (2 + i)

(

(2i− 1)N (LN + iLN+1)− (2i− 1)NLN

)

= (2i− 1)N (2 + i)iLN+1 = (2i− 1)N+1LN+1,

and A2N+3(−i) = (2 + i)
(

(2i− 1)N+1LN+1 − (2i− 1)N (LN + iLN+1)
)

= (2i− 1)N (2 + i)i
(

(2 + i)LN+1 + iLN − LN+1

)

= (2i− 1)N+1
(

LN+1 + iLN+2

)

,

which means, by virtue of the Mathematical Induction Rule, that (63)
and (64) hold for every n ∈ N ∪ {0}.

Using (1), (17), (2), (18) and (63)–(66), one can generate the formulae:

(2i− 1)nLn =
2n
∑

k=0

(

2n

k

)

ikLk =
2n
∑

k=0

(

2n

k

)

(1 + i)2n−k(−i)kLk,(68)

(2i− 1)nLn−1 =
2n
∑

k=0

(

2n

k

)

ikLk−1(69)

= −
2n
∑

k=0

(

2n

k

)

(1 + i)2n−k(−i)kLk+1,



Binomials transformation formulae of scaled Lucas numbers 25

which, by Lemma 1, implies:

(2i− 1)nLn+r =
2n
∑

k=0

(

2n

k

)

ikLk+r(70)

=

2n
∑

k=0

(

2n

k

)

(1 + i)2n−kik(−1)k−rLk−r,

for every n ∈ N ∪ {0} and r ∈ Z, and next:

(2i− 1)n(Ln + iLn+1) =
2n+1
∑

k=0

(

2n+ 1

k

)

ikLk(71)

=
2n+1
∑

k=0

(

2n+ 1

k

)

(1 + i)2n+1−k(−i)kLk,

(2i− 1)n(Ln−1 + iLn) =
2n+1
∑

k=0

(

2n+ 1

k

)

ikLk−1(72)

= −
2n+1
∑

k=0

(

2n+ 1

k

)

(1 + i)2n+1−k(−i)kLk+1,

which, using Lemma 1, implies:

(2i− 1)n(Ln+r + iLn+r+1) =
2n+1
∑

k=0

(

2n+ 1

k

)

ikLk+r

(73)

=

2n+1
∑

k=0

(

2n+ 1

k

)

(1 + i)2n+1−kik(−1)k−rLk−r,

for every n ∈ N ∪ {0} and r ∈ Z.

3. Application of the reduced formulae

For generating the binomials transformation formulae of scaled Lucas
numbers one can also apply the following reduced formulae for δ-Lucas num-
bers (see formulae (39), (40) in [8]):Akn(δ) = ank(δ)An

(

bk(δ)

ak(δ)

)

,(74)

Bkn(δ) = ank(δ)Bn

(

bk(δ)

ak(δ)

)

.(75)
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For example:
– for δ = 1, from (1), (6) and the facts that an(1) = Fn+1, bn(1) = Fn, we
obtain:

Lrn = Fn
r+1

n
∑

k=0

(

n

k

)(

− Fr

Fr+1

)k

Lk =
n
∑

k=0

(

n

k

)

(−Fr)
kFn−k

r+1
Lk,

(76)

Lrn+1 = −Fn
r+1

n
∑

k=0

(

n

k

)(

− Fr

Fr+1

)k

Lk−1 = −
n
∑

k=0

(

n

k

)

(−Fr)
kFn−k

r+1
Lk−1,

(77)

which, by Lemma 1, implies:

(78) Lrn+s =
n
∑

k=0

(

n

k

)

F k
r F

n−k
r+1

(−1)k−sLk−s,

for every r, n ∈ N ∪ {0} and s ∈ Z;
– for δ = 2,

(79) (1 + (−1)rn)5⌊rn/2⌋−⌊r/2⌋n =

n
∑

k=0

(

n

k

)

((−1)r − 1)kLk,

which is attractive whenever r is odd, and

(80) (2(−1)rn − 3)5⌊rn/2⌋−⌊r/2⌋n =
n
∑

k=0

(

n

k

)

(2(−1)r − 3)kLk−1;

– for δ = −i,

Lrn =
n
∑

k=0

(

n

k

)

F k
r F

n−k
r−1

Lk,(81)

Lrn−1 =
n
∑

k=0

(

n

k

)

F k
r F

n−k
r−1

Lk−1,(82)

which, by Lemma 1, implies:

(83) Lrn+s =
n
∑

k=0

(

n

k

)

F k
r F

n−k
r−1

Lk+s,

for every r, n ∈ N ∪ {0} and s ∈ Z. Moreover, we get:

(84) (2i− 1)n(L2rn+r+n + iL2rn+r+n+1)

=
2n+1
∑

k=0

(

2n+ 1

k

)

(Fr + iFr+1)
k(Fr−1 + iFr)

2n+1−kLk.
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We note that all the above formulae (76)–(84) give the complement of the
respective formulae given in Section 6 in [8].

4. Final remark

Some of the identities presented in this paper are known. Let us present
a list of these identities:

— the first of identities (33) – see [5],
— the first of identities (35) – see [5], for Gibonacci numbers discovered by

Ruggles (1963) – according to [5],
— the identities (48) and (50) – discovered by Koshy 1998 – according to [5],
— the first of identities (39)–(41) follows from identity (239) in [1] for Gi-

bonacci numbers.
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