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1. INTRODUCTION

The use of Hankel operators in the study of Toeplitz operators goes
back at least to the fundamental paper [6] of Gohberg and Krein who
used them to show that certain Toeplitz operators are Fredholm. There
is a simple identity relating Toeplitz and Hankel operators that makes
this crystal-clear, 1.e.,

T{gp] —~ Tlp) T¥] = Hig) H[H]. (L1)

The notation here is as follows. If ¢ is a function defined on the unit
circle and with Fourier coefhcients ¢, , then T[¢], H[¢] are, respectively,
the semi-infinite Toeplitz and Hankel matrices

Tle] = (pi-1) 0 ij <o
Hlp] = (piyn) 021, <.

If ¢ is bounded these may be thought of as operators on [, of the non-
negative integers. In addition we write

Identity (1.1) is trivial. The left side has 7, j entry

x 24 -1 o
Z Piatfr; — z Qintbyp; = Z Piwhy = Z Pivneator—joa s
k=0 7=0

b= F=—x
which is the 7, j entry of the right side of (1.1).
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Tle) Tl™'] = 1 — Hlg] H[§] (1.2)
Tle ") Tlgl =1 — Hgp] H]§]- (1.3)

Thus, if the two products of Hankel operators are compact T[¢ 1] is an
inverse of 7¢] modulo the compact operators and therefore, Tg] is
Fredholm.

A theorem of Hartman [9] gives a necessary and sufficient condition
that ZI[¢] be compact, 1.e., that there exist a continuous function ¢ such
that ¢, = 4, for & == 0. It follows that if ¢ is a nonzero continuous
function then all four Hankel operators are compact. More generally,
if ¢ and ¢ ' belong to H* + C then H[¢] and H[¢ '] are compact and
Hlg] and H[¢ '] are bounded, the two products of Hankel operators are
compact and 7'[¢] is Fredholm. This fact is well-known [3, Corollary 7.34].

It turns out there is an analogue of (1.1) for finite Toeplitz matrices

T-n[({l’] = (‘Pi—j) 0 < i;j VA
It reads

To[e] — Tulel To[$] = P, Hg) HPIP, + O G HBI0, . (1.4)
Here P, and O, are defined by
Pfo s fis) = forsSn 0,000
Oufu s fi ) = (frseerfo» 0,000)

and T,[¢] is identified with P,T[¢] P, in the usual way. The proof of
(1.4) 1s similar to that of (1.1) and 1s left to the reader. This identity
will be exploited to obtain simple proofs under quite general assumptions
of asymptotic results for finite "T'oeplitz matrices.

The results also will hold for block Toeplitz matrices. These are of
the same form (¢, ;) but each g, is itself a matrix of fixed order r; the
corresponding function ¢ is then r - r matrix-valued. Identities (1.1)
and (1.4) hold without change in the matrix case.

The Szego limit theorem (in the scalar case r — 1) states that under
certain conditions one has for the Toeplitz determinants

D, [¢] = det T'[¢]

the asymptotic formula

Dylg] ~ Glo]"* Ele] (1.5)
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where
g o i !
Glep] == exp 12 ), log ¢(e'?) d(?‘ (1.6)
E[g] = exp ) k(log @), (log ¢)_, - (L.7)
oA

This holds for non-negative integrable ¢ whenever G[g¢] is nonzero and
E[¢] is finite [8], but what happens for nonreal ¢ is less clear. Sufhcient
conditions for the validity of (1.5) have been given by many authors.
We mention here only the conditions

Fa

LTSI Z N R L

fee=mn [

g(e’?) 52 0, A arg p(e/®) == 0

0,327

(1.8)

the sufficiency of which was established by Hirschman [11].
Recently [16], relation (1.5) was extended to the matrix case under the
analogue of these conditions, i.c.,

ks E

Y tet Y kg

fe=—1. ome—.
(1.9)
det (e?) - 0, A argdetp(e) - 0.

082

Here i| ¢,. || denotes the Hilbert-Schmidt norm of the matrix ¢, . Then
(1.5) holds with

Glg] = exp :—,)l— ” log det p(e®) dH: (1.10)
LTy !
Efg] = det T{g) 17p™] | (11

where the last det refers to the determinant defined for operators on
Hilbert space differing from the identity by an operator of trace class
[7, Chap. 4]. The equality of the two expressions for E[¢] in the scalar
case was established directly in [16] and will be established again here
at the beginning of the proof of Theorem 7.1.

All proofs of (1.5), even in the scalar case and with the most generous
assumptions, are indirect, to put it mildly. However, the expression (1.11)
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for E[p] suggests that there ought to be a quick direct proof. There is;
it is based on identity (1.4) and works very nicely under the assumptions
(1.8). The matrix case, under assumptions (1.9), is practically as easy
as the scalar case. These are presented in Section 3. (Section 2 contains
some general remarks about operators on Hilbert space.)

After another preliminary section the asymptotic inversion of 7',[¢]
is taken up in Section 5. It will be shown that if ¢ belongs to H,” + C.
(the » X r matrix analogue of H” + C; this sort of notation will be used
consistently) and if T'[p] and T[§] are invertible as operators on the space
of I, sequences of r-vectors, then T ,[¢] is invertible for sufficiently
large n. In addition, an asymptotic formula for T,[¢]~* will be derived.
(An equivalent formula was derived in [15] under stronger assumptions.)
It will follow that under these conditions T,[p]~! converges strongly to
T[®]™* and a consequence of this is that

lim D,[¢]/D.[g] = Glo] (1.12)

n>x

where G[g] is given by (1.10) or a suitable modification if ¢ is dis-
continuous. The asymptotic inversion formula will be a consequence
of (1.4) and general facts about compact operators.

Section 6 begins with a derivation of (1.5) under weaker conditions,
the weakest general conditions (even in the scalar case) to date. We shall
use the matrix analogue of a Banach algebra introduced by Krein [12],
which we call K, for this reason. This consists of those r < r matrix~
valued functions ¢ that satisfy

"1,/2

I @l = ess sup [ p(e)! +§ > [k ligulty < oo

V==

That K, is a Banach algebra follows without difficulty from the easily
established identity
2

S kgt =g [ [T AR gy, (113)

Js | el — ¢ibs |2

h=—m

which was used in the scalar case by Devinatz [2] in his investigation of
the Szegé limit theorem. Krein proved that in the scalar case (1.5) holds
if ¢ is an invertible element of K and ¢ > 0. Theorem 6.1 states that (1.5)
holds if @ is an invertible element of K, of index zero. (The meaning of
tndex zero will be explained in Section 4. It is equivalent to T'[¢] having
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index zero as a Fredholm operator, and for ¢ continuous, it is equivalent
to det ¢ having zero winding number.) The proof, although not as simple
as that given in Section 3 under assumptions (1.9), is still not bad. The
major ingredients are (1.12) and what can only be called a trick.

The asymptotic evaluation of D [¢] may be thought of as a special case
of the asymptotic evaluation of sums of the form

LGN (1.14)

where A ..., A, are the eigenvalues of 7,[¢] and f is a suitable
function. (For the determinant f = log). Since the derivative of the
logarithm is the inverse and any analytic function can be obtained via
Cauchy’s formula from inverses, it is possible to evaluate (1.14) asymp-
totically for suitable analytic functions f. This is the content of Theorem
6.2.

The final section reinterprets the results of Section 6 in the scalar case.
The equality of the two expressions for E[¢] given by (1.7) and (1.11)
will be established and Theorem 6.2 will yield a generalization to the
non-Hermitian case of a formula of Libkind [13].

As the reader will have noticed, the results of this paper are for the
most part not terribly new; they push old results perhaps as epsilon
further. The main point is to show how easy it can all be made if one uses
some trivial identities and elementary operator theory.

2. OPERATOR-THEORETIC PRELIMINARIES

Proofs of the facts stated but not proven in this section can be found
mn [7].

1f 4 is a compact operator on Hilbert space, then || 4 |, denotes the p
norm of the sequence of ecigenvalues (A*.4)1/2 Here 1 < p < 0.
The oo norm 1s the usual operator norm and is so defined even if 4 is
not compact. The 2 norm is the Hilbert-Schmidt norm and the [ norm is
the trace norm. The set of compact operators with finite p norm is denoted
by &, . It is 2 Banach space under the p norm in which the finite rank
operators are dense. The only spaces of interest to us will be %, (the
operators of trace class), -%, (the Hilbert-Schmidt operators), and .#,
(the compact operators). Hélder’s inequality holds for the p norms. In
particular

CBACY, <A,V BILCl, . [AB) | A[1BL.  (2.1)
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PropositioN 2.1.  Suppose {B,} and {C,} are two sequences of bounded
operators satisfying

B, — B strongly, C,* — C* strongly. (2.2)
Then if Ac &, (1 <p < )

111’1’1 ’ Brﬂqcn - B‘A{CHH =0.

The convergence is uniform with respect to any parameter for which
| B, ll< s | C,, |l are uniformly bounded, the convergence (2.2) is uniform,
and the operators A lie in a compact subset of &, .

Proof. Let (7 be a compact subset of &, . Cover (7 by a finite set of
balls of radius e. T'ake one operator from each ball and approximate it to
within e by a finite rank operator. We obtain a finite set F, ..., F}, of
finite rank operators such that each operator A of (7 is within 2e of one
of them.

Take one of these rank operators F. It has the form

Fx ==Y (v, 32 (2.3)
where {y,}, {%,} are finite sets of vectors. Then
(B, FC, — BFC)x = (B,, — B)FC,x - BF(C, — C)x
= (Cox, ¥)(B, — B)z, + ). (€, — C)x, 3)Bz;
=Y (5, C.,*v)(B, — B)z; + Y (%, (C,," — C*)y;)Bz; .
For an operator of the form (2.3):
1Fly < [Pl < Y03l &l
Applying this inequality to the finite rank operators
x> ) (% Co*yi) (B, — B)x;
x— z (x,(C,* — C*)y;)Bz;

shows that || B, FC, — BFC
large

|, = 0 uniformly. Hence, if # is sufficiently

| B,F,.C, — BF.Cl, < ¢ i=l,.,k
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for all values of the parameter, and for these n and all values of the
parameter

| B, AC, — BAC Y, et desup B,", |Cpl .

This completes the proof.

Propostrion 2.2, Let (P} be a sequence of projections converging
strongly to I and A be a compact operator such that 1 -~ A is invertible.
Then there exists an ny such that n = ny implies that P,(I + A) P, is
invertible (as an operator on the range of P,) and

i {P,(1 4 P — Pl - AP, [, — 0.

If (1 is a compact subset of .., such that every operator of I + (1 is invertible
then the conclusions hold uniformly for 4 < /7.

Proof. We have
Pn(] "]7 ‘-1) Pn(I "%7 44)711)15 o Pn I‘ })n(l o '4)(Pn - 1)(1 _n ‘4)‘1Pn
=P, 4 AP, —Hld + A 'P,.
By Proposition 2.1, || A(P,, — 1), — O uniformly in &7, and [[({ + A)~1 ],
1s uniformly bounded. Hence
Ll Pn(1 + f-l) Pn(l '%‘ *4)711)12 - Pn iv - O
uniformly, and similarly

‘i Pn(] + ‘4)_1P71(1 -+ A) Pn - Pn \, -0

uniformly. The conclusions of the proposition follow.
Finally, we mention that trace and determinant, tr 4 and det(J - 4),
are defined (and continuous) for 4 € ¥ . They are, respectively,

YA and [T -4,

where A; are the eigenvalues of A repeated according to algebraic
multiplicity (dimension of the generalized eigenspace). If P is a finite-
dimensional projection then

det(J + PAP) = det P(J -+ A)P (2.4)

where the det on the right refers to the ordinary finite-dimensional
determinant for operators defined on the range of P.
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3. SzEGO’s THEOREM FOR ¢ SMOOTH

Consider first the scalar case. If 4 denotes the set of functions with
absolutely convergent Fourier series then 4 N K is a Banach algebra
under the norm

E's { o 1/2
lol= 3 Iml+) X Ikl acl|

R h=—a

and the trigonometric polynomials are dense. It follows that if

#et) £ 0, A arggle?) — 0,

002 m

then any continuously defined log ¢ belongs to A N K, as do also

pu(a) = exp iaogq;),ﬁh;, o 5) =) Y (logqo)kzkg.

A=0 h=—2x

Because || H[@]ls2 = Y1 k| ;1% the operator H[g] is Hilbert—
Schmidt whenever ¢ € K, and thus, the product of any two such is of
trace class.

Apply (1.4) with ¢ replaced by ¢~". Since H[p~'] = 0, what results is

Tole.] — Tle] Tule™) = P, Hle] H[§ '] P,
and thus

Tn[(p+] Tn[qj;l] - Tn[(p] Tn[(P:I] Tn[‘pjrl] - PnH[‘p] H[(;S:l] Pn Tn[‘P—vf»l]
Another application of (1.4) together with the fact that
H[§,] = H[g;'] =0
gives T, [p,] T,.le¢7"] = I, , the identity #n X # matrix. Thus,
T,[9] Tn[(;o:l] Tn[(P:rl]
=1, — P Hle] H[$7] P,T,[97"] = Po(I — Hle) H[g'] P T(97]) Pr -

Since T,[p7'] are triangular matrices, one sees that the left side has
determinant exactly

D,[g] Glg']*™ G[71""* = Du[](Glp]" -
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For the right side, we have
(P, Tlp))* = T[g1*P,— T[p'1"

strongly. Therefore, by (2.4), Proposition 2.1, and the continuity of det
in &, the determinant of the right side has limit

det( — H[g) H[¢Z") T[¢-M).

Now, we use another identity similar to (1.1), i.e.,

Hig] T[] = Hlg$] — 1Te] H[] (-1

whose proof is also straightforward. This gives

H[§Z') Tlgv') = H[§Z'§.") — Tig=' ] HIg]
which is just H[g] since H[¢7'] = 0. Hence

I — Hlg] H[¢ "] T[¢7"] = I — H[g] H[§™"]

and by (1.2) this is T[p} 7[¢7"]. This completes the proof in the scalar
case.

It is clear that the above argument extends to any matrix-valued
function in 4, N K, that has a factorization

P = PP

where @, are invertible in 4, N K, and ¢t' resp. ¢! have Fourier
coeflicients that vanish for negative resp. positive indices. Unfortunately,
(1.9) does not guarantee the existence of such a factorization. What is true
is that there is a factorization

2 0

o) =e. ()| . |9

where @, have the desired properties and the «; are integers. See
[5, p- 188] for example. All the «; are zero if and only if the Toeplitz
operator 7'[¢] is invertible; all that one can say under assumption (1.9)
is that T'[¢] is a Fredholm operator of index zero. If T[§] is invertible,
then the factors ¢, can be determined in terms of T[¢]1. In fact, T[¢]
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is necessarily also invertible when thought of as an operator on /,
sequences of r > r matrices, and ¢! is the matrix-valued function
whose sequence of non-negative Fourier coefficients is

T[¢] (1, 0, 0,...).

Now, it is known [17] that if T[¢] is Fredholm of index zero, which is
the case when (1.9) holds, then there is a ¢ with only finitely many non-
vanishing Fourier coefficients such that 7[¢ + e}] is invertible for all
sufhciently small nonzero e. Therefore

lim D,[p + ef)/Glp + e]" == det Tl + ] TTp + )] (3.2)

nox

for all € belonging to some punctured disk with center ¢ = 0. Moreover,
the convergence is uniform for € on the boundary of the disk. This
follows from the fact that the factors (p + ef), can be chosen so that
they are continuous in ¢ (rccall the explanation given above of how the
factor ¢_ can be obtained) and the second assertion of Proposition 2.1.
Since all functions are analytic in the full disk, relation (3.2) also holds
for € == 0 and this is what was wanted.

4. H* +- C

The reader who only cares about continuous functions can go directly
to the next section, replacing the algebra H,* + C, by C, and in the
following section replacing K, by C, N K, .

The facts about H,* + C stated here can be found in [3] or, for the
matrix case H,” + C,, in [4].

H,* - C, is actually a Banach algebra under the uniform norm and
the subspace

A

U [

=0

is dense. The harmonic extension of ¢ € H,” ++ C, is defined by

pe) = Y pllpet® (0 Tp ).

fo=—mc
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A necessary and sufficient condition that ¢ be invertible in H,” + C, is
that det ¢, be bounded away from zero in some annulus p, << p < 1.
Therefore, such an invertible element has a well-defined index

| —

- A argdetg ()

0L 2

[§9]

which 1s independent of p = p, .

If g c H” + C,, then a necessary as well as sufficient condition that
Tl¢] be Fredholm is that ¢ be invertible in H,” + C,. For such ¢ the
index of T{g] as a Fredholm operator is the negative of the index of ¢.

If ¢ has index zero there is a continuously defined

log det ¢, (e*)
in the annulus p, < p <7 | which as p — | converges in L, to a deter-

mination of

log det g(e®).
This is easily checked if ¢ € 3 *H,” for some % and follows for general ¢
by the uniform density of the union of these spaces. For such ¢ we define
Glp] = lim exp L "_ﬂlog det @ (e%) dn' .
p -l / 277' Yo - ' \

T'his clearly agrees with (1.10) if ¢ is continuous.

5. Asymprotic INversiox ofF T, [q]

The main result of this section is an asymptotic inversion formula for
T, [¢] under the assumptions that ¢ € [{,” 4- C, and that T¢] and T[§]
are both invertible. First, we prove a couple of lemmas:

Lemma 1. If ¢, o7 € L,” and T|¢] has a nontrivial null space then
so does T[¢].

Proof. 'The nontriviality of the null space of T[g] is equivalent to
the existence of nonzero tunctions f, ¢ in r-vector valued H? such that
of = 5718, This implies ¢ ‘g = <7f and the conclusion follows.

Lemma 2. Suppose o€ H,” + C, and T{¢] and T[§] are invertible.
Then Tlg~t), T[¢7 '] are also invertible.
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Proof. It follows from Lemma | that the operators in question have
trivial null spaces.

Since H[§] is compact (by Hartman’s theorem) and H[¢™!] is bounded,
identity (1.3) implies that T[¢~1] T{¢] is Fredholm of index zero. Since
it has trivial null space, it must be invertible. Then T[¢™!] 1s also
invertible.

Since ¢ is invertible in H,* 4 C,, H[¢ '] is compact. Therefore,
we can conclude from (1.3) with ¢ replaced by ¢ that T[¢~'] T[#] is
Fredholm of index zero, and this implies the invertibility of T'[¢1].

DeriNITION. %, = {peL,”: T[¢] and T[§] are invertible}.

Notation. o(l) denotes any sequence of operators whose o norms
have limit zero.

Tueorem 5.1. If e (H,” + C) N J,, then T, [¢] is invertible for
sufficiently large n and

Tolel™ = Tle '] + Pu(Tle]™ — T1e']) Py
+ Ou(T[g] ™" — T[gT]) On - o(1).
This holds uniformly for ¢ belonging to any compact subset of (H,* -C,) N .4,.

Proof. 'The assumption also implies the invertibility of T[] and
T[¢7'] by Lemma 2.
By identity (1.4) we have (I, = identity n % n matrix)

Tle] Tulo™'] = I, — PuH[] H[g™'] P, — OnH[F] H[p] Oy, -

Since ¢ is invertible in H,” + C,, both products of Hankel operators
are compact. Since Q, — 0 weakly

QnH[¢] Hlg™1Q, —0

strongly and this convergence is uniform for ¢ belonging to any compact
set of invertible elements of H,* + C, . It follows from Proposition 2.1
that

Q.H[¢] Hig7) O Hlg] H[g] P, = o(1)

uniformly in ¢, and thus,

T.lel Tule™] = Qull — H[g] Hl¢™' 1} Q.{I — Hlg] H[g ]} P, + o(1)
= O0uT[@] T[¢~10xTle] Tlg™'] Pn + o(1). (.1)
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Since the two products of Toeplitz operators are invertible and differ
from I by compact operators, and since Q, is P, times a commuting
unitary, we deduce from Proposition 2.2 that T [¢] T, [¢~1] is invertible
tor sufficiently large # and that

Tole 1t Tl ™t == P e ' 1 Tl QW T(§ 11 T(§) 1 O + o1)

uniformly in ¢.

Reversing the argument that led to (5.1) and using the fact that if an
invertible operator differs from I by a compact operator then so does its
inverse, give

Lo 1 Tlel ! = Ly A+ Py{Tle~ ] Tlg) ! — 1} Py,
+ Ou{Tlg 17 T — 1O, + o(l).

From which, left multiplying by 7, [¢1],

T} ' == Thle7) + P T [e W™ Tle) ™ = L Py
+ O Tl¢ WITg 1 T[] — O + ofl).

Here we have used the identity

,[‘"[(p] Q)" - g)n 7‘”[(;7]
applied to ¢ 1.
Finally, we apply Proposition 2.1 once again to conclude that
Tl Wg 1 Tlel ™t — I = T{e ' WTe |7 Tlg) ' — £} + o(1)
- Tlpl — Ty -+ o(1)

and that similarly

TG TG T — 1) Tl — Tl + o)

uniformly in ¢.

Cororrary |. If ee(H,* 4+ C)yN .S, then T, ¢l converges
strongly to T{p] . If @ belongs to any compact subset of (H,” + C,) " .7, ,
the convergence is uniform and || T [p)|7'\|.. are uniformly bounded.

Proof. The operator T[¢]™ — T[¢!] is compact and O, — 0
weakly. Therefore

Ou(T(g] " — Tlg' N 0. —~ 0
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strongly (uniformly in ¢). Moreover

Tale7] + P(Tlgl" — Tle7'])) Py = Py T[] ' P,

which converges strongly to T[¢]! (uniformly in ¢). The assertions of
the corollary follow.

CoroLLARY 2. If ¢ €(H,” 4 C,) N I, then

lion D[]/, +[g] = Glg].

The convergence is uniform on compact subsets of (H,” 4+ C,) N .4, .

Proof. By Cramer’s rule if r == | and Jacobt’s theorem on minors of
the inverse matrix [, p. 98] for general #, the 0, 0 entry of T, [¢]! is
an r < r matrix with determinant

Dy alg)/Dale).

By Corollary I, the limit of this 0, 0 entry is the 0, 0 entry of T[]
Therefore, what must be proven is

det(T[e] o0 = Glol - (5-2)

First, suppose that in addition ¢ € 4, . Then there is a factorization
P = PP+

having the usual properties. It follows from (I.1) that

Tlgl = Tlp 1 Tlp.],  Tpe]™ = Tlgi].

Therefore, T[] = T[¢7'] T[p~']. The factors T[e;'], T[p-'] are
lower (block) triangular and upper triangular, respectively, so that their
product Te]™* has 0, 0 entry

(‘P;l)o (‘P:])o
which has determinant

Glp:'] Gle~'] = Gle] .

Now take a general ¢ and denote its harmonic extension by ¢, as in
Section 4. Since

Gly] = lim Gy
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by definition, and since (5.2) holds with ¢ replaced by ¢, , to obtain (5.2)
for ¢ itself it suffices to show that T[e,] is invertible for p sufficiently
close to | and that Tep,]? converges strongly to T'[¢]"'. We use (1.2)
again to obtain

Ty, 11" - T — Hlg,J H[¢,"].
Clearly, H{p,] — H[q¢] strongly. Accept for the moment that
HIg7 — H[G™ = o(1). (5.3)

Write
Hlp,) H[§,"] — H{g] H[g ]

= Mg )HG, ") — H[GTD -+ (Hie,) — Hle]) Hig™.

The first term on the right is o(1) by (5.3) and the boundedness of
@, !, . Since ¢ is invertible in H,» - C, | the operator H[§7'] is compact
and thus the second term on the right is o(1) by Proposition 2.1. There-
fore

Hlp,} HF,"] - Hip) H[G7] -~ of1)
or equivalently
Tle,) Tlgi'] = Tlel TTe™] + o(1).
Since T[¢] and T[p'] are invertible we deduce that T{¢,] T¢7'] is

invertible for p sufficiently close to 1 and that

(Tle Tle' )™ == Tle "1™ Tg] " - o(1). (54)

Since T[g,] and T[g,'] arc both Fredholm of index zero we deduce
the invertibility of each from the invertibility of the product. Hence,
(5.4) gives

T, )™ = Tl W(ITe 17 Tle} ™ + o(1)

which converges strongly to T[¢]™" since T{g;'] converges strongly
to T

It remains to verify (5.3). By the asymptotic multiplicativity of the
mapping ¢ — ¢, [3, Lemma 6.44] we have

(™) — (@) F —0

6o7/21/1-2
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and thus, (5.3) is equivalent to
H[(¢1),] — H[g™] = o(1).
Replacing ¢! by ¢ we see that what has to be shown is that
HEf,) — HEp) = o(1).

This is trivial if 4 € =*H,” for some k and follows for all 4 € H,* + C,
by the density of the union of these subspaces.

This completes the proof of the corollary except for the asserted
uniformity which the reader will have no difficulty in verifying,

It should be mentioned that the condition ¢ € .4, is necessary as well
as suflicient for the conclusion of Corollary 1 to hold. In fact

lim inf || T[] . < o0 (5.5)

implies the invertibility of T'[¢] (see [5, p. 73]). Since T, [¢] and T, [¢]
are unitarily equivalent (5.5) implies

lim inf | T[] ], < 0
N

and thus, also the invertibility of 7@}

It should also be mentioned that the assumption ¢ € H,” + C, used
throughout could be replaced by ¢ € H,” + C,. Only minor modifica-
tions of the proofs are required.

6. SzEGO’s THEOREM FOR ¢ € K,

Since ¢ € K, implies that both H[p] and H[§] are Hilbert-Schmidt
(and therefore compact) Hartman’s theorem implies that both ¢ and ¢
belong to H,* + C,. In particular, an invertible element of K, has a
well-defined index and if ¢ has index zero Glg] 1s defined. Moreover,
if @ 1s invertible in K, then ¢ is also and

I —Tig] T(p~') = Hp] H[§]
is of trace class; thus, det T'[p] T[] is defined.

"UHEOREM 6.1. If ¢ is an invertible element of K, of index zero then

lim D, ]/ Glg]"* = det Tlg] T[p™"]
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Proof. Assume first that in addition ¢ €.f, and write the block
matrix T, ,.[¢] in block form

A B]

[c b
where 4 is a square block matrix of order n + 1 and D is a square block
matrix of order m - 1. The entries of this 2 > 2 block matrix are given

by
‘4 e :[wn[q‘], ]) = Tm[(P]’
B =0,HP,, C=P,Hg0,.

™

Since @ .7, , Theorem 5.1 says that 4 and D arc invertible for sufficiently
large m, n. Therefore, we can factor out the matrix

4 0 ]
[0 »
on the left and take determinants. This gives

I 4B
Dosiniald] = Dufg) Dofgd det [ )7 7]

= D, [¢] D,[e] det({,, — D-'CA-TB).
We have

DACATB == T, [¢] ' P, Hlg) O, To[¢] ' O.H[] P,
= T,[¢]* P, Hlg] T, HIF] P, .
By Corollary 1 of Theorem 5.1:
Tolel ™ — Tlel . Tl — T[g

strongly as m, n — o0, and thus, by Proposition 2.1 with p = 2 and the
second inequality of (2.1)

| D'CA7'B — P, Tle} ! Hg] T[¢]? H[¢] Py, [, — 0.
Thus

lim det(l,, — D-*C.A-1B) = det(I — T[] H[¢] T[¢]™ H[F)). (6.1)

nLU L
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Once again we use (3.1), this time with ¢ replaced by @ and by 1.
Since H[¢g '] = 0, what results 1s

Hlg] Tle™] = —T[§] H[¢']

from which we conclude

T¢It H[§] = —H[g™] Tlp™'] .
Thus, the determinant on the right side of (6.1) is

det(I + Tlg]™* Hg] H[¢7] TTe™']™)
= det{l -+ T[p] (] — Tlo]) Tle™])) Tlo 1%
[here we have used (1.2) again], and this is
det T7g] Tl 1],

Since det is a similarity invariant this is also equal to

det Te™"]™* T[g] ™! = (det T[g] T[p~'])~".

If we set
& = D[]/ {Glg]" det Tg] T[p~1)}

then what we have just shown is

. o,
Iim —2*  —1

m.n - r OLm+n+1
and what we want to show is

lim «, = 1.

n—

Now we know that
lim «,, /o, = 1

mi
T

(this is Corollary 2 of Theorem 5.1) and it follows that

lim Ol Xty = 1
m—o0

for each fixed n. This implies that there is a sequence m, — o0 such that

lim «,, joty, (nig == 1.

nan
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Consequently
. . O‘mno‘n/“m,.+n+1
lim o, = lim ——"—— =11
n->0 -0 (xmn/fxm“+n+1

as desired.

To remove the extra assumption ¢ € .7, , we use the theorem of [17]
quoted in Section 3 which implies that if T[p] is Fredholm of index 0
then there is a 46 with only finitely many nonvanishing Fourier coeflicients
such that Te -+ e}] is invertible for all sufficiently small nonvanishing
e. In particular, the set of g € K, for which T[g] is invertible is a (neces-
sarily open) dense subset of the set of invertible elements of K, of
index zero. Similarly, so is the set of ¢ for which T'[¢] is invertible, and
so also is their intersection K, N .7, .

Observe next that if ¢ i1s of index zero then ¢ €.7, 1s equivalent to
the simultaneous invertibility of T[¢] and T[] (cf., Lemma 1 of the
preceding section), which in turn is equivalent to the invertibility of their
product. Therefore, ¢ €.7, is equivalent to

det T[g] T[g—1] + 0.

Now take the given ¢ of index zero and choose e such that|j ¢ — il < e
implies ¢ invertible in K, with index zero. In this neighborhood there
1s a ¢ € .4, . With this ¢ write

p; = (1 = Qg + &
Then
det T{o;] Tle:']
1s analytic in an open set containing the disk  {| < l and at { = T itis

nonzero since € .4, . Therefore, the set of zeros is discrete, and thus,
we can find a p with 0 << p <C 1 such that

det T[] Tlet'] # 0, [ L] =op.

Therefore ¢, € .% for all { on the circle with radius p.
By what has already been shown

lim D[]/ Gle:]""" = det T[p] T(g; '] (6.2)
for | | = p. Moreover, a check of the proof shows that the uniformity

assertions in Proposition 2.1 and the corollaries to Theorem 5.1 imply
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that this holds uniformly on the circle. It follows that (6.2) holds through-
out the disk | { < 1, and in particular at { = 0. This completes the
proof of the theorem.

In the case ¢ € .7, Theorem 6.1 is equivalent to the assertion

Illln’) :Z log A; — (n + 1) log G[go]; = log det T[] Te" ']
with the logarithms appropriately defined. Here A, ,..., A(,,y), are the
eigenvalues of 7',[¢] repeated according to their algebraic multiplicity.
As was mentioned in the introduction, one can replace the logarithm
by more general analytic functions.

As usual we use ¢ to denote spectrum; o(p) 1s the spectrum of ¢ as an
element of K, . If f is analytic on o(p) then one defines

10) = = ez ] FOE =N

where £ is any bounded open set (with rectifiable boundary) that
contains o(p) and on the closure of which f is analytic.

If € K, and Tg] is invertible then of course ¢t € L,*. It is easy to
deduce from this, using (1.13), that ¢! € K, . Consequently

o(p) C o(Tle))-

Corollary 1 of Theorem 5.1 implies that for » large enough o(7,[¢])
will lie in any given open subset of

o(Tlph) V o(T19))-

In particular, if f is analytic on this set then f(A;) as well as f(¢) make
sense.

TueoreM 6.2. Let ¢ € K, and assume f is analytic on

o(Te]) Y o(T[§])-
Then

n -+ 1

tim 13700 — 5 [ e o) af

n—x

2w
— = gz [ 1)~ Tog det Tlp — ] (g — A1)

where £ is any bounded open set containing o(T[p]) U o(T[§]) and on the
closure of which f ts analytic.
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Proof. TFor A ¢ o(T[¢]) v o(T[¢])

lim {log det 7',[¢ — A] — (n — 1) log G[p — AJ}
= log det T{p — A} T[(¢ — A) 1],

and as in the proof of Theorem 6.1 this holds uniformly for A belonging to
a neighborhood of @£2. Hence, we can differentiate both sides with
respect to A, multiply by f(A), and integrate over 6. The assertion of
the theorem will follow once we check that

d I )
- log det Glp — A] = — J“ tr(g(e’®) — A)~L dd

holds whenever ¢ — A has index zero.
If ¢ is continuous then

log Gl — \] == 31; ’0 log det(qp(ei®) — ) dt

and the result follows from the well-known formula {7, p. 138]:

d .
—_— —_— = — (I — —1
i log det(p — A) tr{p — A)
which holds for any matrix ¢.

For general ¢ we use the harmonic extension ¢, to obtain

d d ..
N log Glgp — A] = s lim log G[g, — A]

p—1

) d ) 1 g2 )
= lim - - log Glp, — A] == —lim —— | tr(p,(e) — N) df

2

1 Alm .
e . oy ) —1 .
wx— = .‘0 tr(g(e’®) — A)~1 ¥

The interchanges of lim, ; with d/dA and [... d0 are justificd by the

uniform boundedness and analyticity in A of

1Og G[‘Pn - )\]v t[’((p”(em) —_ /\\)vl
for p near 1.
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7. THE ScaLar Case

In this section all functions will be assumed scalar-valued and the
index r will be dropped from the notation for the various algebras. The
main fact is Theorem 7.1 which asserts the equality of the two expressions
(1.7) and (1.11) if ¢ is an invertible element of K of index zero.

Before anything like this can be established sense must be made of
(1.7), i.e., a determination of log ¢ must be produced such that the
series in (1.7) converges. With the notation

el

¢“”%“ﬁZlemf

Vh=—00

what is needed is a log ¢ with ||| log ¢ | <C 0.

LemMA 1. Suppose yi(p €) belongs to C1 of the annulus py << p << 1
and that

]

Po

A2n Al
| [ ) grad o |2 dp d6 < 0.
o |

Then yi(pe’®) is ||| ||| convergent as p — 1.

Proof. If ¢i(pe’®) = S d(p) € then the assumption is equivalent
to

* a1

T I erde < = (7.1)
3 [ T < o (7.2)

In particular, for each k and with p, << py << p, << |

Libi(p2) — o))l =

[ 8000 | < oo — 012 [ 1o do

which tends to zero as p, , py — 1. Therefore

= lpiffll Pilp)
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exists for each k. We shall show that

ox

S Lkl

and that if  is the function with Fourier coefficients i, then
li - h(pe’?) — Ple’) == 0.
We have
[l — 1)l == ‘ l bulr | 20,(r) (1) dr

and thus

e

YLk — (o) ]

A

kA 1 0 a

J a " R ']‘ \J , . '1,-
2% LA ThmRdre ] 10 dry

1 e '1 /2

\klfj >d7 E t FHOILY

/‘_

\‘\ MH

.
'7
which tends to zero as p —> 1. It follows from this first that

4~

Yo LRI Pt

JEIE ]
and second that if %, is sutficiently large then

Sk dp)? e

Ry

for all p sufficiently close to 1. Since #(p) — i, for each &,
Hm Y k| — dulp)]® =0
el Jooeoon

follows, and thus, also | yi(e?) — i(pei®)ii — O.

Lemma 2. If ¢ € K is invertible and of index sero, then there is a
determination of log ¢, unique up to an additive constant, satisfying
I Tog ¢ [l << o0.
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Proof. We apply the lemma to
Plpe’®) = log ¢,(¢)

where ¢, is the harmonic extension of ¢; here 4 may be any continuous
determination of the logarithm, which exists in a sufficiently thin annulus
po << p << 1. Since

grad § = ¢, grad o,

and ¢; ! is bounded in the annulus, to establish the hypothesis of Lemma 1
it suffices to show that

27

1
[ [ 1l grad g, 12 dpdo < or.
Y0

Yoo

But since g,(e?) = Y,__, p'*ig,e*, this is equivalent [see (7.1), (7.2)]
to

Fal

Y kg P <o
k=—1
which is true.
It follows from the lemma that there is a ¢ satisfying | ¢ | < oc and

| blpe’?) — () — 0.

Since ||| convergence implies a.c. convergence of a subsequence
we have a.e.

exp ¢(e”) = lim exp log p,(¢"?) = ("),

so ¢ is a determination of log ¢.

It remains to show that log ¢ satisfying || log ¢ [|| <C oc is uniquely
determined up to an additive constant or, equivalently, that if || 4 [} < oo
and /2w takes only integral values then ¢ 1s constant.

Consider the analytic function

¥(2) = exp 32 121 x/x,z’z l=z] = 1.
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Because ¥, , k|, |* < oo, this function belongs to every H» class
with p < oo [18, p. 157, Example 6]. Since ¢ is purely imaginary
Ji = —,., and thus,

Z fpeit? - Z e~ = 2P Z e,
bt R==1 =1
It follows that ¥(z) has boundary function

W) = exp ) — iy 2 T e
. k=1

i

which, since s/27i takes integral values, 1s a constant times a non-negative
functions. It follows that ¥ is in fact constant, and therefore (since
Yy = —¢y), ¥ is also.

We need one more application of Lemma [.
LemMma 3. If ¢ is an invertible element of K then
fim |t 7t | = 0.
p-1 i
Proof. We have
grad ?, = _(p;l grad P,

and the result follows as in the proof of Lemma 2.

Turorem 7.1. If ¢ is an invertible element of K of index zero and
log o is as given by Lemma 2 then

det T[g] T[p~*] = exp ) k(log @) (log @) ;.
L1

Proof. Suppose first that ;e 4 N K and that

¢(e’?) = 0, A argg(e”) = 0.

0Lh2

Then we have the factorization ¢ = ¢,¢_ as in Section 3. A few applica-
tions of the fact that

Tlgp) = Tlg) TIH] i H[g] =0 or H[] =0,
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which follows from (I.1), gives

Tle] Tle™] = Tlp_p.] Tle~97]
= Tlp_1 Tlp.] Tle- 17" Tp,]"
= exp T{log ¢_] exp T[log ¢, ] exp {—TTlog ¢_]} exp {— T[log ¢, ]}.

We apply the formula

det e4ePe~ 4B == exp tr(AB — BA) (7.3)

which holds if 4 and B are bounded operators with 4B — B4 € %
[10, 14]. In our case

A =Tloge], B=T[logg.]
and
AB — BA = Tllog¢_log ¢.] — T[log ¢.] T{log ¢_]

= H[log ¢_.] H[(log _)~]

which belongs to %] since log ¢ € K. Thus, the formula holds and we
obtain
det T[] T{p~'] = exp tr Hlog ¢,] H[(log ¢_)"]

o

= exp ). k(log ¢),(log ¢)_; .

I=1

Note that for any ¢ of index zero the Hankel operators that arise both
belong to ¥, since [|log ¢ ||| << co. The difficulty is that log ¢, need
not belong to L™ so that 4 and B are not necessarily bounded operators.
Rather than try to extend (7.3) to cover this case we use the usual
approximation argument involving the harmonic extension ¢, . Since

det Tlg,) T{g,") = exp ) k(log ¢,)i(log )i

=1
and since
' log g, —logg || —0

(this was how log ¢ was determined in the proof of Lemma 2) it suffices
to show

lim det T{p,] Tlg;"] — det Tlg] Tfp™)-
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This will follow by (1.2) and the continuity of det in trace norm, if we
can show

lim | Hp,) H(§,"] — Hlg] H[g7']1, = 0. (7.4)

But
1im‘ Lo, —@ =0
P

trivially and
lim (95" — 7' 1] = 0
by Lemma 3. Hence

lim | Hig,] — Hlg]l, =0,  lim| H[g"] — H[§"']|, =0
o p-

and (7.4) follows.

Finally, we give another formulation of Theorem 6.2 in the scalar case
and with a stronger assumption on ¢. The result is similar to one obtained
by Libkind [13] for real-valued ¢. Note that

o(TTe]) = o(TTF)
for ¢ € K since
T[] invertible = T{g} Fredholm of index zero
= ¢ invertible in K of index zero
= ¢ invertible in K of index zero
= T[¢] Fredholm of index zero
and in the scalar case Fredholm Toeplitz operators of index zero are

invertible [3, Corollary 7.25].
For convenience we shall write ¢(6) rather than ¢(e’).

THEOREM 7.2. Assume ¢ is absolutelv continuous, '@V < x, and f
7s analytic on o( T[¢]). Then

1

n

lim (Y 10) — %5

T

|| ratoy o,

2

[ sin age, — ay L0200 = [0(0)

- 4t ,;1 B Ve @(f) — o(8,)

' (0y) — @' (0))) d6y db;
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Proof. By Theorems 6.2 and 7.1 the limit is equal to
- f(>\) Z klog(p ~ N]llog(e — V)]s

_ _lgl % |m ) }?7\”

27

2 ol
f M%) logl(6,) — M) loglp(6,) — A} d, b, dA.

\‘: )
42 1y g

(The various interchanges of limiting operations in this proof are easily

justified.) Now

[T e g, o, [ ) -5 fogla(th) — A logle(e:) — AT}
0 20 dA

Yo

== (m [m 0 gy, db, [ ) logle(ty) — 4] h
> 0 o 0 o aQ.

p(0;) — A
27 a27 . v 1 0 _ /\
+ f“ fo L (0-0,) e, db, fmj 0 %;L—/\l .

In the first term we integrate [...df, by parts and in the second we
integrate ... df; by parts. We obtain

[t anan, [0y
— G [ oo, [ 100y @
— [0 ( pit0g (¢<?1>§{_%()@ o' (6:) b, db,
QLTI o

Since the factor multiplying e*©:—%) in the integral changes sign if
6, and 6, are interchanged the exponential may be replaced by

isin k(6, — 6,)
and the result follows.
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