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1. INTRODUCTION 

A Toeplitz matrix is one of the form (P)~-~) where i and j run through 
some index set and the vj are complex numbers. A block Toeplitz matrix 
is similar except that the vj are themselves square matrices of a fixed 
order r. This paper is concerned with asymptotic properties of the finite 
block Toeplitz matrices 

(Pi-J O,(i,j<iV 

and their determinants. 
We shall write 

P)(Z) = f vpj (I z I = 1). 
j=-m 

(1.1) 

(This notation will be used consistently throughout the paper; if y is a 
scalar- or matrix-valued function then yj denotes its jth Fourier, or 
Laurent, coefficient which is either a number or a matrix.) The cor- 
responding block Toeplitz matrix (1.1) will be denoted by TN[v] and 
its determinant by Q,,[F]; the semi-infinite block Toeplitz matrix 
(yiPi), 0 < i, j < co will be denoted by T[q]. 

The earliest asymptotic result for block Toeplitz determinants seems 
to have been that of Gyires [S] who showed that if y(z) is continuous 
and positive definite for 1 x j = 1 then 

$li DN[~]lJN = exp 
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Hirschman [I l] investigated the asymptotic behavior of TN[y]-l (for 
not necessarily Hermitian ‘p) and his results imply that under certain 
conditions, including 

det cp(e’“) # 0, ,L& arg det y(eie) = 0, (1.2) z7 

the limit of D&J]/&-r[p] exists and is also given by 

G[rp‘] = exp I&- $V log det y(eie) &I. 

Here log denotes any continuous logarithm, whose existence is guaranteed 
by (1.2). 

If we define C+(Z) = ~(z-‘) then Hirschman’s assumptions (aside 
from smoothness conditions) were equivalent to T[v] and T[q] being 
invertible as operators (acting on the left) on an appropriate sequence 
space. The conditions (1.2) are necessary, but in the matrix case not 
sufficient, for this. 

In the present paper it will be shown that (again aside from smoothness 
assumptions) the conditions (1.2) imply the existence of the limit 
&PI = lim,+, G,+PI/GC~I~+~ and that this limit is nonzero if and only 
if T[y] and T[+] are both invertible. The proof will be based on (what 
is really more fundamental) an asymptotic inversion formula for Z’Jv]-l. 

In the scalar case E[v] is given by the formula 

WPI = exp ii&s ddlog d-j . 
I i-l 1 

(1.3) 

This was proved first by &ego [15] for positive F and subsequently 
extended by many authors. We shall see that in the matrix case a formula 
similar to this, 

y-l 5 j(log det p)Jog det VP)+ , 
I 

(1.4) 
j-l 

is sometimes correct (it is if 9 is a scalar function times a matrix function 
extending analytically to an invertible matrix function inside or outside 
the unit circle), but is unfortunately usually wrong. In some applications 
[12] block Toeplitz determinants arise where only finitely many of the 
coefficients v* are nonzero, and here E[v] can be evaluated explicitly. 
In fact it will be shown that if all the ‘pi vanish for j < --a (or for j > oz) 
then E[?] = 0,-r [q-l] G[#. 
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Although we have not been able to find a general expression for E[rp], 
we have evaluated the FrCchet derivative of log E[y]. In the scalar case 
this is easily integrated to give (1.3). Even in the matrix case log E[F] 
can be expressed as an integral, but this is not entirely satisfactory. 

Note that in the scalar case log E[p?] is a bilinear function of the two 
sequences 

(log P>i l<j<cO 

(1% F,>L l<j<co. 

Such bilinearity, plus computation of simple special cases, is enough to 
deduce (1.3). Certain analogous bilinearity relation will be established 
in the matrix. These are used to establish (1.4) in the cases described 
and may perhaps give someone an idea of what E[y] is in general. 

The last part of the paper is concerned with the limiting behavior of 
the eigenvalues of TN[y] when all but finitely many of the ‘pi vanish. In 
the scalar case Schmidt and Spitzer [14] found the set of limit points of 
the eigenvalues as N---t co and Hirschman [lo] refined this by describing 
the limiting distribution of the eigenvalues. We extend these results 
here. As will be seen the introduction of a modicum of potential theory 
permits a considerable simplification, even in the scalar case. 

Added in proof. A general expression for E[y] will be derived in 
a forthcoming paper. 

2. FACTORIZATION OF MATRIX FUNCTIONS 

The theory of semi-infinite block Toeplitz matrices was developed 
by Gohberg and Krein in [5]. The basic assumption on v was that it 
belonged to & in the sense that 

Here what norm is used on the Y x r matrices is irrelevant, but because 
of what comes later it is most convenient to use the Hilbert-Schmidt 
norm. The infinite matrix T[q] may be thought of as an operator, acting 
on the left, on various spaces of sequences 

f = {fo >fl,-> 
of r-vectors, including 1, . It was shown in [5] that whichever of these 
spaces is taken T[F] is a Fredholm operator (the null space has finite 



BLOCK TOEPLITZ MATRICES AND DETERMINANTS 287 

dimension and the range is closed and has finite codimension) if and 
only if 

det p(ef@) # 0 (2.1) 

and that its index (dimension of its null space minus codimension of its 
range) is equal to 

- ,G&ag arg det F(e*@)- 

Crucial to the investigation of invertibility was a certain factorization 
of matrix functions analogous to the Wiener-Hopf factorization for 
scalar functions. It was shown that any v belonging to e, and satisfying 
(2.1) possessed a “right standard factorization” of the form 

ZK’ 0 

9)(z) = u-(z) 

I I 

* * . u+(x); 

0 ZK’ 

here afar and u-(z)*~ belong to jr , all Fourier coefficients of u+(z)*1 
with negative values of the index vanish, and all Fourier coefficients of 
U-(Z)*’ with positive values of the index vanish. The “right exponents” 
pi ,..., K,. are (except for ordering) uniquely determined integers. 

Similarly there is a left standard factorization 

$1' 0 

q?(x) = V’(Z) 

I I 

* * . v-(z). 

0 .p 

The left exponents K~‘,..., q’ are generally different from the right 
exponents. Indeed one set of exponents may vanish but not the other. 

Once one has these factorizations it is easy to see that T[v] is invertible 
if and only if 9) satisfies (2.1) and all the right exponents of v vanish. 
Since the right exponents of q(x) = g)(z-‘) equal the negatives of the left 
exponents of 9) the simultaneous invertibility of T[q] and T[$] is 
equivalent to the vanishing of all right and left exponents of 9. 

Now we shall be concerned with a smaller class of matrix functions v. 
We write 

II PI/ = f II Pill + ] 
j,-co 

f Ii I II Pil12y 
j=-m 

A = b: II ‘p II -c a>. 



288 HAROLD WIDOM 

It is clear that A is a Banach space with norm as given. Moreover it is 
not hard to prove the identity 

from which it can be deduced that A is even a Banach algebra under 
pointwise matrix multiplication. 

Since A C e, any element of A satisfying (2.1) possesses right and left 
standard factorizations, and by a theorem of Gohberg [4] the eight 
functions 

Uf(Z)fl, v*(z)*1 P-2) 
all belong to A. 

If T[y] is invertible as an operator on a space of sequences of vectors 
then it is also invertible on the corresponding space of sequences of 
matrices. In particular if y E A and all right exponents of v vanish then 
T[y] is an invertible operator on the space of sequences of r x Y matrices 
F = (F,, , Fl , . . .} satisfying 

It is not hard to see that in the right standard factorization y = u-u+, 
which is not unique, one may take U+(Z) to be the inverse of the matrix 
function whose Fourier coefficients with negative values of the index 
vanish and whose sequence of Fourier coefficients with nonnegative 
values of the index is given by 7’[~]-’ (1, 0, O,...} where I denotes the 
r x Y identity matrix. This implies that u*, and similarly the other 
functions of (2.2), may be chosen so that they vary continuously with 
v, a fact which will be useful later. 

Let us define A, = {p, E A: (1.2) holds), A, = {p’ E A, : all right and 
left exponents of p vanish). Alternatively A, consists of those F for 
which T[v] is Fredholm of index zero (as an operator, say, on Ii sequences 
of r-vectors) and A, consists of those 9) for which T[v] and T[$?] are 
both invertible. These are both open subsets of A. 

It does not seem possible to find a simple necessary and sufficient 
condition that an arbitrary y E A,, belong to A, . However if the Fourier 
series of v is infinite on one side only there is such a condition. The 
following lemma proves its sufficiency; its necessity will be a consequence 
of Theorems 4.1 and 5.1(a). (Pattanayak found a similar but more 
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complicated characterization in case the entries of q were rational 
functions of 2). 

LEMMA 2.1. SupposecpEA,and~j=Offorj<--olorforj>ar. 
Then D,-, [q+] # 0 implies ‘p E A, . 

Proof. Suppose Da-,[yrl] # 0 and 9, = 0 for j < --01 but that not 
all the right exponents of CP vanish. Then T[v] is a noninvertible 
Fredholm operator of index zero so it must have a nontrivial null space. 
If f = (fO, fi ,...I # 0 belongs to this null space and we set 

then the Fourier coefficients of y(z) f (z) with nonnegative values of the 
index all vanish. Together with the assumption that vj = 0 for j < --OL 
this implies that v(z) f ( z is of the form v(z)f (z) = g-,x-l + a** + ) 
g-,x-. But then since f(x) = v(x)--l (g-,z-l + *.. + gmaz-a) the 
Fourier coefficients of the function on the right with negative values of 
the index all vanish; in particular 

~l(~-3i-i~4 = 0, 
i = I,...) oL. (2.3) 

Since f # 0 not all the gBj vanish. Thus (2.3) implies D,-l[p)-l] = 0, a 
contradiction. 

If we apply the immediately preceding argument to the matrix function 

d4’ (t = transpose) we deduce that it has all right exponents zero. Thus 
v(z) has all left exponents zero. 

Finally if IJQ = 0 for j > OL then by what has just been shown $5 E A, , 
so also TEA,. 

It should be mentioned that the above proof used the equalities 

%lbl = D,-,[qGJ = Da&5] which are easily established. 

LEMMA 2.2. The set A, is connected. 

Proof. Since the Laurent polynomials 
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are dense in A and A, is open, the Laurent polynomials in A, are dense 
in A,. We shall show that each such polynomial may be joined to a 
constant invertible matrix function by a curve lying in A, . (The constant 
invertible matrices themselves form a connected set.) 

Let v have right factorization U-U f. Note that the Fourier coefficients 
of U- = v(u+)-l with index less than --01 all vanish. For 1 t 1 < 1 define 
v(t) = ~(t, z) = u-(t-lz) u+(k). Clearly t ’ ---f p)(t) 1s a continuous function 
from the unit disc to A and each p)(t) E A, . By the preceding lemma 
q(t) E A, if ZIi-r[~(t)-‘] f 0. This determinant is an analytic function 
of t on the open unit disc and is nonzero for t = 0, when v is a constant 
invertible matrix function. Hence there is a curve joining t = 0 to 
t = 1 at no point of which (except possibly t = 1 itself) the determinant 
is zero. The entire curve p)(t) then belongs to A, . 

The next lemma shows that almost all sufficiently small punctured 
discs centered at a point of A,, lie entirely in A, . 

LEMMA 2.3. Let T E A,. Then fog every # E A with the exception of 
those belonging to a nowhere dense subset the matrix functions v + q4 
belong to A, fey all suficiently small nonxero E. 

Proof. Consider first the special case 

where, since we assume v E A,, , 

K1 + ‘** + KT = 0. (2.4) 

Suppose 4 E A is such that q + E# has right exponents not all zero for a 
nonzero sequence E + 0. For each E of this sequence T[p, + ~$1 has a 
nontrivial null space. Thus there are fc E lI such that 

VP + 4lff = 09 

fG = &J ally*>, jz llfd II = 1. 

From (2.5) it follows that lim,,, T[y]fc = 0 and so 

5% E IlL,j II = 0, K = max(-KJ. 
3=K 

(2.5) 
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By taking a subsequence if necessary we may assume each sequence 
{jCZi> with 0 f j < K converges. Thus fC converges to some f E II 
satisfying T[q] f = 0, f # 0. Moreover since each T[#] fc belongs to the 
range of T[v], by (2.5), and since T[tp] has closed range, we deduce that 
T[+Jf belongs to the range of T[q]. 

Assume the diagonal entries of ~(2) ordered so that K1 < O,..., Kp < 0, 
‘$+I >, 0,-v K? > 0. Then the most general element of the null space of 
T[tp] is the sequence of Fourier coefficients of a vector function of the 
form 

(2.6) 

where each 7~~ is a polynomial of degree less than -Ki = ( Ki 1, vi = 

ai,, + **- + ai, ,qT1 d-‘--1. Suppose $(-4 = (k&4) (1 < 4 i < r). 

Then with f equal to the sequence of Fourier coefficients of (2.6), 
T[#]f belongs to the range of T[p] if and only if each &+(,+(z) T&Z) + .*a 

+ *pbp+i,p (z) 77&z) (i = l,..., Y - p) has vanishing Fourier coefficients 
for values of the index between 0 and Kp+i - 1 (inclusive). 

This gives a system of K~+~ + *+. + K? homogeneous linear equations 
in the CZ,,~ of which there are ( K~ 1 + .a. + ( K~ ( and by (2.4) this equals 
‘$+I + *-’ + K,. . Thus the existence of a nonzero vector f in the null 
space of T[~J] such that T[t,b] f is in the range of T[F] is equivalent to the 
vanishing of a determinant whose entries are Fourier coefficients of 
entries of the matrix function #(x), no two of the entries of the deter- 
minant being the same Fourier coefficient of the same entry of #(z). The 
set of $ E A for which such a determinant can vanish is clearly a closed 
nowhere dense subset of A. 

Next consider an arbitrary y E A0 , and suppose it has a right standard 
factorization .zK’ 0 q3(z) = u-(z) i 1 * * . u’(z). 

0 ZK’ 
Since v + E# has right exponents zero if and only if (u-)-‘(cp + c#)(u+)-’ 
does, it follows from what has already been shown that 9 + ~9 has 
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right exponents zero for all sufficiently small nonzero E as long as 
(u-)-l #(u+)-’ d oes not belong to a certain nowhere dense set, or equiva- 
lently as long as # itself does not belong to a certain nowhere dense set. 
(Note that left resp. right multiplication by U- resp. U+ is a 
homeomorphism of A.) 

Similarly y + + has left exponents zero for all sufficiently small 
nonzero E as long as # does not belong to some other nowhere dense set, 
and the lemma is established. 

3. INVERSION 0~ T&J] 

In this section we show that if y E A, then T,,,[v] is invertible for N 
sufficiently large and we give an approximation to TN[~]-l. This ap- 
proximation will be in the trace norm. Recall that the trace norm of an 
operator Ton a Hilbert space ( TN[~] is an operator on a finite dimensional 
Hilbert space) is equal to the sum of the eigenvalues of (T*T)lj2. 
This norm is denoted by 11 T(J, and dominates the Hilbert-Schmidt 
norm 11 T )I2 and so also the ordinary operator norm I] T/loo . There are 
also the inequalities 

II TIT, 111 < II TI l/l II Tz Ilm 

II TIT, 111 < II TI 112 II T, II2 . 

All this may be found in [6, Chapter II], for example. 
If F belongs to A, then so does v- l. Therefore it has left and right 

standard factorizations 

f&z)-1 = u’(x) u-(z) = v-(z) v’(z). (3.1) 

This notation will be retained for the rest of the section. We define 
U,[v] to be the block matrix whose i, j entry is 

(y-yivj - f Ui++mu~i-m - f G+i-m&+m . 
nZ=l m=1 

(3.2) 

The motivation for this definition is that for i or j fairly far from N (3.2) 
is close to the i, j entry of the inverse of the semi-infinite block Toeplitz 
matrix (vi+) 0 <j, j < CO while for i or j fairly large (3.2) is close to 
the i, j entry of the inverse of the semi-infinite matrix (vi+) -co < i, 
j < N. 
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THEOREM 3.1. If v E A, then TJp] is invertible for N su&icntly 
large and lim,,, 1) T&p]-1 - UN[tp]]lll = 0. The convergence is uniform 
for ‘p belonging to any compact subset of A, . 

Proof. We shall see that the block matrix T&p] UN[p)] - I (where 
I is the identity matrix) has i, j entry 

gl 9%-n-N Fl U~+n+7n”Ln + !l W+n il v~N-n-mV+N5+m * (3.3) 

Granting this for the moment let us deduce the assertions of the theorem. 
Look at the first term of (3.3). It is the i, j entry of the product of 

three Hilbert-Schmidt matrices having respective Hilbert-Schmidt 
norms 

The trace norm of the matrix whose i, j entry is given by the first term 
of (3.3) is therefore at most [I q~ 11 11 IL- I[ {ckm_N K II uk+ (12}1/2 which tends 
to zero as N -+ co. 

Similarly the trace norm of the matrix whose i, j entry is given by the 
second term of (3.3) is at most /I CJJ (I (( vf (I {cLN K I( 01~ 112}1/2 which also 
tends to zero. Therefore lim,,, II T&l U&J] - I )I1 = 0. It follows 
that TN[v] is invertible for sufficiently large N and that its inverse is 
given by the Neumann series 

T&$-l = VI&-j + uN[F] f (I - TN[d uNh’l>“. 

8-l 

Now (I U,[q~]ll,,, is bounded as N -+ co. In fact 
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the second term of (3.2) is the ;, j entry of a matrix having trace norm 
(and so operator norm) at most 

and similarly the last term of (3.2) is the i, j entry of a matrix having 
operator norm at most 11 ZI- (1 I/ U+ 11. 

Hence U,[y] C,“=, (I - TN[v] UJv])s has trace norm tending to zero 
as N-t co and this gives the first conclusion of the theorem. 

To prove the asserted uniformity we use the fact, remarked in the last 
section, that the factors u*, vf may be chosen so as to vary continuously 
with q~ E A, . Then on any compact subset of A, the norms 11 v*l]I, 
11 U* 11, II vf I( are uniformly bounded, and by Dini’s theorem the sequences 

02 

c k I! ulc+ II27 
k=N 

tend uniformly to zero as N-+ co. The last statement of the theorem is 
now easily verified. 

It remains to check that the i, j entry of TN[p] U,[v] - I is given 
by (3.3). The i, j entry of TN[q] U,[y] equals 

(3.4) 

(the r x r zero matrix for i # j, the identity matrix for i = j) the first 
term of (3.4) is equal to 

(3.5) 
*=-m n=N+l 



BLOCK TOEPLITZ MATRICES AND DETERMINANTS 

It follows from (3.1) that 

295 

(v-l)&.* = i uz’,,u,-, = g VIj-,v&+, . 
Illr-40 m-co 

Substituting these expressions for the Fourier coefficients of ~1-l 
appearing in (3.5) and using the facts uk+ = ok+ = 0 for k < 0, uk- = 
wk- = 0 for k > 0, we see that (3.5) is equal to 

All 
has i, . 

this is equal to the first term of (3.4). Hence T&J] U&D] - I 
j entry 

Now 

equals the i + m Fourier coefficient of v(z) u+(z) = u-(x)-’ and so it 
vanishes whenever m >, 1, i >, 0. Similarly 

2 %-nv:N+n-m 

equals the i - m - N Fourier coefficient of U+(X)-’ and so it vanishes 
whenever m > 1, i f N. This implies that for 0 < i < N the expressions 
(3.3) and (3.6) are equal, and this is what was to be established. 

4. EXISTENCE AND FIRST PROPERTIES OF E[q] 

We retain the notation of the last section. 

THEOREM 4.1. Ifq EAT the limit 
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exists, is nonzero, and is a continuous function of y. If t --f q(t) is a 
darerentiable function from a real closed interval to A, then 

is a dzjfeerentiable function oft with derivative equal to 

(The dependence on t of the last expression is not displayed. The 
prime denotes differentiation with respect to t.) 

Proof. We begin with the well known fact [7] that for any matrix T 
depending differentiably on a real parameter t 

g log det T = tr TIT-I. (4.1) 

This gives in our case, for a differentiable function t 

$ log DN[pl = tr T&$1 T~bl-~. 

It follows from Theorem 3.1, the inequality 

I tr T I G II T/L y 

y(t) into A, , 

(4.2) 

and the boundedness of 11 TN[y’]/jm for all N and t that 

tr T&P’] TNhF - tr T&P’] ~&I 

tends to zero as N -+ CQ uniformly in t. 
Corresponding to the three terms comprising U,[v] (see (3.2)) are 

three terms comprising tr T,[y’] UJp)]. The first of these is 

= tr 5 (N + 1 - 1 i I) ~~‘(~-1)~~ 
i--N 

= tr(N + 1) jJ ~~‘(p-l)-~ - tr(N + 1) C ~~‘(v-l)-~ 
i=-m lil>N 

- tr jJ I i I vi’(p-l)-t + tr 1 I i I vi’(p-l)-i . 
+-co liJ>N 



BLOCK TOEPLITZ MATRICES AND DETERMINANTS 297 

The first term on the right is exactly 

(recall that v’ denotes the derivative of F = ~(t, z) with respect to the 
parameter t) which equals 

d 1 2n 
Pf l&g s 

log det (p(e*“) d0 o 

by (4.1) once again. The second term on the right has absolute value at 
most (using (4.2) again and recalling that we have been using the Hilbert- 
Schmidt norm on the r x r matrices) 

which tends to zero as N + co uniformly in t, by Dini’s theorem. 
Similarly the last term tends to zero. 

We have shown that the first of the three terms comprising tr TN[q’] 
&&fd equals 

d m 
(N + 1) 5 log GM - tr ,& I * I R’(v--% (4.3) 

plus a function of t tending uniformly to zero as N -+ 00. 
The second of the three terms is the trace of 

Ifj<Oandi<-jthen 

Therefore the right side of (4.4) equals 
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= f Ilpl,‘ll~~~ll~,+Illl~I~-,ll j=-, 

converges uniformly in t, and similarly for 

i=zm Ii I II %’ II IIW>-j II, 

the trace of (4.5) differs from 

= -tr f yj’ f mum+u:i-, + tr 2 lj I ~~‘(p-‘)-~ 
j=-, m=1 j=-N 

by a function of t tending uniformly to zero as N -+ CO. 
Similarly the last of the three terms comprising tr TJv’] U,[F] 

differs from 

-tr 2 vLj 2 mv,vjf,, + tr ff I j I plLj(vllj 
j=-, m=1 js-N 

by a function tending uniformly to zero. Combining the results for each 
of the three terms comprising tr TJy’] U,[y] shows that this, and so also 
(d/d) log DJy], differs from 

(N + 1) &log G[cp] - tr f vi’ ‘f mu,tu&,L 
&-cc Wkl 

- tr 5 vii f mv&$+,, 
.&-co m=l 

by a quantity tending to zero uniformly in t. Hence 

d hhJ1 
$2 x log (+,]N+l 

= -tr f rpi’ f mu,iuIi-m. - tr f v1.i f mvI&!Y+, (4.6) 
g=-a, Wkl .+-m ?i%=l 

uniformly in t. 
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It follows from Lemma 2.2 that an arbitrary v E A, may be joined to 
the identity 1 of A by a piecewise linear curve p)(t) lying entirely in A, . 
Since 

DNFI 
;$ log G[I]N+l 

trivially exists, and since 

d Q&dtll 
$2 x log G[&)]“’ 

exists uniformly on each linear piece of the curve it follows that 

w?Jl 
$$'g (-+]N+l 

itself exists. We call it, of course, log E[q]. That (d/dt) log E[rp(t)] is 
what it is claimed to be follows from (4.6). 

To prove that E, or log E, is continuous at each point y,, of A, ) let 
qpl be a nearby point. Write cp(t) = (1 - t)~,, + tcpi (0 < t f 1) and 
apply the mean value theorem to log E[q(t)] whose derivative we know. 
Since v’(t) = vi - ‘p,, we find that 

Il%mhl - log~boll G Mlln- Poll 

for some constant M if y1 is sufficiently close to v. . This completes the 
proof of the theorem. 

Carrying the immediately preceding argument a little further shows 
that log E is a FrCchet differentiable function on A, and that its derivative 
at ‘p is the linear functional on A given by 

Equivalently if we define, for $11, #a E A, 

then the linear functional is $ + -(u+, U-#) - (er+#, o-). 
Suppose now that we are in the scalar case, so that in particular 

V+ = u+, V- = u- and A, = A,. If F E A, then any continuously 
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determined log v belongs to A, by the Arens-Calderon form of the 
Wiener-L&y theorem [I]. Define 

(log d’(4 = 2 (1% 9J)j zj, (log v)-(z) = 2 (log cp)i zj. 
j=O .j-m 

Then as our factors u* we may take U+ = exp(-(log q)+}, 
u- = exp{-(log p))-}. 

Differentiating the first of these relations with respect to z (for 
1 x 1 ( 1) and equating coefficients of equal powers of x give 

from which it follows that for any $I E A, -(u+, 4) = ((log y)+, u+#). 
Replacing # by u-4 and using u+u- = v-l give 

Similarly 

-(u+, u-#) = <(log v)‘, 9J-‘$>. (4.7) 

-oJ+3L, u-> = wG4 (1% d->* (4.8) 

Now consider the function 

mi! v>+, (1% P)H (4.9) 

on A,, . This has FrCchet derivative # ---f ((log p))+, ((d/dp) (log p))-}#) + 
({(d/dv) (log y)+}#, (log v)-). Since ($1, #“> = 0 whenever z&r = 0 for 
all j > 0 or zJj2 = 0 for all j < 0 the derivative may also be written 

By (4.7) and (4.8) this is just $ + -(a+, U-#) - (u+#, U-) which, as 
we have seen, is the FrCchet derivative of log E. 

Thus the function (4.9) has the same derivative as log E. Since both 
functions are equal to zero at q~ = 1 and A,, is connected the functions 
are equal everywhere. This gives the identity (1.3). (The fact that (1.3) 
holds for ~JI E A,, was first proved by Hirschman [9].) 
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Let us now return to the matrix case and see what happens when q 
belongs to A, but not necessarily to A, . 

THEOREM 4.2. The limit 

exists for all q~ E A,, , is a continuous function on A,, , and is nonzero if 
andonZyifp,EA,. 

Proof. To prove the first statement take any q E A, and let t,S E A 
be such that ‘p + E# belongs to A, for sufficiently small nonzero E. The 
existence of such a t) is guaranteed by Lemma 2.3. 

By Theorem 4.1 

lim DN[cP + ~~1 
N+=, ++, + ,#]h'+l = '% + '+] 

uniformly for E on the boundary of a sufficiently small disc centered at 
E = 0. But each &[q~ + r#]/G[p, + +lN+l is analytic on the entire 
disc. Therefore the limit E[v] exists at E = 0 also. 

We also have, if E is sufficiently small but positive, 

It follows from this, and the continuity of E on A, , that E is continuous 
in a neighborhood of any 9 E A,, . Thus E is continuous on A,. 

To prove the last statement of the theorem it need only be shown 
that E[rp] = 0 whenever q~ $ A, . Suppose for example that not all the 
right exponents of q are zero so that v-l has a left standard factorization S’ 0 

g(2)-' = u'(2) L I * - . u-(4 

0 e 

with some K( # 0. If tt is sufficiently large 
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will have nonvanishing determinant for 1 x 1 > 1. Define yn by 

ZK1 0 

q&z-' = u'(z) 

[ I 
. - . 

0 2' 

which is a left standard factorization. Then C& does not belong to A, 
(since its left exponents are not all zero) and for any 01 2 n + max 1 K~ / 

all the Fourier coefficients of v;l with values of the index less than --01 
will vanish. It follows from Lemma 2.1 that Dol-r[~J = 0. Since (Y is 
arbitrarily large this implies E[q,] = 0. Finally, letting n -+ CO and 
using the continuity of E give E[p?] = 0. 

5. FURTHER PROPERTIES OF E[v] 

We begin this section with a simple observation about block deter- 
minants. If we have any square block matrix of Y x Y matrices and any 
r x Y matrix P then the determinant of the first matrix is unchanged if 
any block row is multiplied on the left by P and added to any other block 
row (since this amounts to left multiplying the given matrix by a matrix 
with determinant 1); similarly for columns if multiplication by P is on 
the right. Thus row and column operations are available if used with 
some care. 

This is useful for the evaluation of block Toeplitz determinants 
because these operations lead to other block Toeplitz matrices. In fact 
consider the block Toeplitz matrix T,[y] and denote its block rows by 
70 )...) 7p.J . If for each i > 01 we replace ri by 

7i + Pl7,4 + *** + Por7& (5.1) 

then the resulting matrix has ;, j entry yi+ + Plviejpl + --a + P,cpi_i_, 
for i > 01. This is exactly the i, j entry of the block Toeplitz matrix 
associated with (I + Plx + *a* + Paza) p)(x). Next, if the columns of 
the new matrix are c,, ,..., c, and for eachj 3 01 thejth column is replaced 

bY 
cj + cj-IQ-1 + *.. + c+aQ-a (5.2) 

then the i, j entry of the resulting matrix is, for i > 01 and j 3 (31, just 
the i, j entry of the block Toeplitz matrix associated with #(z) = 
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(I + PlZ + -.. + PJF) v(x) (I + Q-rz-’ + *** + Q-.X*). Thus apply- 
ing to TN[q] these row and column operations yields a matrix of the form 

: 1 
~a&1 x 

Y TN-&~] I 

where X and Y are certain matrices. 
Write 

P(x) = I + PIZ + *** + PorP, 

Q(x) = I + Q-lz-l + -es + Q-az-” 
(5.3) 

and let P(z) and Q(z) have inverses, as formal power series, C~~,,p#, 
CT-,-, q-& respectively. These formal inverses always exist. We have 
po=q,,=I an i wesetp,=q-i=Ofori<Othen d f 

Pi + PIP,-, + e-S + P,pi-a = 0 (i > 0) 

q-i + q-i+lQ-1 + *** + q-i+rxQ-a = 0 (i > 0). 
(5.4) 

Now define U and V to be the rectangular block Toeplitz matrices 

lJ = (Pi-d O<i<N, O<j<a-1 

v = (Qi-3) O<i<or-1, O<j<N 

where N > (Y - 1, and consider 

[ 
u T~b?-‘l 

I 0 V’ (5.5) 

Perform on this matrix exactly those row and column operations resulting 
in the operations (5.1) and (5.2) on T&I] as described above. Because 
of the identities (5.4) the new matrix has the form 

[ 

u T,-&I X 
0 Y TN-&] 

0 v 0 1 
where B and Y are the square block Toeplitz matrices 

ff = (Pi-j), B = (qi-j) O<i< a-l, o<j<CX-1. 

Because D and v are block triangular the determinant of this matrix 
is easily reduced. One applies, 2ar times, Laplace’s theorem on the 
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expansion of determinants by means of certain r x r minors and their 
conjugate minors. Recalling that p, = q,, = I one finds that the deter- 
minant is equal to the determinant of T,-,[#I, which is 

This is one way of evaluating the determinant of (5.5). There is 
another way. Assume that T,[v] is invertible and multiply the matrix 
(5.5) on the left by 

[-!v ;][“y-’ ;I 

(here the various I’s have appropriate orders), which has determinant 
D,[y]-l. We obtain the matrix 

[ 
TN[&lu 1 

- ~~j&‘]-lu 0 1 
which has determinant det V T,[q]-lU. Thus the determinant of (5.5) 
is also equal to DN[q] det K!‘,[~]-l-lU. 

Since we have already shown the determinant of (5.5) to be equal to 
&-J&Q], we have established the identity 

DN-#'&I 

DNbl 
= det VTN[v]-lU. (5.6) 

Note that the determinant on the right is of order CL 
We shall use the notations 

Ao+ = {q E A,: pj = 0 forj < 0) 

A,- = (9, E A,: pj = 0 for i > 01. 

Observe that if 9 belongs to A,+ resp. A,- then the determinant of q~ 
belongs to scalar valued (r = 1) A,+ resp. A,-, so the same is true of the 
inverse of this determinant. Consequently, the inverse of cp, which is 
computed using the determinant and cofactors, also belongs to A,+ 
resp. A,-. Thus A,+ u A,- C A, . 

In our applications of (5.6) the polynomials P(x), Q(z) will belong to 
A,+ resp. A,-. The formal series 

are then just the Fourier series for P(z)-‘, Q(z)-l respectively. 
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LEMMA 5.1. suppose 

r&z)-’ = u’(2) u-(2) 

where u+ E A,,+, EL- E A,- and that 

Q(z) = Qo + Q-G-’ + .-. + Q-,z-a 

belongs to A,-. Then we have the identity 

E[cpQ] = Da-l[Q-‘u+l @] 
G[Q-lu+]” * 

(5.7) 

(54 

Proof. Suppose first that &a = I and CJI E A, . Let us apply (5.6) 
with P equal to the identity matrix function. If we write T&p]-l = 
(w~,~,~), 0 < i, j < N, then we obtain 

DN-&&I 
D&I] = det (2 q”-iwi*v,N)~,~~,...,~-~ ’ (5.9) 

Now Theorem 3.1 tells us that 

and so certainly 

This implies that in the computation of the determinant on the right 
side of (5.9), replacing each wi,f,N by the i, j entry of U,[y] results in 
an error tending to zero as N -+ co. 

Recall now the form (3.2) of U,[q]. For fixed p, v the sum 

has norm at most 

II 4 II II tJ- II f II 4-++m II 
m-1 

607113/3-4 
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which tends to zero as N---t co. The other two terms of (3.2) contri- 
buting to the i, v entry of UN[~] are 

(cp-‘)&, - f ui++mu~,-m 
rn=l 

Consequently the right side of (5.9) converges, as N-F co, to the 
determinant 

f qU-iU:-mUT,+, 
i,Wb=O LL,v=o.1,...,ci-1 

Since uJ+m vanishes for m > v, and so certainly for m 3 (31, we may write 

Therefore the last determinant is equal to the product of the two 01 x (y. 
block determinants 

The first of these is just II,-r[Q-‘u+] while the second is a triangular 
determinant equal to (det u,,-)a = G[u-Ia. 

We shave shown that as N --+ CO the right side of (5.9) converges to 
D,-l[Q-lu+] G[u-lb. S ince G[Q] = 1 left side converges to (E[vQ]/E[v]) 
G[v]-” and we obtain 

&pQ]/E[v] = D,[Q-lu+] G[yu-]= = D,-,[Q-L+]/G[u+]‘. 

This is equivalent to (5.8) since G[Q] = 1. 
To remove the assumption on Q. observe that it is in any case invertible 

and that for any # both I&[#] and G[$]“+’ are multiplied by the same 
factor (det Qo) JV+~ if z/ is multiplied, on either side, by the constant 
matrix Q. . Hence neither side of (5.8) is changed if Q is multiplied on the 
right by Q. , so the identity for general Q0 follows from the identity for 
Q. = I. 
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Finally to remove the assumption that v E A, observe that both sides 
of (5.8) are continuous functions of u+ E A,+. Thus it suffices to show 
that for any fixed u- E A,- the set 

{u+ E A$: u+u- E Al} 

is dense in A,+. Since the polynomials 

(5.10) 

u+(x) = i u,-tz” 
k=O 

of A,,+ are dense in A,+ it suffices to show that any such polynomial is 
the limit of polynomials in the set. If we define, for / t 1 < 1, U+(t) = 
U+(t, x) = u+(t.z) then clearly each U+(t) E A,+. Moreover by Lemma 
2.1 we shall have U+(t) u- E A, if 

R+l[( ~+w-Yl (5.11) 

is nonzero. This determinant is analytic for 1 t 1 < 1 and at t = 0 equals 

R-I[(%+~-)-‘l = det(u,+u,-)-* # 0. Consequently the determinant 
(5.11) can only vanish for a discrete set of t in the unit disc and so there is 
a sequence tn -+ 1 such that each U+(t,) belongs to the set (5.10). This 
completes the proof of the lemma. 

THEOREM 5.1. The function E[v], CJI E A,, , has the following properties: 

(a) If all the q~$ vanish for i < --01 or for i > (Y then E[q] = 

L-1h+l GhJl~* 
(b) %+I = EM 
(4 If 99 9% 9 9)2 E A,+ and ~4 A, $J~E&- then J%P~-~~I = 

-%vN -J-WFJ~~ and Whf421 = J%h~l Ebf421. 

Proof of (a). Take the special case of (5.8) where U-(Z) = I. We 
obtain for u+ E A,,+ and Q of the form (5.7), 

E[(u+)-lQ] = (Dol~l[Q-lu+]/GIQ-‘u+]a) E[(u+)-7. 

For # belonging to A,+ (or A,-) each I&,,[$] equals (det IJ~)~+~ = G[#lN+l 
and so E[#] = 1. Therefore the last identity may be written simply 
E[(u+)-‘Q] = Oa-l[Q-‘u+]/G~-‘u+]~. 

Now take the given v and suppose that y E A, and that it has left 
standard factorization v = v + ‘p -. Assume all vi vanish for i < --a. Then 
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q- = (cp+)-‘p also has vanishing Fourier coefficients for values of the 
index less than ----cr. Hence we may apply the last identity with u+ = 
(@i-l, Q = v’- and E[F] = D,-J~-l]/G[~-l]a results. 

v does not belong to A, then E[CJJ] = 0 by Theorem 4.2 and 
DE&-l] = 0 b y L emma 2.1. The equality therefore holds trivially in 
this case. 

Proof of (b). Th’ 1s o ows immediately from (a) if, say, p)(z) is a f 11 
Laurent polynomial 

For then we obtain E[v] = D,-J~-l]/G[~-l]~ for all ~11 > n and we 
just let (Y + co. The identity for general v E A, follows by the usual 
density and continuity argument. 

Proof of(c). Go back to the identity (5.8) and let a: -+ co. We 
obtain, using (b) twice, E[Q-%+u-] = E[Q-4+] E[u+u-1. This is the 
special case of the second of the asserted identities with $1’ = Q of the 
form (5.7). The general case is obtained from this as usual. 

Remark. Theorems 4.1 and 5.1(a) implies that if ‘pj = 0 for all 
j<--olorallj> a: and if v E A, then D,-r[v-r] # 0. Thus this condi- 
tion is both necessary and sufficient for v to belong to A, . 

Next we prove the validity of the identity 

log E[pil = v-l g j(log det p)j(log det y)+ 
j=l 

(5.12) 

for a certain class of matrix functions. We shall say that a matrix function 
belonging to A, is semi-scalar if one of its left or right factors is a scalar 
valued function times the identity matrix. In this case of course the left 
and right standard factorizations coincide. 

THEOREM 5.2. If y belongs to A, and zlr semi-scalar then (5.12) holds. 

Proof. Let v have standard factorization y = tp+(v-I) where y-- is 
a scalar valued function. We are to prove 

m  

log E[y] = C j(log det q+)i(log PP-)~ . 
j=l 

(5.13) 
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We may assume G[v+] = G[cp-] = 1 since neither side of (5.13) is 
changed if q+ or Q- is multiplied by a constant. 

Consider first the special case v-(z) = (1 - 5x-l), 1 5 ( < 1. Then the 
hypothesis of Theorem 5.1(a) is satisfied with 01 = 1 and so 

But 

E[~I] = D,[y+] = det & j 
an 

cp(efep-1 de. 
0 

& I” de’e)-1 de = & i , 1 (2 - r;)-’ c++(z)-1 dz = cp+({)-l 
z- 

by the Cauchy integral formula. (The matrix function v+(x)-l extends 
analytically throughout the unit disc.) Therefore 

log E[q] = -log det v+(t) = - 2 (log det ~+p’)~ [j. 
zi=l 

(The term corresponding to j = 0 vanishes since G[v+] = 1.) Since 

log p-(z) = - ~j-%?+ 

this establishes (5.13) in the special case. 
It follows from Theorem 5.1(c) that for arbitrary scalar functions 

Fl--(49-v yn-(z) belonging to A,- we have E[v+(pi- .** p)%-] = 

2=2;: 
se* E[v+q,-1. Consequently (5.13) holds whenever q~- is of 

q?-(z) = (1 - &2-l) *** (1 - &z-i) I51 I -=c l,..., 15, I < 1. 

Since functions of this form are dense in the scalar valued functions of 
A,- (with geometric mean 1) and since both sides of (5.13) are continuous 
functions of ‘p- E A,- the identity holds in general. 

Lest the reader doubt the lack of generality of (5.12), consider the 
2 x 2 matrix function 

with Q #O, fl. Then TEAr. Since det 9 is constant formula (5.12), 
if it held, would give E[cp’l = 1. But E[F] is easily computed by Theorem 
5.1(a) with cx = 1 and in fact E[v] = a2(aa - 1)-l. 
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Finally we state a formula which reduces the computation of I?[?] 
to the case of matrix functions with determinant identically 1: 

E[v] = E[(det v)-llrq] exp r-1 2 j(log det v)j(log det v)+ 
j=l 

This is established by writing down factorizations (det q)-lir = S+ S-, 
9 = 91+~-, applying Theorem 5.1(c) a few times to obtain 
E[(det q~)-‘/rv] = E[CJJ] E[S+v-] E[S-q+] E[S+ S-1], and evaluating the 
last three factors by (5.12). The details are left to the reader. 

6. LIMITING BEHAVIOR OF THE EIGENVALUES 

Throughout this section y(z) will be a Laurent polynomial 

k=-or 
(a > 1, P 3 0). (6.1) 

We denote by p.N the discrete measure in the plane which assigns to 
each eigenvalue of TN[~] its algebraic multiplicity multiplied by 
(N + 1)-l. Thus the total measure of pFLN is r. The limiting set of the 
eigenvalues will be denoted by /1; a point X belongs to (1 if 

h = lim hi i+m 

where hi is an eigenvalue of TNi[~] and Ni 4 00. 
We shall be concerned with the determination of the weak limit p 

of pN (if it exists) and of the set fl. As in [14] and [lo] which dealt with 
the scalar case these things can be determined once there is enough 
information about the asymptotic behavior of D,[p, - hl]. The following 
lemma shows how. We denote by A the Laplacian in the sense of distribu- 
tions and refer the reader to [3] for the little bit of potential theory 
which will be used from time to time in this section. 

LEMMA 6.1. Let C be a compact set of two dimensional Lebesgue 
measure zero in the h-plane, r its complement. Suppose that the relation 

lili D,[g, - hl]/g(h)N+l = e(h) 
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holds uniformly on compact subsets of r, where g(X) and e(h) are analytic 
in r, g(h) U nonaero, and e(h) h as only isolated zeros. Then h(h) = log 1 g(h)1 
is locally integrable in the complex plane, p = (277)-l Ah is a measure, and 
pN converges weakly to CL. If h cannot be continued harmonically to any 
point of C then the support of p is exactly C and A is the union of C and the 
set of zeros of e(h). 

Proof. We have (N + 1)-l log 1 DN((p - hT]/ = J log 1 5 - A 1 d&S) 
and all the ~1~ are supported in a fixed compact set. Choose a subsequence 
Ni -+ co such that pN, converges weakly to a measure p. For each 
bounded set B in the plane JB log 1 5 - A 1 dX (dA denotes two-dimen- 
sional Lebesgue measure) is a continuous function of 5 so 

Since log 1 5 - A 1 is bounded above on the domains of integration we 
can interchange the orders of integration in the double integrals. We 
deduce that if B is any bounded set on which the convergence of 

S log I 1- h I d/+.+3 to 49 is uniform JB h(h) dh = Je dh J log 1 5 - h 1 
dp([). It follows that h(X) = J log ( 5 - h 1 d&J a.e. in f and so 
a.e. in the complex plane. Consequently h is locally integrable and 
Ah = 277~. 

Since p was any weak limit of the pN the first statement of the lemma 
is established. The second follows from Hurwitz’s theorem on the 
limits of zeros of sequences of analytic functions [16, $3.451 together 
with the fact that the support of ,u is the smallest closed set on the 
complement of which J log 1 5 - X I dp(<) is harmonic. 

Theorem 5.1(a) provides enough information to determine p and 
d in almost all cases. These will be worked out here in detail. Afterwards 
we shall derive an exact formula for Q.&] from which the necessary 
asymptotic information can be derived even in those cases Theorem 
5.1(a) could not handle. 

For any y of the form (6.1) the determinant D,[p, - Ml is unchanged 
if p)(z) is replaced by q.(b) for any positive number t. This replacement 
results in multiplying the ith block row of TN by ti and the jth block 
column by t-j so that D, is unaffected. Thus the condition q(z) - ME A, 
needed to apply the results of the preceding sections may be replaced by 

p(tz) - /II E A, for some t > 0. (6.2) 
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If we write 6(x, h) = det [v(z) - hl] then (6.2) holds unless 6(x, h) 
satisfies one of the following mutually exclusive conditions. 

(i) 6(x, h) extends to be analytic and zero at z = 0 or x = 00; 

(ii) 6(x, h) h as oesoforderp>Oatx=Oandq>Oatz=co p 1 
and if z,(h),..., ,zP+,(h) are the zeros of 6(x, X) ordered so that / xi(X)1 < 
I zi+d4 I then I ~,@)I = I ~,+&VI. 

If neither (i) nor (ii) holds then 6(x, h) has poles of order p> 0 at 
x = 0 and 4 > 0 at t = GO and (with the zeros ordered as before) 

I%(9 < I%+1 (X)[. In this case (6.2) holds for all t in the interval 

4 = (I -%(4IP I %+:p+l (A)\); if p = 0, In = (0, I z,(h)l), and if also Q = 0, 
IA = (0, co). 

Write 

Then Theorem 5.1(a) gives 

fiz WV - W&J, V”+l = &J, 4 (6.3) 

where E[v, h] = G[v, hIa Da-,[(y(tz) - M)-l]. The convergence is 
locally uniform in X. (It was not part of the statement of Theorem 4.2 
but its proof could easily have been expanded slightly to give uniformity 
of convergence on compact subsets of A, .) 

Our first assumption on v will be that (i) or (ii) only holds for X in a 
set of measure zero. If 6(x, h) = C 6,(X)z” then each Sk is a polynomial; 
6, has degree exactly Y and the other 6, have lower degrees. Since (i) is 
equivalent to the simultaneous vanishing of 6,(h), 6-,(h),... or of 6,(X), 
W),... we see that (i) holds for at most r values of X. Thus the set 
C, = {h : S(z, h) has property (i)} is finite. 

Similarly we define C, = {h : 6(.z, h) has property (ii)}. The structure 
of C, is more complicated. Any point A,-, has a neighborhood whose 
intersection with C, is either empty, the entire neighborhood, or a finite 
set of analytic arcs emanating from h, . We assume that the second 
alternative never arises. 

CONDITION A. The interior of set C, is empty. 

Under this condition 
c = c, u c, 

is a finite union of analytic arcs and points. 

64) 
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Condition A may be violated. If 

then 6(s, h) = (z-l - h + 1) (z” - h - 1) so that 1 z,(h)] = 1 x,(h)] = 
) A + 1 11/a whenever ] h + 1 Ill2 < / h - 1 1-l. In the scalar case 
however Condition A does hold without exception. This is easily 
deduced from Lemma 3.1 of [14]. 

Condition A enables us to use the asymptotic formula (6.3) for almost 
all h. The function E[v, h] is analytic in I’, the complement of C. More- 
over this function, when restricted to any connected component I’, of r, 
is algebraic. Thus on any component it either vanishes identically or has 
only finitely many zeros. 

CONDITION B. The function. E[v, A] does not vanish identically on 
any component of r. 

Since E[cp, X] is nonzero if X is sufficiently large, it cannot vanish 
identically on the component of f containing infinity. In particular 
Condition B is safisfied if F is connected. Of course it is always satisfied 
in the scalar case. In the simple example 

0 
944 = E .+I 

C is the unit circle and E[~J, A] = 0 if ] h 1 < 1 so Condition B is violated. 

THEOREM 6.1. Suppose q~ satisjies Conditions A and B, let the set C 
be defined by (6.4), and de$ne h(h) = log ( G[F, h]], A E F. Then h is 
locally integrable in the complex plane, p = (2?r)-l Ah is a measure with 
support exactly C, and pN converges weakZy to p. The Emit&g set A is the 
union of C and the set of zeros of the function E[~J, X]. 

Proof. This will follow from Lemma 6.1 once it has been shown that 
h(A) cannot be continued harmonically to any point of C. Hirschman 
[lo, $41 showed in the scalar case what in our notation can be described 
as follows: If c is any arc of C, and h,(X) and h*(h) are the values of h(A) 
on either side of the arc then each hi continues harmonically to the other 
side of the arc but neither continuation is equal to the other function. 
The same argument applies in this case and will not be given here. The 
conclusion from this is that h cannot be continued harmonically to any 
point of C, . 
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It remains to check that h cannot be continued harmonically to any 
isolated point of C, which necessarily belongs to C, . Let h, be such a 
point and suppose for example that 6(x, X,) has a zero at x = 0 of 
multiplicity p > 0. Suppose there are no other zeros inside or on the 
circle j x [ = t, . Then for all h in some deleted neighborhood of X, the 
function a(%, X) will have at z = 0 a pole of fixed order q > 0 and 
exactly p + q zeros inside the circle 1 x 1 = t, . We denote these zeros 
by q(X) and order them as usual so that 1 z,(h)[ < 1 za(X)I < *** < 
1 x,+,(h)l. Each q(X) tends to zero as X -+ h, . 

Since X, is an isolated point of C we have for h f h, , I z,(h)\ < / x,+,(h)[. 
We apply the general Jensen formula [16, $3.621 to the function 6(x, h) 
and each of the two circles 1 x 1 = t, , / z j = t, where I z,(h)1 < t < 

I %+,@)I 3 and substract. The result is 

1 
-J’* log 1 S(toeie, A)] d8 - & J’” log 1 S(te@, A)\ dt9 
29T 0 0 

= --log 1 xg+#) **- z*+&q - log top. 

Thus 

49 - 1% I %,I(4 -.* %+?, @)I = Y& J"" log 1 S(toeie, A)/ d6 + log top 
0 

which is bounded as X + X, . Since each q(h) tends to zero as h -+ h, it 
follows that h(h) is unbounded near h, . This completes the proof of the 
theorem. 

A more concrete description of the measure p can be obtained 
as follows. (A different method was used in [lo] to obtain the same 
description in the scalar case.) 

Let c be an arc of C, and take a little disc D that c cuts into two parts 
D, and D, . Denote the restrictions of h(h) to these parts by h,(X) and 
h,(h). Then for h 6 aD, we have 

1 -s I zrr aD, 
T log I 5 - X I - h,(5) 2 log I 5 - h I/ I d5 I 

e t 

Here I d< 1 denotes arc length measure and a/an, denotes the normal 
derivative at the point 5 E aD, in the direction interior to D, . 
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If we take the sum of these two equalities and use the fact that h, = h, 
on c [lo, $41 we find that 

continues harmonically throughout D. Hence on c, p = (2n)-l dlt is 
absolutely continuous with respect to arc length and 

Since h(X) is bounded in a neighborhood of each point C, no point 
where two or more arcs meet can have positive TV measure. Therefore (6.5) 
completely describes p on C, . 

A more geometric interpretation of ,u on c is the following. Let G, , G, 
denote the limiting values of G[v, h] from the two sides of c. Then G,/G, 
maps c into the unit circle and p is the measure on c induced by this 
mapping from normalized Lebesgue measure on the circle. 

The description of p on C, is easy. If X, E Ci 

In case h, is an isolated point of C then this number must be an integer 
since G[y, X] is single valued and analytic in a deleted neighborhood 
of x, . 

A slight variant of this shows that the measure of any connected 
component of C must be a positive integer. Since the total measure of p 
is r there can be at most r components. This argument was used by 
Ullman [17] to prove connectedness in the scalar case. 

We shall next derive an exact expression for D,[q] which can be used 
to find a substitute for (6.3) when it holds for too small a &set (Condition 
A fails) or the right side is too often zero (Condition B fails). Two 
algebraic lemmas are needed. 

LEMMA 6.2. If P( ) x is a matrix with polynomial entries whose deter- 
minant has a simple zero at x = 5 then the matrix 

has rank one. 

p = iii (z - 5) P(z)-’ 



316 HAROLD WIDOM 

Proof. The theory of matrices over Euclidean rings [18, $1081 tells 
us that 

Pl(4 0 P(z) = U(z) [ 1 * * . w4 
0 P&4 

where U and V are invertible polynomial matrix functions and each 
p, divides P,.+~ . Since det P(x) has a simple zero at z = 5 each p,(t) with 
i < r must be nonzero and ~~(22;) must have a simple zero at x = 5. The 
desired conclusion follows. 

LEMMA 6.3. Suppose A, (s E 9) are n x n matrices of rank one 
and a, are scalars. Then 

where S runs over all subsets of Y containing n elements. 

Proof. Denote the ith row of A, by A,i. Then we have 

aftl) Ah 
det 1 ads = c det I 1 i 

SE.v f afd%) 

where f runs over all functions from {l,..., n} to 9’. Since each A, has 
rank one the determinant on the right vanishes unless f is a one-one 
function. Therefore 

where S runs over all subsets of 9 containing n elements and f runs over 
all one-one functions with range S. The inner sum is just 
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The formula for D&I] involves various expressions which we now 
introduce. As before 6(z) = det ~(2). If 6(z) has a pole of order p > 0 
at z = 0 and S is any set of p zeros of 6(z) we write 

Here u is a simple closed curve enclosing z = 0, the points of S, but 
no other zeros of 6(z). 

LEMMA 6.4. If S = {z8} then 

G&J] = (-1)” (n 2;‘) ii-g z@(2). 

Proof. Both S(2) and 2~ n(z - z&-l have continuously defined 
logarithms on u. Cauchy’s theorem applied to the interior of u gives 

&~log[S(2)2’~(2-2.J-r]d2/2 

= log [(-1)’ (n 2;r) liz 228(2)] 

and applied to the exterior of 0 gives 

+&og[s.n(2-2J-l]d2/2 =O. 

The assertion of the lemma follows. 
We can now state and prove the formula for DN[~]. 

THEOREM 6.2. Assume 6(z) has a pole of or&r p >, 0 at z = 0 
and only simple zeros. Then for su&iently large N 

w/Se the summation extends over all sets S of p zeros of S(z). 

Proof. We first make the temporary assumption that q~@ and (p-, 
the extreme coefficients of F(Z), are both invertible. This implies that 
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6(z) has poles of order cw at z = 0 and /3r at z = co. The polynomial 
matrix function z”p)(x) is invertible near z = 0 and so we may write 
.-p(ql = $hJ + #lZ + *** for sufficiently small z. One has the identity 
DN--l[v] = (- l)Nar det q?!~ det(#N+U-V),,v,,, ,,,,, a--l . This was proved in 
the scalar case Y = 1 by Baxter and Schmidt [2, $21 and the derivation 
is no different here. 

It follows from our temporary assumption on v that za p)(x)-’ is 
analytic at z = 0 and vanishes at z = CO. Therefore if {zs} is the set of 
zeros of 6(z) we may write a-” g)(z)-’ = C(x - z,)-’ ps where ps are 
certain r x Y matrices. By Lemma 6.2 they all have rank one. Since 
glJN+u-” = -c q-+--1 ps an application of Lemma 6.3 with n = ar 
gives 

det(~N+u-v)rr,v=O....,~-l 

= C-1)” C (n GNau) det (~s~~-Yt’-1~8)u,FI),...,~-l 
s ZgES 

= (-1)“‘C (fl a;N-e) &[I& 
s ZQES 

where S runs over all sets of cw zeros of S(x). Thus 

D,,[~J] = (- l)(Nfl)ar c det c$?: 

= ; Gs[P)I~+~ h~-~l 

($ K-“-j D&P-‘I 

by Lemma 6.4 and the fact that 

(Iv + 1)” = (N + + (mod 2). 

To remove the temporary assumption of invertibility of ?--ar and 
yB let ye(z) = p)(z) + l (zfll- z-@A) w h ere A is any invertible matrix 
with distinct eigenvalues u,~ . As E -+ co (sic) 8,(z) = or I& (2” - u+z-~) + 
o(C) uniformly for x in any compact set not containing x = 0. It follows 
from Hurwitz’s theorem that for E sufficiently large 6,(x) will have 
(CX + ,8)r simple zeros near the (a + p)th roots of the a,. Since 6,(x) 
is x-@ times a polynomial of degree (a + P)r there are no other zeros. 

A necessary and sufficient condition that a polynomial in z have only 
simple zeros is that its discriminant, which is a polynomial in the coeffi- 
cients, be nonzero. Since the coefficients of zar 6,(x) are polynomials in E 
and the discriminant does not vanish for large E it can only vanish for 
finitely many E. It follows that for E in some deleted neighborhood of 
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zero v. satisfies the conditions under which (6.6) has already been 
established. 

If we cut the deleted neighborhood along the negative real axis so that 
what remains is (6 : 0 < 1 E 1 < E,, , 1 arg E 1 < ~1 then the zeros of 
S,(x) are analytic functions of E. Some of these tend to zero as E 3 0, 
some tend to infinity, and the rest tend to the zeros of 6(z). Suppose 
S, is a set of zeros of 8,(x) either not containing all zeros which tend to 
zero or else containing some zero which tends to infinity. Let 4% = &(E) 
(i = l,..., i,) be the zeros of S,(Z) tending to zero but not in S, and 
tj = &) (i = Lj,,) th ose zeros in S, which tend to infinity. Then if 
CT, encloses z = 0 and S, but no other zeros of 8,(z) we have 

= s, log [&, do fl(x - W1 n (1 - 4&)-l] d+ 

+ 1 log [n (2 - &)] dz/z ‘- s,, log (do n (1 - #W) d+. 
Of 

The expression in brackets in the first integral on the right side is 
analytic and nonzero at all the & and tj so the integral may be taken over 
a fixed closed contour u. Therefore as E + 0 the first integral tends to a 
finite limit. 

The second integral on the right equals 2ti log n(-&) and the last 
equals 2?ri log n( - tj). H ence Gs,[qE] is asymptotically a constant times 
nt;,/fltj and this tends to zero as E + 0 since i,, + j0 > 0. 

Consider now the formula 

where S, runs through all subsets of (YT zeros of 6,(x). If S, is as in the 
preceding paragraphs, i.e., it does not contain all zeros tending to zero or 
else contains some zero tending to infinity, then we have seen that GsI[p)J 
tends to zero. Although Ds,[#] might at the same time tend to infinity 
they are both algebraic functions of E, so the former must tend to zero at 
least as fast as some power of E and the latter can tend to infinity no faster 
than some power of E- l. Therefore for N sufficiently large 

‘j% ‘S,h~~l N+a+lDS,[p;l] = 0 

for these S, . 
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What remains are those subsets S, which contain all the cu - p zeros 
of S,(a) tending to zero, none tending to infinity, and p others tending to 
zeros of S(x). It follows that &,[?I, which equals 

is exactly as given by the statement of the theorem. 

Remark 1. The passage from the special case where (6.6) was 
established for all N to the general case was very crude. The formula may 
very well hold for all N in all cases. However the result as stated will be 
enough for applications once the following is pointed out: All the 
functions GSE[vE] arising in the perturbation argument used for passage 
to the general case, which were seen to be o(l) as E -+ 0, are in fact O(P) 
where u > 0 depends only on 01, /3 and r; similarly all the Ds,[&] are 
O(E-‘J’) where z, > 0 depends only on 01, /3 and r. It follows that the 
“sufficiently large” of the statement of the theorem depends only on (11, 
/3 and r and not on the specific q. In particular if we apply the formula 
to F - x7 the same N works for all h. 

Remark 2. It follows from Lemma 6.4 that if S, and S, are two 
sets of p zeros of S(n) then 

Gs,[dGs,[d = & $-js zs - 
21 12 

Consequently if there is a circle ) z 1 = t containing no zeros but 
enclosing a set S,, of p zeros then G,Jy] is larger in absolute value than 
any other G,[y] and so 

lim DN[~]/Gs,,[~]~+“+~ = Ds,,[vJ-‘~* N-a, 

This is just (6.3) once again, with h = 0. 
Let us consider now the two examples given earlier where Theorem 

6.1 could not be applied. If 

then Condition B is violated, but Theorem 6.2 gives easily Q.Jpl - hl] = 
P(N+l). Therefore, by Lemma 6.1 the limiting measure is a mass of 2 
at h = 0 and the limiting set is {O}. Of course these statements are 
hardly interesting since all the eigenvalues of TN[y] are trivially zero. 
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More interesting is the example 

where Condition A fails. We have here 

6(z, A) = (z-1 - h + l)(Z2 - h - 1). 

For h # 0, - 1 we have p = 1 and 6(z, h) has the simple zeros Z, = 
(h - I)-‘, zi = (h + 1)‘j2, z2 = -(h + l)1/2. Write 

co’= {A: /(A + l)‘/Z(h - 1)1 = l}. 

This consists of two mutually exterior simple closed curves, one sur- 
rounding h = - 1 and passing through h = 0, the other surrounding 
h = 1. For X exterior to C, the zero Z, has smaller absolute value than 
the others, G,& - UJ = h2 - 1, and so 

uniformly on compact subsets of the exterior of C, . For h interior to C, , 
but excluding I\ = - 1, the zeros xi , z have smaller absolute value than 2 
~0, GG,)[~ - xl] = (h + 1)112, G~J[Q) - fl = -(h + 1)li2 and we 
find that 

hdp, - W/(h + I)+ N+l = QzJ[(P - up11 + (-l)N&J[(v - qll + o(l). 

Now we apply Lemma 6.1 modified to allow the functions g(A) and 
e(h) to be multiple valued and to allow subsequences (in the present 
case the sequences of even and odd N). This is no problem and we 
deduce that the limiting distribution p exists and has support C = 
co u (-1). If 

log 1 A2 - 1 1 
W)= l$log,h+l, 

exterior to Co 
interior to C, 

then p on Co is given by (6.5); and ~((-1)) = *. The limiting set /1 is C 
together with whatever zeros Dcz,,[(~ - Xr)-i] may have exterior to Co 
and whatever zeros DI~,J[(~ - x1)-l] & Db,j[(v - Xr)-l] may have 
interior to Co . 

Note that C has three components. This appears to contradict an 
earlier statement that in the Y x Y case the support of the limiting 
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distribution had at most r components. That statement however assumed 
the applicability of Lemma 6.1 with single valued g(h) as was the case 
when Conditions A and B held. 

Finally it should be remarked that the methods of this section can be 
used to investigate the distribution of zeros of quite general determinants 
of the form &[~(A)] h w ere v(h) is a Laurent polynomial depending 
analytically on the parameter A. 
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