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Asymptotic Behavior of Block Toeplitz 

Matrices and Determinants. II 

HAROLD WIDOX* 

1. INTH~DUCTI~~ 

The use of Hankel operators in the study of Toeplitz operators goes 
back at least to the fundamental paper [6] of Gohberg and Krein who 
used them to show that certain Toeplitz operators are Fredholm. There 
is a simple identity relating Toeplitz and Hankel operators that makes 
this crystal-clear, i.e., 

The notation here is as follows. If y is a function defined on the unit 
circle and with Fourier coefficients y,: , then T[p], H[T] are, respectively, 
the semi-infinite Toeplitz and Hankel matrices 

If 9 is bounded these may be thought of as operators on 1s of the non- 
negative integers. In addition we write 

$%(z) = p)(z-I). 

Identity (1.1) is trivial. ‘l-he left side has i, j entry 

which is the i, j entry of the right side of (1.1). 
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‘TWO applications of the identity give (I -= identity matrix): 

T[p] T[y-l] = I - H[cp] W[cj-11 (1.2) 

T[y -11 l’[fp] = I - N[lj,- ‘1 H[f+]. (I 3) 

‘I’hus, if the two products of Hankel operators are compact T[qi] is an 
inverse of 7’[~] module the compact operators and therefore, T[F] is 
Fredholm. 

A theorem of Hartman [9] gives a necessary and sufficient condition 
that 11[q] be compact, i.e., that there exist a continuous function 4 such 
that q,, = $,,, for k :.- 0. It folloi\s that if y is a nonzero continuous 
function then all four Hankel operators are compact. More generally, 
if q and y pi belong to N’ + C then H[+] and H[+p’] are compact and 
W[g?] and 11[y’p’] are bounded, the two products of Hankel operators are 
compact and T[~D] is Fredholm. This fact is well-known [3, Corollary 7.341. 

It turns out there is an analogue of (1.1) for finite Toeplitz matrices 

It reads 

~‘nk41 - ~‘,,Cs)l 7’nWl = ~,mPl Qmn f OJ&l qwn . (1.4) 

Here P,, and O,, are defined by 

Pd.f” ,fl >...I = (fo ,-J-n 3 a...) 

O,(f,l 3.6 ,...I .= (fn ,.-,.f,, O,...) 

and T,,[y] is identified with P,, 7’[q] P,, in the usual way. ‘The proof of 
(1.4) is similar to that of (1. I) and is left to the reader. This identity 
will be exploited to obtain simple proofs under quite general assumptions 
of asymptotic results for finite ‘l’oepiitz matrices. 

The results also will hold for block ‘I’oeplitz matrices. ‘I’hese are of 
the same form (TV.. j) but each pli is itself a matrix of fixed order r; the 
corresponding function T is then I. I’ matrix-valued. Identities (I. I) 
and (1.4) hold without change in the matris case. 

‘I’he Szego limit theorem (in the scalar case r ~ 1) states that under 
certain conditions one has for the ‘I’oeplitz determinants 

D&p] == det T&p] 

the asymptotic formula 
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where 

This holds for non-negative integrable g- xvhenever G[p] is nonzero and 
E[q] is finite [S], but what happens for nonreal 9) is less clear. Sufficient 
conditions for the validity of (I .5) ha\-e been given bv many authors. 
We mention here only the conditions 

(1.X) 

the sufficiency of which was established by Hirschman [ 1 I]. 
Recently [ 161, relation ( I .5) was extended to the matrix case under the 

analogue of these conditions, i.e., 

,+ 1 , ,  i-- i. 

det F(P’“) 0, A arg det y(eTH) : 0. 
0 -iir:“,r . . 

(1.9) 

Here /I Q’,; I/ denotes the I-lilbert-Schmidt norm of the matrix y,, . ‘I’hcn 
(I .5) holds with 

(1.10) 

(1.11) 

where the last det refers to the determinant defined for operators on 
Hilbert space differing from the identity by an operator of trace class 
17, Chap. 41. The equality of the t\vo expressions for E[g:] in the scalar 
case was established directly in [ 161 and will be established again here 
at the beginning of the proof of Theorem 7.1. 

All proofs of (1.5), even in the scalar case and with the most generous 
assumptions, are indirect, to put it mildly. However, the expression (I. I 1) 
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for E[v] suggests that there ought to be a quick direct proof. There is; 
it is based on identity (1.4) an d works very nicely under the assumptions 
(1.8). The matrix case, under assumptions (1.9), is practically as easy 
as the scalar case. These are presented in Section 3. (Section 2 contains 
some general remarks about operators on Hilbert space.) 

After another preliminary section the asymptotic inversion of TT1[~] 
is taken up in Section 5. It will be shown that if q belongs to 1i,I’ $ C, 
(the Y x r matrix analogue of H” + C; this sort of notation will be used 
consistently) and if T[v] and T[+] are invertible as operators on the space 
of Zz sequences of r-vectors, then T,,[y] is invertible for sufficiently 
large n. In addition, an asymptotic formula for T,,[y]-l will be derived. 
(iln equivalent formula was derived in [15] under stronger assumptions.) 
It will follow that under these conditions T,,[v]-l converges strongly to 
T[p]-’ and a consequence of this is that 

(1.12) 

where G[JJ] is given by (I. 10) or a suitable modification if 9 is dis- 
continuous. The asymptotic inversion formula will be a consequence 
of (I .4) and general facts about compact operators. 

Section 6 begins with a derivation of (1.5) under weaker conditions, 
the weakest general conditions (even in the scalar case) to date. We shall 
use the matrix analogue of a Banach algebra introduced by Krein [12], 
which we call k:, for this reason. This consists of those r ‘, I’ matrix- 
valued functions y that satisfy 

That K, is a Banach algebra follows without difficulty from the easily 
established identity 

which was used in the scalar case by Devinatz [2] in his investigation 04 
the Szego limit theorem. Krein proved that in the scalar case (1.5) hold4 
if 9 is an invertible element of K and y > 0. Theorem 6.1 states that (I .5) 
holds if q is an invertible element of k’, of index zero. (The meaning off 
index zero will be explained in Section 4. It is equivalent to T[q] having 
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index zero as a Fredholm operator, and for y continuous, it is equivalent 
to det q having zero winding number.) The proof, although not as simple 
as that given in Section 3 under assumptions (1.9), is still not bad. The 
major ingredients are (1.12) and what can only be called a trick. 

The asymptotic evaluation of D,,[F] may be thought of as a special case 
of the asvmptotic evaluation of sums of the form 

(1.14) 

where A, ,..., h(,,+r), are the eigenvalues of T,,[rp] and f is a suitable 
function. (For the determinant f x log). Since the derivative of the 
logarithm is the inverse and any analytic function can be obtained via 
Cauchy’s formula from inverses, it is possible to evaluate (1.14) asymp- 
totically for suitable analytic functions f. This is the content of Theorem 
6.2. 

The final section reinterprets the results of Section 6 in the scalar case. 
The equality of the two expressions for E[p] given by (1.7) and (1.11) 
will be established and Theorem 6.2 will yield a generalization to the 
non-Hermitian case of a formula of 1,ibkind [13]. 

As the reader will have noticed, the results of this paper are for the 
most part not terribly new; they push old results perhaps as epsilon 
further. The main point is to show- how easy it can all be made if one uses 
some trivial identities and elementary operator theory. 

2. OPERATOR-THEORETIC I'RELIICIIXARIES 

Proofs of the facts stated but not proven in this section can be found 
in [7]. 

If ,4 is a compact operator on Hilbert space, then I! ,4 1~1, denotes the p 
norm of the sequence of eigenvalues (A*,4)‘/“. Here 1 < p < c/3. 
The rx) norm is the usual operator norm and is so defined even if A is 
not compact. The 2 norm is the Hilbert-Schmidt norm and the 1 norm is 
the trace norm. The set of compact operators with finite p norm is denoted 
by Y;, . It is a Banach space under the p norm in which the finite rank 
operators are dense. The only spaces of interest to us vvill be Pi (the 
operators of trace class), .-YP (the Hilbert-Schmidt operators), and P?,- 
(the compact operators). Holder’s inequality holds for the p norms. In 
particular 
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PROPOSITION 2.1. Suppose P,J and {Cd are two sequences of bounded 
operators satisfying 

B, + B strotzgly, C,” - C” strongly. u-2) 

lim / BJC, - B-qC lill = 0. 
II ,,- 

The convergence is umIform with respect to arly parameter for which 

II B, IL 3 II C,t IL are uniformly bounded, the convergence (2.2) is uniform, 
and the operators A lie in a compact subset of Yl, . 

Proof. Let 0’ be a compact subset of Y,, . Cover 0Z by a finite set of 
balls of radius E. Take one operator from each ball and approximate it to 
within E by a finite rank operator. We obtain a finite set Fl ,..., Fk of 
finite rank operators such that each operator A of (?I is within 2~ of one 
of them. 

Take one of these rank operators F. It has the form 

F,x = c (s, yi)zi (2.3) 

where (y$, [zJ are finite sets of vectors. Then 

(B,FC, - BFC)x = (B, - B) FC,,x + BF(C, - C)x 

= 2 (CA yi)(B, - B)x, $ C ((C, - C)s, yi)Bzi 

= c (s, C,*yJ(B,, - B)zi -+ 2 (x, (C,’ - C*)y,)Bx, . 

For an operator of the form (2.3): 

Applying this inequality to the finite rank operators 

.Y ---f 1 (x, C,*yJ(B, - B)z, 

s ---f c (x, (CC’,‘* - C*)yi)Bzi 

shows that 11 B,FC,, - BFC jlP -+ 0 uniformly. Hence, if n is sufficiently 
large 

11 B,F&Z, - BF$& :S E i = I,...,k 
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for all values of the parameter, and for these II and all values of the 
parameter 

This completes the proof. 

hoPOSITIO~ 2.2. Let IP,,) be a seyuerzce of projections ronrerging 
strongly to I md -4 he a compact operator such that I -I- -4 is inesertible. 
T,“len there exists an n,, swh that n 3 n, implies that P,,(l T -4) P,, is 
incevtible (as an operator on the range qf P,,) atld 

Ij (7 is a COlFlpact subset of .Y; such that eaery operator’ of I + cl is inz’ertible 
then the conclusions hold uniformlv for _4 E (I. _ 

Proof. We have 

P# + -4) P.# -I- A-‘I’,, 7 P,, + P,,(Z 7 -I)(P,, - l)(I -/. -4)~lP,, 

= P,, j- .-I(P,, - I)(1 + A-‘Pn . 

By Proposition 2.1, )/ A(P,, - Q, --f 0 uniformly in ~7, and li(I + A-l :I% 
is uniformly bounded. Hence 

,I P,(f + A) P,(Z -I- d)-‘P,z - P,, I,,~ --f 0 

uniformly, and similarly 

ij P,,(I + --I)-lP,,(l A- &-I) P, - P,, i , - 0 

uniformly. The conclusions of the proposition follow. 
Finally, we mention that trace and determinant, tr -4 and det(1 + iz), 

are defined (and continuous) for A E Cu/, . They are, respectively, 

Cb and n (1 -1. A,), 

where hi are the eigenvalues of A repeated according to algebraic 
multiplicity (dimension of the generalized eigenspace). If P is a finite- 
dimensional projection then 

det(1 f PA4P) = det P(I + A)P (2.4) 

where the det on the right refers to the ordinary finite-dimensional 
determinant for operators defined on the range of P. 
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3. SZEG#S THEOREM FOR y  SMOOTH 

Consider first the scalar case. If A denotes the set of functions with 
absolutely convergent Fourier series then A n K is a Banach algebra 
under the norm 

and the trigonometric polynomials are dense. It follows that if 

then any continuously defined log p belongs to A CT K, as do also 

Because I/ H[g)]/122 = zl==1 k 1 q~,~ i2, the operator 1i[v] is Hilbert- 
Schmidt whenever ~JZ E K, and thus, the product of any two such is of 
trace class. 

Apply (1.4) with # re pl aced by y-l. Since H[vl’] = 0, what results is 

and thus 

T&P,.] L[dl - IT,bl Tnb3 ~&;ll = PnWFl wa ~?zTnb;ll. 

Another application of (1.4) together with the fact that 

gives T,z,[cp+] LTX[cp;‘] = I, , the identity TZ >< R matrix. Thus, 

= I, - P,H[y] H[@I1] P,T,[q$] = P,(I - H[v] H[+?] Pnqgl]) P, . 

Since T,[p;l] are triangular matrices, one sees that the left side has 
determinant exactly 

D,[F] G[~~l]‘~+l G[q~;‘]“‘-l = D,[~]/G[q]“- ‘. 
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For the right side, we have 

(P,T[q;l])* = T[$L?] *P, --f T[cp?] jr 

strongly. Therefore, by (2.4), Proposition 2. I, and the continuity of det 
in Y1 , the determinant of the right side has limit 

Now, we use another identity similar to (1. l), i.e., 

qpl T[$l = m?41 - %Jl m41 

whose proof is also straightforward. This gives 

(3.1) 

which is just H[+-I] since H[c&~] = 0. Hence 

I- H[~] H[c$] T[p;l] = I - H[$D] N[rp] 

and by (1.2) this is T[v] 7’[q1]. Th is completes the proof in the scalar 
case. 

It is clear that the above argument extends to any matrix-valued 
function in A, n K, that has a factorization 

where q* are invertible in A, n K, and &I resp. ~f_l have Fourier 
coefficients that vanish for negative resp. positive indices. Unfortunately, 
(I .9) does not guarantee the existence of such a factorization. What is true 

.  I  .~ 

is that there is a factorization 

/_ 

y’ 0 

44 = F,-(4 

where q* have the desired properties and the Kl are integers. See 
[5, p. 1881 for example. All the Ki are zero if and only if the Toeplitz 
operator T[$] is invertible; all that one can say under assumption (I .9) 
is that T[+] is a Fredholm operator of index zero. If T[+] is invertible, 
then the factors q, can be determined in terms of T[@]-I. In fact, T[@] 
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is necessarily also invertible when thought of as an operator on I, 
sequences of 1’ >’ 1’ matrices, and @I’ is the matrix-valued function 
whose sequence of non-negative Fourier coefficients is 

T[cjj]--‘(I, 0, 0 )... ). 

Now, it is known [17] that if T[+] is Fredholm of index zero, which is 
the case when (I .9) holds, then there is a $J with only finitely many non- 
vanishing Fourier coefficients such that T[@ j- ~$1 is invertible for all 
sufficiently small nonzero E. Therefore 

for all E belonging to some punctured disk with center E = 0. Moreover, 
the convergence is uniform for E on the boundary of the disk. This 
follows from the fact that the factors (‘p I-- c$J)* can be chosen so that 
they are continuous in E (recall the explanation given above of how the 
factor F- can be obtained) and the second assertion of Proposition 2.1. 
Since all functions are analytic in the full disk, relation (3.2) also holds 
for E :: 0 and this is what was wanted. 

4. H” + c 

The reader who only cares about continuous functions can go directly 
to the next section, replacing the algebra H,’ + C, by C,. and in the 
following section replacing K, by C, n K, . 

The facts about H,^ + C stated here can be found in [3] or, for the 
matrix case H,” + C, , in [4]. 

Hpx -(- C, is actually a Banach algebra under the uniform norm and 
the subspace 

is dense. The harmonic extension of 9: E H,’ + C, is defined by 
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A necessary and sufficient condition that cp be invertible in H,.’ + C,. is 
that det y,, be bounded away from zero in some annulus p,, i p c; 1. 
Therefore, such an invertible element has a well-defined index 

which is independent of p _. p,, . 
If p E E-l,’ + C,. , then a necessary as 1~41 as sufficient condition that 

‘Qi] bc F rt 10 m is that qy be invertible in H,.’ $ C,. For such 7’ the %dl 1 
index of 7’[~] as a Fredholm operator is the negative of the index of y. 

If 9 has index zero there is a continuously defined 

log det Tl,(&+) 

in the annulus p,, ( p CC I which as p --r 1 conrcrges in L, to a dcter- 
mination of 

log dct rp(e’“). 

‘rhis is easily checked if T E z -“H,’ for some k and follows for general 9: 
by the uniform density of the union of these spaces. For such rf \ve define 

‘I’his clearly agrees with ( I, IQ) if 9’ is continuous. 

‘I’he main result of this section is an asymptotic inversion formula for 
7’,,[~] under the assumptions that y8 E II,.’ + C,. and that Z’[rf] and 7’[+] 
are both invertible. First, we prove a couple of lemmas: 

Proof. The nontriviality of the null space of T[y] is equivalent to 
the existence of nonzero functions J;- h 0 in ,--vector valued 1-1’ such that 
cpf = z-‘j. This implies q ~‘s :~ _ ‘. If and the conclusion follows. 

I,EMMA 2. Suppose 9 E H,’ + C, arld T[r,-] and T[cj] ore iwertible. 

Then T[g;-‘1, T[@-‘1 ore also imertiOle. 
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Proof. It follows from Lemma I that the operators in question have 
trivial null spaces. 

Since H[$] is compact (by Hartman’s theorem) and W[F-‘1 is bounded, 
identity (1.3) implies that T[v-l] T[q] is Fredholm of index zero. Since 
it has trivial null space, it must be invertible. Then T[p-i] is also 
invertible. 

Since q is invertible in lgrx + C, , H[+-l] is compact. Therefore, 
we can conclude from (1.3) with g, replaced by + that T[+-r] T[+] is 
Fredholm of index zero, and this implies the invertibility of T[+-l]. 

DEFINITION. $, = (p’ E LTx: T[y] and T[@] are invertible). 

Notatiorl. o( 1) denotes any sequence of operators whose r~l norms 
have limit zero. 

THEOREM 5.1. If y E (H,’ + C,) n .J$ , then T,,[g?] is incertible for 
su.ciently large n and 

T&-l = T&l] + P,(T[g)]-1 - 7’[@]) P, 

+ Q,(qjv - T[pl)Qn t- o(l). 

This holds uniformly fey F belonging to any compact subset of (H,’ + C,) n .<. 

Proof. The assumption also implies the invertibility of T[F-‘] and 
T[@l] by Lemma 2. 

By identity (I .4) we have (I,, = identity n >: ?z matrix) 

WJI l’nw1 = 1, - Pnml fwll pn - QJW m+1 on . 

Since y is invertible in H,” + C, , both products of Hankel operators 
are compact. Since Q, + 0 weakly 

Q7m?l meI Q* - 0 

strongly and this convergence is uniform for F belonging to any compact 
set of invertible elements of H,” + C, . It follows from Proposition 2.1 
that 

QnfGl m-1l Qnmd fwll pn = o(l) 

uniformly in p, and thus, 
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Since the two products of Toeplitz operators are invertible and differ 
from I by compact operators, and since & is P, times a commuting 
unitary, n-e deduce from Proposition 2.2 that T,,[F] T,,[qr] is invertible 
for sufficiently large II and that 

T&3 ‘I-1 T&p-l = 1’,,7’[cp-‘]p T[cp-l~,,T[g;~y 7’[$ycJ. * o(1) 

uniformly in q. 
Reversing the argument that led to (5.1) and using the fact that if an 

invertible operator differs from I by a compact operator then so does its 
inverse, give 

T,,[p-11-J T&p-1-l : In + P,,{ T[q-11-l T[y]-J - 1; P, 

-+ Q,{T[p-l T[@]--1 - I; 0, + o(1). 

From which, left multiplying by T,,[qr], 

7’,,[cp] l =- T&L-l] + P,‘7’,[cp-‘]{T[l$-‘]” ?‘[I$1 - 1; P,, 

+ &T,<[+ ‘]{T[$l]-l T[+]-’ - 1; Q,,, + o( 1). 

Here we have used the identity 

applied to ‘t8-m’. 
Finally, we apply Proposition 2. I once again to conclude that 

T,[q-‘]{T[q-‘1 -l T[c$’ - 1; 2 7’[p~-1]{T[y~J]-1 T[& 1 - 1; f o(l) 

--z VP,] ’ - T[&] -km o(l) 

and that similarly 

uniformly in y. 

COROLLr\RY 1. If y E (ff,’ + c,) f7 ,yr , the?2 T,[q]-1 conaerges 

strongly to T[g;]-l. I f  cp belongs to any compact subset of (H,” + C,.) n .fr , 
the conzlelgenre is un$oovm and Ij T,,[cp]-1 11% are uniformly bounded. 

Proof. The operator T[+]-l - T[@-l] is compact and Q,, ----f 0 
weakly. Therefore 

Q,( T[@]-1 - T[$-‘1) Cl, --f 0 
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strongly (uniformly in p)). Moreover 

7’,[@] t P,(T[y]-’ - T[@]) P, =: P,T[&l P, 

which converges strongly to T[y]-r ( uniformly in 9). The assertions of 
the corollary follow. 

The comesgem-e is zmifomt on compnct subsets of (H,.’ + C,.) n .P, . 

Proof. By Cramer’s rule if I’ : I and Jacobi’s theorem on minors of 
the inverse matrix [I, p. 981 for general I’, the 0, 0 entry of T,,[p-i]-’ is 
an r :: Y matrix with determinant 

By Corollary I, the limit of this 0, 0 entry is the 0, 0 entry of T[g?]-l. 
Therefore, what must be proven is 

det( Y’[p;]-I),,,, -= G[p]-~‘. (5.2) 

First, suppose that in addition c~ E A,. Then there is a factorization 

having the usual properties. It follows from (1. I) that 

TCVI = Q-1 G’ 1 t Qq-1 == T[lg’]. 

Therefore, T[rp]-l = T[q~l] T[?:‘]. The factors T[F;~], T[cy~‘] are 
lower (block) triangular and upper triangular, respectively, so that their 
product T[q]-l has 0, 0 entry 

(al (K30 
which has determinant 

G[y+‘] G[v~l] = G[y]-‘. 

Now take a general g, and denote its harmonic extension by ‘pO as in 
Section 4. Since 

‘3~1 = Fey Ghl 
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by definition, and since (5.2) holds with y replaced by T,, , to obtain (5.2) 
for y itself it suffices to show that T[?,,] ‘T 1s invertible for p sufficiently 
close to 1 and that T[Y,,]-~ converges strongly- to 7’[r~]-‘. ‘iYe use (1.2) 
again to obtain 

Clearly, H[c~>,?] -+ IZ[,] strongly. -1ccept for the moment that 

‘The first term on the right is o(l) by (5.3) and the boundedness of 
lj CT,, 11, . Since Q is invertible in II,.‘- -~ C,. , the operator fII[@-l] is compact 
and thus the second term on the right is O( 1) by Proposition 2.1. Thcre- 
fore 

or equivalently 

Since T[T] and ‘f’[~r-l] ; Ire invertible WC’ deduce that T[q-,J T[y;‘] is 
invertible for p sufficiently close to 1 and that 

Since T[q,,] and 7‘[~;l] are both Fredholm of index zero ne deduce 
the invertibility of each from the invcrtibility of the product. Hence, 
(5.4) gives 

T[fpJ’ = T[rp,‘]( T[(p-‘]-l T[q-] -I i o( 1)) 

which converges strongly to T[cJ+-~ since r[y;‘] converges strongly 
to T[rp-11. 

It remains to verify (5.3). By the asymptotic multiplicativity of the 
mapping 9 4 qO [3, Lemma 6.441 we have 
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and thus, (5.3) is equivalent to 

H[($?l),] - I??[$-11 = o(1). 

Replacing y-r by J,!J we see that what has to be shown is that 

H[&] - H[$] = o(l). 

This is trivial if 4 E z-W~~ for some k and follows for all Z,!J E H,” + C, 
by the density of the union of these subspaces. 

This completes the proof of the corollary except for the asserted 
uniformity which the reader will have no difficulty in verifying. 

It should be mentioned that the condition 9) E & is necessary as well 
as sufficient for the conclusion of Corollary 1 to hold. In fact 

implies the invertibility of T[y] (see [S, p. 731). Since T,[+] and T,,[y] 
are unitarily equivalent (5.5) implies 

liF-$f /i Tn[+l elm < Cx, 

and thus, also the invertibiiity of T[+]. 
It should also be mentioned that the assumption Q’ E H,” + C, used 

throughout could be replaced by + E H,” + C, . Only minor modifica- 
tions of the proofs are required. 

6. SZEGO’S THEOREM FOR q~ E k’, 

Since q E K, implies that both H[~I] and H[@] are Hilbert-Schmidt 
(and therefore compact) Hartman’s theorem implies that both v and + 
belong to H,.” + C, . In particular, an invertible element of K, has a 
vvell-defined index and if y has index zero G[y] is defined. Moreover, 
if v is invertible in KT then + is also and 

I - T[q] T[q ‘1 = H[cp] H[cj-11 

is of trace class; thus, det T[q] T[r+p-l] is defined. 

‘I’HEOREM 6. I. I f  QT is an imevtible element of Kr of index zero then 

!,‘y D,[cp]/G[~]rL’-l = det T[y] T[q’]. 
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Proof. Assume first that in addition q~ E .Y;. and write the block 
matrix T,,, ,,+r[~] in block form 

-4 B [ 1 C' D 

w-here A is a square block matrix of order II + 1 and D is a square block 
matrix of order m + 1. The entries of this 2 >’ 2 block matrix are given 

by 
.-I =: T&r]. 1) x T,,JPl? 

B = Q.ff[Fl Pm 7 c := P,,,ZZ[cp] cln . 

Since F E -6, Th eorem 5. I says that A and D arc invertible for sufficiently 
large m, II. Therefore, vvc can factor out the matrix 

on the left and take determinants. This gives 

We have 

=z D,,,[q]D,[y] det(Z,,, - IFCYIB) 

By Corollary 1 of Theorem 5.1: 

strongly as nz, rz + co, and thus, by Proposition 2.1 with p = 2 and the 
second inequality of (2.1) 

l$d~t(Z~,~ - D--1C'd-3-1B) = det(I - T[cp]-’ H[y] T[+]-’ H[+]). (6.1) 
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Once again we use (3.1), this time with y replaced by q and # by q-i. 
Since H[@-r] = 0, what results is 

N[cjq T[y-‘1 = ~ q+,l H[q’] 

from which we conclude 

T[@]-1 H[c+] = -f&i-l] T[lp-1. 

Thus, the determinant on the right side of (6.1) is 

det(1 + T[y]-l H[v] W[q-l] T[y-I]-l) 

= det{1+ T[&l(1- T[P] T[+]) 7&+-i) 

[here we have used (1.2) again], and this is 

det T[p]-l T[ql]-l. 

Since det is a similarity invariant this is also equal to 

det T[v-‘1-l l’[q]-l = (det T[y] T[ql])~-l. 

If we set 

01, = D,[y] /{G[cJJ]~~~~ det T[y] 1’[~-*]1 

then what we have just shown is 

%n% lim -__ z 1 
,t,,n ‘J %L+n+l 

and what we want to show is 

Now we know that 
lim 01,)~ /cx,,,,~ = 1 ,,I .r 

(this is Corollary 2 of Theorem 5.1) and it follows that 

for each fixed n. This implies that there is a sequence HZ,! + CC) such that 
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Consequently 

X3 desired. 
To remove the extra assumption F E -Yr, we use the theorem of [17] 

quoted in Section 3 which implies that if T[y] is Fredholm of index 0 
then there is a # with only finitely many nonvanishing Fourier coefficients 
such that T[Y, + ~$1 is invertible for all sufficiently small nonvanishing 
C. In particular, the set of ‘p E k’, for which T[?] is invertible is a (neces- 
sarily open) dense subset of the set of invertible elements of K,. of 
index zero. Similarly, so is the set of p? for which T[+] is invertible, and 
so also is their intersection k’, n .Yr . 

Observe nest that if 9 is of index zero then p E .f? is equivalent to 
the simultaneous invertibility of T[q] and T[F-‘1 (cf., Lemma 1 of the 
preceding section), which in turn is equivalent to the invertibility of their 
product. Therefore, cp E -< is equivalent to 

det T[y] T[q-l] + 0. 

Now take the given gj of index zero and choose E such that ~1 y - # ,) < E 
implies # invertible in K, with index zero. In this neighborhood there 
is a # E -Yr . With this # write 

Then 

is analytic in an open set containing the disk , 5 ! ,( I and at < = 1 it is 
nonzero since # E .P, . Therefore, the set of zeros is discrete, and thus, 
we can find a p with 0 < p < 1 such that 

det T[plJ T[v;‘] + 0, l5l=P* 

Therefore rpi E .Y, for all i on the circle with radius p. 
By what has already been shown 

for j 5 ~ = p. Moreover, a check of the proof shows that the uniformity 
assertions in Proposition 2.1 and the corollaries to Theorem 5.1 imply 
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that this holds uniformly on the circle. It follows that (6.2) holds through- 
out the disk ( c < I, and in particular at 5 =- 0. This completes the 
proof of the theorem. 

In the case q E .P, Theorem 6.1 is equivalent to the assertion 

f,iz ix log hi - (~2 + 1) log G[y]l = log det 7’[~] T[v-r] 

with the logarithms appropriately defined. Here A, ,..., XC,~,.~)~ are the 
eigenvalues of T,,[v] repeated according to their algebraic multiplicity. 
As was mentioned in the introduction, one can replace the logarithm 
by more general analytic functions. 

A%s usual we use o to denote spectrum; g(q) is the spectrum of p as an 
element of K, . If f is analytic on O(F) then one defines 

where ,Q is any bounded open set (with rectifiable boundary) that 
contains u(p)) and on the closure of whichf is analytic. 

If g, E K, and T[p] is invertible then of course y-i EL,“. It is easy to 
deduce from this, using (1.13) that y-i E K, . Consequently 

U(Y) c 4 VTJI). 

Corollary 1 of ‘Theorem 5.1 implies that for n large enough u( Tn[p]) 
will lie in any given open subset of 

4v?Jl) ” 4%1). 

In particular, if f is analytic on this set then f(Q as well as f(y) make 
sense. 

THEOREM 6.2. Let y  E h’,. and assume f  is analytic on 

4 Tbl) ” 4 WI). 
Then 

where 8 is any bounded open set containing a(T[p]) u u(T[@]) and on the 
closure of which f is ana[ytic. 
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Proof. For X $ D( T[v]) U u( T[@]) 

f$m(log det l’,& - A] - (12 T 1) log G[? - A]; 

= log det l’[g, - X] T[(p - X)--l], 

and as in the proof of Theorem 6.1 this holds uniformly for h belonging to 
a neighborhood of ?Q. Hence, we can differentiate both sides with 
respect to A, multiply by f(A), and integrate over 8.Q. The assertion of 
the theorem will follow once we check that 

holds whenever q - X has indes zero. 
If F is continuous then 

log G[9, - A] m= & II= log det(T(eiH) - A) dii 

and the result follows frotn the well-known formula [7, p. 1581: 

4 log det(cp - A) ::= -tr(p? - X)-l 

which holds for any matris y. 
For general 50 we use the harmonic extension Q,, to obtain 

-& log G[? - A] == & lii log G[qL, - h] 

.1 

The interchanges of limOA with d/d/l and J... tlH are justified bp the 
uniform boundedness and analvticitv in h of _ . 

for p near 1. 

log G[y,, - A], tr(fp;,(&“) - A)-’ 
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7. THE SCALAR CASE 

In this section all functions will be assumed scalar-valued and the 
index r will be dropped from the notation for the various algebras. The 
main fact is Theorem 7.1 which asserts the equality of the two expressions 
(1.7) and (1.11) if F is an invertible element of K of index zero. 

Before anything like this can be established sense must be made of 
(1.7), i.e., a determination of log 9 must be produced such that the 
series in (1.7) converges. With the notation 

what is needed is a log y with l/I log 9 I,, < 1%. 

LEMMA 1. Suppose $(p do) belongs to Cl of the annulus pO --: p ( 1 
and thut 

Then #(peie) is 111 ,I1 convetfgeflt as p + 1. 

Proof. If $(p@) = zF=_, Q!J&) eikQ then the assumption is equivalent 
to 

(7.1) 

In particular, for each k and with pO < pi < pa < 1 

which tends to zero as pi , ~a + 1. Therefore 

(7.2) 
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exists for each h. \Ve shall show that 

and that if 4 is the function vith Fourier coefficients II,,; then 

lirn $(pF”) - $(etC’) --: 0. 
,’ I 

IJ’e have 

;lnd thus 

which tends to zero as p --) I. It follows from this first that 

and second that if k, is sufliciently large then 

x 1 li 1 i Jij,(p),’ 1 E 
1, ‘(4, 

for all p sufficiently close to 1. Since +,,.(p) + #I; for each k, 

follows, and thus, also ~ d,(eis) - $(pe’O)ji’ + 0. 

LEMMA 2. If  q E A' is inz:e&He and of index zero, then there is a 
determination of log y, unique up to arl additive constant, satisfying 

~I/ 1% g, II/ < a. 
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Proof. We apply the lemma to 

4(&y = log cp,P) 

where ~~ is the harmonic extension of v; here # may be any continuous 
determination of the logarithm, which exists in a sufficiently thin annulus 
p. C p < 1. Since 

grad 4 -= yil grad qp 

and 9b -r is bounded in the annulus, to establish the hypothesis of Lemma 1 
it suffices to shovv that 

But since p,(@) = Cr==_, pix’ Tee iks, this is equivalent [see (7.1), (7.2)] 
to 

which is true. 
It follows from the lemma that there is a Q!J satisfying (‘1 u’, ( : < VI and 

Since (1, jjl convergence implies a.e. convergence of a subsequence 
we have a.e. 

so $ is a determination of log 4”. 
It remains to shovv that log F satisfying ~‘1 log 9 1~8 <: r/, is uniquely 

determined up to an additive constant or, equivalently, that if i!’ J, I/! < CO 
and 5!1/2712’ takes only integral values then JI is constant. 

Consider the analytic function 
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Because zz=‘=, k ~ I+‘J~ 1” < UC‘, this function belongs to every HII class 
with p < r/; [18, p. 157, Example 61. Since $ is purely imaginary 
tJpt, = -4,. , and thus, 

It follows that Y(z) has boundary function 

which, since #/2A takes integral values, is a constant times a non-negative 
functions. It follows that Y is in fact constant, and therefore (since 
tj+ = -$,.), Z/J is also. 

We need one more application of I,emma 1. 

LEMMA 3. If q is an invertible element of h’ then 

Proof. We have 

lim 1 : q3L1 
P- I 

- q-1 i’ z: 0. 

grad y,, ’ = -9);’ grad c,D,, 

and the result follows as in the proof of Lemma 2. 

THEOREM 7. I. If cp is an iwcertible element qf h’ of inde.v zero alzd 
log 9) is as given by Lemma 2 theta 

det T[?] T[q-l] 7 esp 1 k(log q),(log q))k. 
L-1 

Proof. Suppose first that 9):~ ,4 n K and that 

$n(eie) + 0, A arg v(eiO) == 0. 
04e<b 

Then we have the factorization y = c;>+F- as in Section 3. A few applica- 
tions of the fact that 
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which follows from (I. l), gives 

qp,] qg] = qwpl] T[qJ3p11] 

= T[q-] l’[qJ+] T[F-]-.l qp,.]-1 

= exp T[log q-1 esp T[log y+] exp {- T[log y-1) esp { 

We apply the formula 

det eAeBe~Ae~B = esp tr(AB - BA) (7.3) 

which holds if A and B are bounded operators with AB 
[lo, 141. I n our case 

A = T[log F-1, B = V’og ?+I 
and 

AB - Bd = T[log y- log v;] - T[log F+] T[log 9-1 

= W% cl fw% 4-I 

which belongs to Yr since log vi E K. Thus, the formula holds and we 
obtain 

det T[v] T[ql] = exp tr H[log q-1 H[(log T.-)-I 

y= exp C k(log F),.(log g))L. . 
l<=l 

Kate that for any 9 of index zero the Hankel operators that arise both 
belong to Ya since [‘I log q 11 ~ < CO. The difficulty is that log v& need 
not belong to L” so that A and B are not necessarily bounded operators. 
Rather than try to extend (7.3) to cover this case we use the usual 
approximation argument involving the harmonic extension ql, . Since 

and since 

(this was how log 9 was determined in the proof of Lemma 2) it suffices 
to show 

I$ det T[v,] T[q,‘] = det T[T] T[v-‘I. 



BLOCK TOEPLITZ 27 

‘This will follow by (1.2) and the continuity of det in trace norm, if we 
can show 

ljly 11 fqp,] H[$] - N[p?] FI[$P] /‘, 7== 0. (7.4) 

Hut 

1,;y / 9,, - q -y 0 

trivially and 

iii? ;!’ qJ,’ - q-1 (‘I zzz 0 

by Lemma 3. Hence 

;yI)l I H[y,,] - H[p] I/? = 0, iii? 1, H[rjq] - If@-l] I’.’ = 0 

and (7.4) follovvs. 
Finally, we give another formulation of Theorem 6.2 in the scalar case 

and with a stronger assumption on 9). The result is similar to one obtained 
by Libkind [ 131 for real-valued 9;. Xote that 

for cp E K since 

T[v] invertible 3 T[cp] Fredholm of index zero 

=> q~ invertible in K of index zero 

a +Z invertible in K of index zero 

=- T[q] Fredholm of index zero 

and in the scalar case Fredholm ‘I’oeplitz operators of index zero are 
invertible [3, Corollary 7.251. 

For convenience we shall write ~(0) rather than y(eis). 
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Proof. By Theorems 6.2 and 7.1 the limit is equal to 

,,: \ 
--I J 

1 r26 27r ei?&-e~) 
(4n’.o 0 

log[Y(@,) - A] log[v(O,) - A] CM, ct& dh. -1 

(The various interchanges of limiting operations in this proof are easily 
justified.) Now 

In the first term we integrate J”... de, by parts and in the second we 
integrate s... d0, by parts. We obtain 

Since the factor multiplying e ik(o1-@2) in the integral changes sign if 
Or and 19s are interchanged the exponential may be replaced by 

and the result follows. 

i sin k(fl, - 0,) 
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