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9 Elliptic Functions

9.1 Lattices in the Complex Plane

Definition A subset Λ of the complex plane C is said to be an additive
subgroup of C if 0 ∈ Λ, w1 + w2 ∈ Λ and −w1 ∈ Λ for all w1, w2 ∈ Λ. An
additive subgroup Λ of the complex plane is said to be a lattice if there exists
some positive real number δ such that

Λ ∩ {z ∈ C : |z| < δ} = {0}.

Definition The zero lattice {0} is of dimension zero. A lattice in the com-
plex plane is said to be one-dimensional if it is non-zero, but is contained in
some line that passes through zero. A lattice in the complex plane, is said
to be two-dimensional if it is not contained in any line that passes through
zero.

The following proposition classifies all lattices in the complex plane.

Proposition 9.1 The dimension of every lattice in the complex plane is
zero, one or two. The only zero-dimensional lattice is the zero lattice {0}.
A one-dimensional lattice is of the form {nw1 : n ∈ Z}, where w1 is some
non-zero element of the lattice. A two-dimensional lattice is of the form
Λ = {mw1 + nw2 : m, n ∈ Z}, where w1 and w2 are elements of the lattice
that are linearly independent over the real numbers.

Proof Suppose Λ 6= {0}. Then there exists a non-zero element w1 of Λ with
the property that |w| ≥ |w1| for all non-zero elements w of Λ. Let w ∈ Λ
satisfy w = tw1 for some real number t. Then there exists some integer n such
that 0 ≤ t−n < 1. But then w−nw1 ∈ Λ and |w−nw1| = |t−n| |w1| < |w1|,
and therefore w − nw1 = 0. This shows that if w ∈ Λ, and if w/w1 is a real
number, then w = nw1 for some integer n. It follows from this that if the
lattice Λ is one-dimensional, then Λ = {nw1 : n ∈ Z}.

It remains to consider the case when the lattice Λ is two-dimensional.
We define α: Λ → R to be the function that sends w ∈ Λ to the imaginary
part of w/w1, where w1 is some non-zero element of Λ with the property that
|w| ≥ |w1| for all non-zero elements w of Λ. Let w be an element of the lattice
Λ that is not an integer multiple of w1. Then w− nw1 is a non-zero element
of Λ for all integers n, and therefore |w−nw1| ≥ |w1| for all integers n. Thus
w/w1 is a point of

{z ∈ C : |z − n| ≥ 1 for all n ∈ Z}.
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This set is contained in {z ∈ C : | Im[z]| ≥
√

3/2}. It follows that |α(w)| ≥√
3/2 for all w ∈ Λ \ {nw1 : n ∈ Z}. Let S = {α(w) : w ∈ Λ}. Then

S is an additive subgroup of R, and all non-zero elements s of S satisfy
|s| ≥

√
3/2. But then any two distinct elements s1 and s2 of S satisfy

|s1 − s2| ≥
√

3/2. It follows that any bounded interval of the real line can
contain at most finitely many members of the set S, and we can therefore
choose some positive element s0 with the property that |s| ≥ s0 for all non-
zero elements s of S. Now if s ∈ S then there exists some natural number n
such that 0 ≤ s− ns0 < s0. But then s− ns0 ∈ S and therefore s− ns0 = 0.
It follows that S = {ns0 : n ∈ Z}. Choose w2 ∈ Λ such that α(w2) = s0.
Then w1 and w2 are linearly independent over the real numbers. Moreover
if w ∈ Λ then α(w) = ns0 for some integer n. But then α(w−nw2) = 0, and
therefore w−nw2 = mw1 for some m ∈ Z. This proves that every element of
the two-dimensional lattice Λ is of the form mw1 + nw2 for some integers m
and n. This completes the classification of lattices in the complex plane.

Let w1 and w2 be two complex numbers that are linearly independent over
the real numbers. Then w1 and w2 are both non-zero, and they determine a
two-dimensional lattice {mw1 + nw2 : m, n ∈ Z}. We refer to this lattice as
the lattice in the complex plane generated by w1 and w2.

Definition Let f be a meromorphic function on the complex plane, and let
S be the set of poles of the function f . A complex number w is said to be a
period of the function f if and only if f(z + w) = f(z) for all z ∈ C \ S.

Definition A meromorphic function on the complex plane is said to be
doubly-periodic if there exists a two-dimensional lattice in the complex plane
whose elements are periods of the function.

Lemma 9.2 Any holomorphic doubly-periodic function defined throughout
the complex plane is constant.

Proof Let f be a holomorphic doubly-periodic function, let w1 and w2 be
periods of f that are linearly independent over the real numbers, and let

K = {sw1 + tw2 : 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1}.

Then K is a bounded closed set in the complex plane. It follows that there
exists some non-negative real number B such that |f(z)| ≤ B for all z ∈ K
(see Lemma 1.31). Now given any complex number z, there exist integers m
and n such that z − 2mω1 − 2nω2 ∈ K. But then

|f(z)| = |f(z − 2mω1 − 2nω2)| ≤ B.
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We conclude therefore that any holomorphic doubly-periodic function f de-
fined over the entire complex plane is bounded. It follows from Liouville’s
Theorem (Theorem 7.3) that f is constant, as required.

We see from Lemma 9.2 that any non-constant doubly-periodic function
must have poles.

Proposition 9.3 A non-constant meromorphic function defined over the
complex plane has only finitely many zeros and poles in any bounded region
of the plane.

Proof Suppose that a meromorphic function f had infinitely many zeros
and poles in some bounded region of the complex plane. Then there would
exist a bounded infinite sequence z1, z2, z3, . . . of distinct complex numbers
with the property that zj is a zero or pole of f for each positive integer j. It
would then follow from the Bolzano-Weierstrass Theorem that this sequence
would have a subsequence converging to some complex number w. Moreover,
given any positive real number δ, the open disk of radius δ about w would
contain infinitely many zeros and poles of the function f . But this leads to
a contradiction, for, given any complex number w, there must exist some
positive real number δ0 such that the punctured disk {z ∈ C : 0 < |z −w| <
δ0} contains no zeros or poles of the meromorphic function f . (This is a
consequence of the fact that f(z) = (z − w)mg(z) around w, where m is an
integer and g is a holomorphic function of z, defined on a neighbourhood of w,
which is non-zero at w, and is therefore non-zero throughout some sufficiently
small open disk centred on w.) We conclude therefore that there cannot
exist any bounded infinite sequence of complex numbers whose elements are
distinct and are zeros or poles of the meromorphic function f , and therefore
this function can have only finitely many zeros and poles in any bounded
region of the complex plane, as required.

Corollary 9.4 The set of periods of a non-constant meromorphic function
is a lattice in the complex plane.

Proof If w1 and w2 are periods of a non-constant meromorphic function f ,
then so are w1 + w2 and −w1. Thus the set of periods of f is an additive
subgroup of C. Let z0 be a complex number that is not a pole of f . If w is
a period of f then z0 + w is a zero of the meromorphic function that sends
z to f(z) − f(z0) away from the poles of f . It follows from Proposition 9.3
that any bounded subset of the complex plane can contain only finitely many
periods of the meromorphic function f . Therefore there exists some positive
real number δ such that every non-zero period w of f satisfies |w| ≥ δ >
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0. Therefore the set of periods of f is a lattice in the complex plane, as
required.

Definition An elliptic function is a non-constant doubly-periodic meromor-
phic function on the complex plane.

It follows from Corollary 9.4 that the set of periods of an elliptic function
is a lattice in the complex plane. Moreover this lattice is two-dimensional.

Definition The period lattice Λ of an elliptic function is the two-dimensional
lattice consisting of all the periods of the function.

Definition Let f be an elliptic function. A pair of primitive periods of the
function f is a pair of non-zero complex numbers that are linearly indepen-
dent over the real numbers and generate the period lattice of the function.

It follows from these definitions that if f is an elliptic function with prim-
itive periods 2ω1 and 2ω2 then the period lattice is the set of all complex
numbers that are of the form 2mω1 + 2nω2 for some integers m and n.

Definition Let f be an elliptic function with period lattice Λ. A fundamen-
tal region X for f is a connected subset X of the complex plane with the
property that, given any complex number z, there exists a unique element w
of the period lattice Λ such that z − w ∈ X.

Let f be an elliptic function, and let 2ω1 and 2ω2 constitute a pair of
primitive periods of f . The primitive period-parallelogram determined by
this pair of primitive periods is the parallelogram in the complex plane whose
vertices are at the points 0, 2ω1, 2ω1+2ω2 and 2ω2. This period parallelogram
forms the boundary of a fundamental region X for f , where

X = {2sω1 + 2tω2 : 0 ≤ s < 1 and 0 ≤ t < 1}.

We shall refer to this fundamental region X as the fundamental region for
f determined by the primitive periods 2ω1 and 2ω2. Note that two of the
sides of the primitive period-parallelogram are contained in the fundamental
region X. The other two sides lie outside this fundamental region.

Let f be an elliptic function, let 2ω1 and 2ω2 constitute a pair of primitive
periods, and let X be a fundamental region for f . Then, given any complex
number z, there exists a uniquely-determined point z0 of the fundamental
region X, and uniquely-determined integers m and n, such that z = z0 +
2mω1 + 2nω2.
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9.2 Basic Properties of Elliptic Functions

We first show that any elliptic function is determined, up to multiplication
by a non-zero constant, by its periods, and by the locations and orders of its
zeros and poles.

Proposition 9.5 Let f and g be elliptic functions with the same period
lattice. Suppose that the zeros and poles of g agree in location and order
with those of f . Then there exists a non-zero complex number c such that
g(z) = cf(z) for all complex numbers that are not poles of f .

Proof Let P be the set of zeros and poles of f . The condition that the
zeros and poles of g agree in location and order with those of f ensures that
the function sending each complex number z in C \ P to g(z)/f(z) extends
to a holomorphic function defined over the entire complex plane. Moreover
this holomorphic function is doubly-periodic. But every holomorphic doubly-
periodic function on the complex plane is constant (Lemma 9.2). It follows
that there exists some non-zero complex number c such that g(z) = cf(z)
for all z ∈ C \ P , as required.

Proposition 9.6 Let f be an elliptic function. Then, given any fundamental
region X for f , the sum of the residues at f at those poles of f located in X
is zero.

Proof It is easy to see that the sum of the residues of f at the poles that
lie in any fundamental region does not depend on the choice of fundamental
region. We may therefore take

X = {2sω1 + 2tω2 : 0 ≤ s < 1 and 0 ≤ t < 1}.

where 2ω1 and 2ω2 constitute a pair of primitive periods for f . The boundary
of X is then the primitive period-lattice determined by 2ω1 and 2ω2.

First let us suppose that f has no poles on the boundary of the fundamen-
tal region X. We may order the primitive periods ω1 and ω2 so that ω2/ω1

has positive imaginary part. Now f(z + 2ω1) = f(z) and f(z + 2ω2) = f(z)
for all complex numbers z that are not poles of f . On evaluating the path
integral

∫
∂X

f(z) dz of f , taken in the anti-clockwise direction around the
boundary of X, we find that∫

∂X

f(z) dz =

∫
[0,2ω1]

f(z) dz +

∫
[2ω1,2ω1+2ω2]

f(z) dz

+

∫
[2ω1+2ω2,2ω2]

f(z) dz +

∫
[2ω2,0]

f(z) dz
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=

∫
[0,2ω1]

f(z) dz +

∫
[2ω1,2ω1+2ω2]

f(z) dz

−
∫

[2ω2,2ω1+2ω2]

f(z) dz −
∫

[0,2ω2]

f(z) dz

=

∫
[0,2ω1]

f(z) dz +

∫
[0,2ω2]

f(z + 2ω1) dz

−
∫

[0,2ω1]

f(z + 2ω2) dz −
∫

[0,2ω2]

f(z) dz

=

∫
[0,2ω2]

(f(z + 2ω1)− f(z)) dz

−
∫

[0,2ω1]

(f(z + 2ω2)− f(z)) dz

= 0.

But it follows from Cauchy’s Residue Theorem (Theorem 6.16) that∫
∂X

f(z) dz = 2πi
k∑

j=1

cj

where c1, c2, . . . , ck are the residues of f at those poles of X that are located
in the interior of the fundamental region X. It follows therefore that the sum
k∑

j=1

cj of the residues of f at those poles is zero.

Finally suppose that the function f has poles that lie on the boundary of
X. Given a complex number c, let fc be the meromorphic function defined
such that fc(z) = f(z + c) for all complex numbers z for which z + c is not a
pole of f . Then fc is an elliptic function with the same periods as f . We may
choose the constant c so as to ensure that no pole of fc lies on the boundary
of X. Then the sum of the residues of fc at the poles of this function located
in X is zero. The corresponding result for the function f follows directly.

Corollary 9.7 Let f be an elliptic function, and let X be a fundamental
region for f . Then the sum of the orders of the zeros of f that lie in X is
equal to the sum of the orders of the poles of f that lie in X.

Proof Let g(z) = f ′(z)/f(z) for all complex numbers z that are not zeros or
poles of f . Then g is an elliptic function, and every period of f is a period of
g. Let w be a complex number. If f has a zero of order m at w then g has a
simple pole with residue m at w. If f has a pole of order m at w, then g has
a simple pole with residue −m at w. If w is neither a zero nor a pole of f
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then the function g is holomorphic around w. It follows that the sum of the
residues of g at poles of g that lie in the fundamental region X is equal to the
sum of the orders of the zeros of f that lie in X, minus the sum of the orders
of the poles of f that lie in X. But it follows from Proposition 9.6 that the
sum of the residues of g at the poles of g that lie in X is zero. Therefore the
sum of the orders of the zeros of f that lie in X is equal to the sum of the
orders of the poles of f that lie in X.

Definition Let f be an elliptic function, and let X be a fundamental region
of f . The degree of an elliptic function is the sum of the orders of the poles
of f that lie in X.

Corollary 9.8 let f be an elliptic function, let c be a complex number, and
let X be a fundamental region for f . Then the sum of the orders of the zeros
of f(z)− c that lie within X is equal to the degree of the elliptic function f .

Proof Let g(z) = f(z) − c for all complex numbers z that are not poles of
f . Then the locations and orders of the poles of the elliptic function agree
with those of f . It follows that the elliptic functions f and g have the same
degree. The result therefore follows directly from Corollary 9.7.

Corollary 9.9 The degree of an elliptic function is greater than one.

Proof If the elliptic function had just one pole in a fundamental region X,
and if that pole were a simple pole, then the sum of the residues of the func-
tion at poles located in X would be non-zero, contradicting Proposition 9.6.
It follows that the degree of the function must be at least two, as required.

Proposition 9.10 Let f be an elliptic function with period lattice Λ, let X
be a fundamental region for f , let z1, z2, . . . , zr be the zeros and poles of f that
are located in the fundamental region X and let the integers m1, m2, . . . ,mr

be determined so that mj = k when zj is a zero of order k, and mj = −k

when zj is a pole of order k. Then
r∑

j=1

mjzj ∈ Λ.

Proof The result does not depend on the choice of fundamental region. We
may therefore take

X = {2sω1 + 2tω2 : 0 ≤ s < 1 and 0 ≤ t < 1}.

where 2ω1 and 2ω2 constitute a pair of primitive periods for f . The boundary
of X is then the primitive period-lattice determined by 2ω1 and 2ω2.
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First let us suppose that z1, z2, . . . , zr all lie in the interior of the fun-
damental region X that is bounded by the primitive period-parallelogram,
so that the meromorphic function f has no zeros or poles on the boundary
of X. We may order the primitive periods ω1 and ω2 so that ω2/ω1 has
positive imaginary part. Let g(z) = f ′(z)/f(z) for all complex numbers z
that are not zeros or poles of f . Then the function g is an elliptic function.
Moreover the poles of g that lie in the fundamental region X are located at
z1, z2, . . . , zr, and, for each integer j between 1 and r, the pole of g located
at zr is a simple pole with residue mj. It follows from Cauchy’s Residue
Theorem (Theorem 6.16) that∫

∂X

zg(z) dz = 2πi

k∑
j=1

zjmj,

where
∫

∂X
zg(z) dz is the path integral of zg(z), taken in the anti-clockwise

direction around the boundary of X. But the periodicity of f ensures that
Now g(z +2ω1) = g(z) and g(z +2ω2) = g(z) for all complex numbers z that
are not zeros or poles of f . On evaluating the path integral

∫
∂X

zg(z) dz of
zg(z), taken in the∫

∂X

zg(z) dz =

∫
[0,2ω1]

zg(z) dz +

∫
[2ω1,2ω1+2ω2]

zg(z) dz

+

∫
[2ω1+2ω2,2ω2]

zg(z) dz +

∫
[2ω2,0]

zg(z) dz

=

∫
[0,2ω1]

zg(z) dz +

∫
[2ω1,2ω1+2ω2]

zg(z) dz

−
∫

[2ω2,2ω1+2ω2]

zg(z) dz −
∫

[0,2ω2]

zg(z) dz

=

∫
[0,2ω1]

zg(z) dz +

∫
[0,2ω2]

(z + 2ω1)g(z + 2ω1) dz

−
∫

[0,2ω1]

(z + 2ω2)g(z + 2ω2) dz −
∫

[0,2ω2]

zg(z) dz

= 2ω1

∫
[0,2ω2]

g(z) dz − 2ω2

∫
[0,2ω1]

g(z) dz

= 2ω1

∫
[0,2ω2]

f ′(z)) dz

f(z)
− 2ω2

∫
[0,2ω1]

f ′(z) dz

f(z)

= 2πi
(
2ω1n(γ2, 0)− 2ω2n(γ1, 0)

)
,

where n(γ1, 0) denotes the winding number about zero of the closed path
γ1: [0, 1] → C that is defined such that γ1(t) = f(2tω1) for all t ∈ [0, 1], and
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n(γ2, 0) denotes the winding number about zero of the closed path γ2: [0, 1] →
C that is defined such that γ2(t) = f(2tω2) for all t ∈ [0, 1]. Thus

k∑
j=1

zjmj = 2ω1n(γ2, 0)− 2ω2n(γ1, 0).

But the winding numbers n(γ1, 0) and n(γ2, 0) are integers. It follows that
k∑

j=1

zjmj ∈ Λ. This proves the result when f has no zeros or poles on the

boundary of the fundamental region.
If f has a zero or pole on the boundary of the fundamental region X then

one can choose some complex number c such that the function fc has no
zeros or poles on the boundary of X, where fc(z) = f(z + c) for all complex
numbers z for which f(z + c) is defined. A straightforward application of

Corollary 9.7 shows that the sum
k∑

j=1

zjmj determined by the function f

differs from the corresponding sum determined by the function fc by an
element of the period lattice Λ. This proves the result in the case when the
function f has zeros or poles that lie on the boundary of the fundamental
region.

9.3 Summation over Lattices

Let Λ be a two-dimensional lattice in the complex plane. Then there exist
elements c1 and c2 of Λ that generate the lattice Λ, where c1 and c2 are
linearly independent over the real numbers. Let α: Λ → C be a function
that associates to each element w of Λ a complex number α(w). Suppose

that
+∞∑

m=−∞

+∞∑
n=−∞

|α(mc1 + nc2)| converges. We can arrange the elements of

the lattice Λ in an infinite sequence w1, w2, w3, . . . so that each element of Λ

occurs exactly once in the sequence. The infinite series
+∞∑
j=1

|α(wj)| is then

convergent. Standard properties of absolutely convergent infinite series then

ensure that the infinite series
+∞∑
j=1

α(wj) converges, and moreover the value of

the sum of this series is unchanged under any rearrangement of the terms
of the series. It follows that there is a well-defined complex number s with

the property that s =
+∞∑
j=1

α(wj) for any infinite sequence w1, w2, w3, . . . of

elements of the lattice Λ that includes every element of the lattice exactly
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once. We may therefore define

∑
w∈Λ

α(w) =
+∞∑
j=1

α(wj)

where w1, w2, w3, . . . is any infinite series of elements of Λ in which every
element of Λ occurs exactly once. Moreover, given any subset W of the
lattice Λ, we may define ∑

w∈W

α(w) =
∑
w∈Λ

β(w),

where β(w) = α(w) for all w ∈ W , and β(w) = 0 for all w ∈ Λ \W .

Proposition 9.11 Let W be a subset of a two-dimensional lattice Λ in the
complex plane, let D be a subset of the complex plane, and for each w ∈ W ,
let fw: D → C be a continuous function on D. Suppose that one can associate
a non-negative real number Mw to each element w of W so that |fw(z)| ≤
Mw for all z ∈ D. Suppose also that

∑
w∈W

Mw converges. Then
∑

w∈W

fw(z)

converges for all z ∈ D, and defines a continuous function on D. Moreover
if each of the functions fw is holomorphic in the interior of D, then so is∑
w∈W

fw(z).

Proof The result is immediate if the set W is finite. Suppose that the
set W is infinite. Then there exists an infinite sequence w1, w2, w3, . . . of
elements of W in which every element of W occurs exactly once. Then∑
w∈W

Mw =
+∞∑
j=1

Mwj
and

∑
w∈W

fw(z) =
+∞∑
j=1

fwj
(z). An application of the Weier-

strass M -test (Proposition 2.8) shows that the infinite series
+∞∑
j=1

fwj
(z) con-

verges uniformly in D. Now the sum of any uniformly convergent series of
continuous functions is itself a continuous function (see Theorem 1.20). Thus
if f(z) =

∑
w∈W

fw(z) then the function f is continuous on D.

Now suppose that each of the functions fw is holomorphic in the interior
of D. Then

∫
∂T

fw(z) dz = 0 for all closed triangles T contained in the
interior of D, where

∫
∂T

fw(z) dz denotes the path integral of the function
fw taken around the boundary of the triangle in the anti-clockwise direction.
But a standard result in the theory of integration ensures that the integral
of a sum of a uniformly convergent infinite series of continuous functions on
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a bounded interval is the sum of the integrals of those functions. Therefore∫
∂T

f(z) dz =

∫
∂T

(
+∞∑
j=1

fwj
(z)

)
dz =

+∞∑
j=1

∫
∂T

fwj
(z) dz = 0.

It now follows from Morera’s Theorem (Theorem 7.5) that the function f is
holomorphic on the interior of D, as required.

9.4 The Elliptic Functions of Weierstrass

Let Λ be a two-dimensional lattice in the complex plane, and let s be a
complex number. One can show that

∑
w∈Λ\{0}

|w|−s converges if and only if

Re[s] > 2.
Let R be a positive real number, and let W = {w ∈ Λ : |w| ≥ 2R}. If z

is a complex number satisfying |z| < R then |z−w| > 1
2
|w| for all w ∈ W . A

straightforward application of Proposition 9.11 shows that if k is an integer
satisfying k ≥ 3 then

∑
w∈W

(z − w)k converges for all complex numbers z

satisfying |z| < R, and defines a holomorphic function on the open disk
{z ∈ C : |z| < R}. Thus if we define fk(z) =

∑
w∈Λ

(z − w)−k for all z ∈ C \ Λ

then the function fk is meromorphic on the open disk {z ∈ C : |z| < R}.
This result holds no matter how large the value of R. We conclude therefore
that, for each integer k satisfying k ≥ 3, the function fk is meromorphic over
the entire complex plane, and its poles are of order k, and are located at the
points of the lattice Λ. Moreover if w0 ∈ Λ then

fk(z+w0) =
∑
w∈Λ

(z+w0−w)−k =
∑
w∈Λ

(z+w0−w)−k =
∑
w∈Λ

(z−w)−k = fk(z).

It follows that, for each integer k satisfying k ≥ 3, the meromorphic func-
tion fk is an elliptic function of degree k whose period lattice is the given
lattice Λ.

We now proceed to construct an elliptic function of order 2. Let

℘(z) =
1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
,

for all z ∈ C \ Λ, where Λ is a two-dimensional lattice in the complex plane.
Let R be a positive real number. Then∣∣∣∣ 1

(z − w)2
− 1

w2

∣∣∣∣ =

∣∣∣∣ 2zw − z2

w2(z − w)2

∣∣∣∣ ≤ 8R|w|+ 4R2

|w|4
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when |z| < R and |w| ≥ 2R. A straightforward application of Proposi-
tion 9.11 shows that if W = {w ∈ Λ : |w| ≥ 2R} then∑

w∈W

(
1

(z − w)2
− 1

w2

)
converges to a function that is holomorphic in the open disk {z ∈ C : |z| <
R}. It follows directly from this that the function ℘ is a meromorphic func-
tion whose poles are of order two, and are located at the points of the lat-
tice Λ. Now

℘(z) =
1

z2
+

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
=

1

z2
+

∑
w∈Λ\{0}

(
1

(z + w)2
− 1

w2

)

=
1

(−z)2
+

∑
w∈Λ\{0}

(
1

((−z)− w)2
− 1

w2

)
= ℘(−z).

Thus the function ℘ is an even function.
Now any uniformly convergent series of holomorphic functions may be

differentiated term-by-term. It follows that

℘′(z) =
−2

z3
+

∑
w∈Λ\{0}

−2

(z − w)3
= −2f3(z),

where f3(z) =
∑
w∈Λ

(z − w)−3. Thus the derivative of the function ℘ is an

elliptic function of degree 3 whose period lattice is the lattice Λ. Therefore,
given any w0 ∈ Λ the function that sends z ∈ Z to ℘(z + w0) − ℘(z) has
zero derivative throughout C \ Λ, and is therefore a constant value on this
set. But the function ℘ is an even function, and therefore ℘(z + w0)− ℘(z)
has the value zero when z = −1

2
w0. It follows that ℘(z + w0) = ℘(z) for

all z ∈ C \ Λ and w0 ∈ Λ. We conclude therefore that the function ℘ is an
elliptic function of order 2 with period lattice Λ. This function is referred to
as the Weierstrass ℘-function determined by the lattice Λ.

Note that

lim
z→0

(
℘(z)− 1

z2

)
= lim

z→0

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)

=
∑

w∈Λ\{0}

lim
z→0

(
1

(z − w)2
− 1

w2

)
= 0.
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Lemma 9.12 Let Λ be a two-dimensional lattice in the complex plane. Then
the Weierstrass elliptic function ℘(z) determined by this lattice is the unique
elliptic function of degree 2 with period lattice Λ with the property that

lim
z→0

(
℘(z)− 1

z2

)
= 0.

Proof Let f be an elliptic function of degree 2 with period lattice Λ which
has the property that lim

z→0
(f(z) − z−2) = 0. The sum of the orders of the

poles of f that lie in any fundamental region must equal 2, and therefore
the only poles of f are at the points of Λ. Thus the functions f and ℘
are both holomorphic throughout C \ Λ. Also lim

z→0
(f(z) − ℘(z)) = 0. It

follows that the function sending z ∈ C \ Λ to f(z) − ℘(z) extends to a
doubly-periodic function defined over the entire complex plane. But any
doubly-periodic holomorphic function defined over the entire complex plane
is constant (Lemma 9.2). Moreover the value of this constant function is the
limit of f(z)−℘(z) as z → 0 and is therefore zero. It follows that f(z) = ℘(z)
for all z ∈ C \ {0}, as required.

Let 2ω1 and 2ω2 be a pair of primitive periods that generate the two-
dimensional lattice Λ in the complex plane, and let ℘ be the Weierstrass
elliptic function determined by that lattice. Then ℘(z) = ℘(−z) = ℘(2ω1−z)
for all z ∈ C \ Λ. Similarly ℘(z) = ℘(2ω2 − z) and ℘(z) = ℘(2ω3 − z) for all
z ∈ C \ Λ, where ω3 = −(ω1 + ω2). It follows that

℘′(z) + ℘′(2ω1 − z) = ℘′(z) + ℘′(2ω2 − z) = ℘′(z) + ℘′(2ω3 − z) = 0

for all z ∈ C \ Λ. In particular, ℘′(ω1) = ℘′(ω2) = ℘′(ω3) = 0. Thus if

e1 = ℘(ω1), e2 = ℘(ω2), e3 = ℘(ω3)

then the function sending z ∈ C\Λ to ℘(z)−e1 has a zero of order at least 2
at ω1. But the sum of the orders of the zeros of ℘(z)− e1 that are contained
in any fundamental region for this function is equal to the degree of this
elliptic function (Corollary 9.8), and therefore has the value 2. It follows
that the zeros of the elliptic function ℘(z) − e1 are zeros of order 2 located
at the points of the set Λ + ω1, where

Λ + ω1 = {w + ω1 : w ∈ Λ}

Similarly the zeros of the elliptic function ℘(z) − e2 are zeros of order 2
located at the points of the set Λ + ω2, and the zeros of the elliptic function
℘(z)− e3 are zeros of order 2 located at the points of the set Λ + ω3.
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Proposition 9.13 Let Λ be a two-dimensional lattice in the complex plane
generated by 2ω1 and 2ω2, where ω1 and ω2 are complex numbers that are
linearly independent over the real numbers, let ω3 = −(ω1 +ω2), and let ℘ be
the Weierstrass elliptic function determined by the lattice Λ. Then

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

for all z ∈ C \ Λ, where

e1 = ℘(ω1), e2 = ℘(ω2), and e3 = ℘(ω3).

Proof The derivative ℘′ of the Weierstrass elliptic function ℘ is an elliptic
function of order 3 which has zeros at the points belonging to the sets Λ+ω1,
Λ + ω2 and Λ + ω3. But the sums of the orders of the zeros of this function
that lie in any fundamental region has the value 3 (Corollary 9.8). It follows
that ℘′ has no other zeros, and moreover all zeros of this function are of
order 1.

Let
f(z) = (℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

for all z ∈ C \ Λ. Then f is an elliptic function of degree 6 which has poles
of order 6 located at the points of the lattice Λ, and zeros of order 2 located
at the points of the sets Λ + ω1, Λ + ω2 and Λ + ω3. Thus the locations and
orders of the zeros and poles of the elliptic function f agree with those of
the square ℘′(z)2 of the derivative of the Weierstrass elliptic function ℘. It
follows from Proposition 9.5 that ℘′(z)2 = cf(z) for some constant c. Now
limz→0 z6℘′(z)2 = 4 and limz→0 z6f(z) = 1. Therefore

℘′(z)2 = 4f(z) = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

for all z ∈ C \ Λ, as required.

Let γ: [a, b] → C be a path in the complex plane that does not pass
through any of the points e1, e2 and e3. It can be shown that there exists a
path Let β: [a, b] → C such that γ(t) = ℘(β(t)) for all t ∈ [a, b]. Then∫

γ

dz√
(z − e1)(z − e2)(z − e3)

=

∫
β

℘′(z) dz√
(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

= ±2

∫
β

dz = ±2(β(b)− β(a)).

(The value of the square root
√

(z − e1)(z − e2)(z − e3) at each point of the
path γ is chosen so that it varies continuously along the path.) This shows
that the elliptic functions of Weierstrass can be used in order to integrate
the reciprocal of the square root of a cubic polynomial.
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9.5 Square Roots of Meromorphic Functions

Theorem 9.14 Let D be a simply-connected open set in the complex plane,
and let f be a meromorphic function on D. Suppose that the orders of the
zeros and poles of f in D are all divisible by two. Then there exists a mero-
morphic function g on D which satisfies g(z)2 = f(z) for all elements z of
D for which f(z) is defined.

Proof Suppose that the zeros and poles of f in D are located at the points
w1, w2, . . . , wr. Let the integers m1, m2, . . . ,mr be determined such that f
has a zero of order 2mj at mj when mj > 0, and f has a pole of order −2mj

at mj when mj < 0. Let h(z) = f(z)/f ′(z) for all z ∈ D \ {w1, w2, . . . , wr}.
Then h is a meromorphic function on D which is holomorphic throughout D\
{w1, w2, . . . , wr}. Moreover this function h has simple poles at w1, w2, . . . , wr,
and the residue of h at the pole wj is 2mj for j = 1, 2, . . . , r. It follows from
Cauchy’s Residue Theorem (Theorem 6.16) that∫

σ

f ′(ζ) dζ

f(ζ)
= 4πi

r∑
j=1

mjn(σ, wj)

for all piecewise continuously differentiable closed paths σ in D (see also
Theorem 7.12). Therefore

1

4πi

∫
σ

f ′(ζ) dζ

f(ζ)
∈ Z

for all closed paths σ in D that do not pass through any zero or pole of f . It
follows from that that if z0 and z are elements of D \ {w1, w2, . . . , wr}, and
if γ1 and γ2 are closed paths in D from z0 to z that do not pass through any
any zero or pole of f , then

1

4πi

(∫
γ1

f ′(ζ) dζ

f(ζ)
−
∫

γ2

f ′(ζ) dζ

f(ζ)

)
∈ Z,

and therefore

exp

(
c0 +

1

2

∫
γ1

f ′(ζ) dζ

f(ζ)

)
= exp

(
c0 +

1

2

∫
γ2

f ′(ζ) dζ

f(ζ)

)
for all complex numbers c0. It follows from this that there is a well-defined
continuous function g: D \ {w1, w2, . . . , wr} → C on D \ {w1, w2, . . . , wr}
whose value g(z) at any element z of D \ {w1, w2, . . . , wr} satisfies

g(z) = exp

(
c0 +

1

2

∫
γ

f ′(ζ) dζ

f(ζ)

)
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for all continuous piecewise continuously differentiable paths γ from z0 to z,
where c0 is chosen so that exp(2c0) = f(z0). Then g(z0)

2 = f(z0). We shall
prove that g(z)2 = f(z) for all z ∈ D \ {w1, w2, . . . , wr}.

Let z1 be an element of D that is not a zero or pole of f . Then there
exists some positive real number δ such that

{z ∈ C : |z − z1| < δ} ⊂ D \ {w1, w2, . . . , wr}.

But then

g(z) = exp

(
c0 +

1

2

∫
γ1

f ′(ζ) dζ

f(ζ)
+

1

2

∫
[z1,z]

f ′(ζ) dζ

f(ζ)

)
= g(z1) exp

(
1

2

∫
[z1,z]

f ′(ζ) dζ

f(ζ)

)
when |z − z1| < δ, where γ1 is some piecewise continuously differentiable
path from z0 to z1 that does not pass through any zero or pole of f . (Here∫

[z1,z]

f ′(ζ) dζ

f(ζ)
denotes the path integral of f ′/f taken along the line segment

joining z1 to z.) Now any holomorphic function defined on an open disk
may be represented by a power series throughout that disk (Theorem 7.1).
Therefore there exist complex numbers a0, a1, a2, . . . such that

f ′(z)

f(z)
=

+∞∑
n=0

an(z − z1)
n

for all z ∈ D satisfying |z − z1| < δ. Then∫
[z1,z]

f ′(ζ) dζ

f(ζ)
=

+∞∑
n=0

an

n + 1
(z − z1)

n+1.

It follows that this integral defines a holomorphic function on the disk {z ∈
C : |z − z1| < δ. Moreover

d

dz

∫
[z1,z]

f ′(ζ) dζ

f(ζ)
=

f ′(z)

f(z)

when |z − z1| < δ. It follows that

g′(z) = g(z1)
d

dz
exp

(
1

2

∫
[z1,z]

f ′(ζ) dζ

f(ζ)

)
=

1

2
g(z1) exp

(
1

2

∫
[z1,z]

f ′(ζ) dζ

f(ζ)

)
d

dz

∫
[z1,z]

f ′(ζ) dζ

f(ζ)

=
g(z)f ′(z)

2f(z)
.
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Therefore

d

dz

g(z)2

f(z)
=

2g(z)g′(z)

f(z)
− g2(z)f ′(z)

f(z)2
=

g(z)

f(z)2
(2g′(z)f(z)− g(z)f ′(z)) = 0.

It follows that g(z)2 = f(z) throughout D \ {w1, w2, . . . , wr}, and thus the
function g is the required meromorphic function.

9.6 Construction of Jacobi’s Elliptic Functions

Let ℘ be the Weierstrass elliptic function associated with a two-dimensional
lattice Λ generated by primitive periods 2ω1 and 2ω2, let ω3 = −(ω1 + ω2),
and let

e1 = ℘(ω1), e2 = ℘(ω2), e3 = ℘(ω3)

Then
℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3)

Now the function ℘(z) − e1 has double poles located at the elements of the
lattice Λ, and double zeros located at the elements of the set Λ + ω1. This
function has no other zeros or poles in the complex plane. Therefore every
zero of the function ℘(z) − e1 is a double zero, and every pole is a double
pole. The same is true of the functions ℘(z)−e2 and ℘(z)−e3. This function
has no other zeros or poles in the complex plane. It therefore follows from
Theorem 9.14 that there exist meromorphic functions S, C and D on the
complex plane, defined such that

S(z)2 =
e1 − e2

℘(z)− e2

, C(z)2 =
℘(z)− e1

℘(z)− e2

, D(z)2 =
℘(z)− e3

℘(z)− e2

.

We choose the signs of the functions C and D such that

C(0) = lim
z→0

C(z) = 1, D(0) = lim
z→0

D(z) = 1.

Then
S(0) = lim

z→0
S(z) = 0,

and

S(z)2 + C(z)2 = 1,
e3 − e2

e1 − e2

S(z)2 + D(z)2 = 1.

Now the function z−1S(z) tends to a non-zero limit at z → 0, and (z−1S(z))2

is an even function of z. It follows that z−1S(z) is an even function of z, and
therefore S(z) is an odd function of z. The functions C and D are non-zero
at zero, and their squares are even functions, and therefore C and D are even
functions.
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Lemma 9.15 The function S(z) satisfies

S(z + 2ω1) = −S(z), S(z + 2ω2) = S(z)

for all complex numbers z for which S(z) is defined. Therefore this function
is doubly-periodic, with primitive periods 4ω1 and 2ω2.

Proof The function S satisfies S(z +2ω1)
2 = S(z)2 and S(z +2ω2)

2 = S(z)2

and wherever S(z) is defined, and therefore

S(z + 2ω1) = b1S(z), S(z + 2ω2) = b2S(z),

wherever S(z) is defined, where b1 and b2 are constants, independent of z,
whose values are either +1 or −1. But S(ω1)

2 = 1 and S(ω1) = b1S(−ω1) =
−b1S(ω1) and therefore b1 = −1. Thus

S(z + 2ω1) = −S(z)

wherever S(z) is defined.
Let f(z) = zS(z − ω2) for all complex numbers z for which S(z − ω2) is

defined. Then

(e1 − e2)f(−z)2 = z2(℘(−z − ω2)− e2) = z2(℘(z + ω2)− e2)

= z2(℘(z − ω2)− e2) = (e1 − e2)f(z)2

Thus f(z)2 is an even function of f . Moreover limz→0 f(z) 6= 0. It follows that
f is itself and even function. But then S(z−ω2) is an odd function of z, and
therefore S(2ω2) = S(0). It follows that b2 = 1, and thus S(z + 2ω2 = S(z),
as required.

In a similar fashion, one can verify that

C(z + 2ω1) = −C(z), C(z + 2ω2) = −C(z),

D(z + 2ω1) = D(z), D(z + 2ω2) = −D(z).

Moreover, using the differential equation satisfied by the Weierstrass elliptic
function ℘(z), it follows easily that

S ′(z) =
√

e1 − e2C(z)D(z).

It then follows that

C ′(z) = −
√

e1 − e2D(z)S(z), D′(z) = −
√

e1 − e2k
2D(z)D(z),
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where

k = −
√

e3 − e2

e1 − e2

.

Thus if one defines

sn u = S((e1− e2)
− 1

2 u), cn u = C((e1− e2)
− 1

2 u), dn u = D((e1− e2)
− 1

2 u),

then sn, cn and dn are elliptic functions which satisfy the identities

sn2u + cn2u = 1, k2sn2u + dn2u = 1,

d

du
snu = cnu dnu,

d

du
cnu = −dnu snu,

d

du
dnu = −k2snu cnu.

These functions are the elliptic functions of Jacobi.
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