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Abstract. Following ideas of Langlands and Sarnak on Beyond Endoscopy,

we introduce a method to study the base change L-function of a modular form
via the trace formula. We complete the analysis in the case of quadratic base

change for real fields, to deduce a new proof of the analytic continuation of

the base change L-function to the left of the line R(s) = 1.

1. Introduction

Langlands [Lan04] has proposed a new program, entitled Beyond Endoscopy,
for attacking cases of Langlands functoriality which are not accessible via current
methods. The crucial idea is to apply the Arthur-Selberg trace formula to detect
the existence of poles at s = 1 of certain L-functions attached to automorphic
representations. Incorporating additional ideas of Sarnak [Sar01], progress has
been made. Specifically, Venkatesh [Ven04] studied the the symmetric square and
Herman [Her12c, Her12a] has studied both the symmetric cube and the Asai L-
function in the context of quadratic base change. The ideas of Beyond Endoscopy,
can also be applied directly to the study of L-functions. This was observed by
Sarnak [Sar01] who applied a version of the trace formula to obtain a new proof
of the analytic continuation to C of the L-function associated to a modular form.
These ideas have been extended by Herman [Her12b] to deduce the functional
equation of the L-function. In this article, we shall apply these ideas to study the
L-functions arising from base change in the case of modular forms.

In order to study the L-functions arising from base change, we introduce in Sec-
tion 2 a related Dirichlet series, denoted D(s, π, ω,E/F ), which is more amenable
to studying via the Petersson trace formula. We show that proving the analytic
continuation of D(s, π, ω,E/F ) to the right of the line R(s) = 1

2 implies the ana-

lytic continuation of the base change L-function to the right of the line R(s) = 1
2 .

The key idea is then to apply the Petersson trace formula to study a linear combi-
nation of the Dirichlet series D(s, π, ω,E/F ) associated to a family of automorphic
representations π. We are able to deduce from this sum information about a single
D(s, π, ω,E/F ). The analysis in a first case is carried out in Section 3. This gives
the main result of the article (cf. Theorem 3.14).

Theorem 1. Let k ≥ 6, let N ∈ N, and let φ : (Z/NZ)× → C× be a primitive
Dirichlet character. Let π ∈ Ak(N,φ) (see Section 3.1.1) be a cuspidal automorphic
representation GL2(AQ) such that πp is not unramified for all rational primes

p < 70. Let E = Q(
√
D) be a quadratic real extension such that D = 2, 3 mod 4.

Then the base change L-function Λ(s,BCE/Q(π))
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• converges absolutely in the right half plane R(s) > 1, and
• continues to a holomorphic function in the right half plane R(s) > 3

4 +
5

2(k−3) .

Remark 1.1. The conditions imposed on π and on the extension E (with the excep-
tion of the condition that E be a quadratic extension of Q) are made exclusively
for convenience and should be able to be removed.

Remark 1.2. In the simple setting of this theorem there exists an old proof of a
stronger result. Specifically, the L-function decomposes as a product

Λ(s,BCE/Q(π)) = Λ(s, π)Λ(s, π · χE/F )

where χE/F : Q×\A×Q → C× denotes the Hecke character corresponding to the

extension E/Q via class field theory. It follows from the theory of L-functions
associated to cuspidal automorphic representations of GL2(AQ) that the L-function
Λ(s,BCE/Q(π)) continues to a holomorphic function of the complex plane.

We are hopeful that the methods of this article can be extended to study the
base change L-function in new cases for example in the case of non-solvable base
change for Hilbert modular forms. We hope to attack this problem in a future
article.

1.1. Acknowledgments. I am extremely grateful to D.R. Heath-Brown for his
help in resolving analytic questions. I am thankful to P. E. Herman and P. Sarnak
for providing helpful comments on this article.

2. The L-function

In this section, we recall the base change L-function for Hilbert modular forms
and introduce a related Dirichlet series. We show that the analytic properties of
the latter influence the analytic properties of the former.

Let ψQ = ⊗νψQ,ν : Q\AQ → C× denote the additive character which is un-
ramified at all finite places and whose restriction to R is the exponential function
e(x) = e2πix. Let F be a totally real number field. Let ψF = ψQ◦TrF/Q : F\AF →
C× be the additive character where TrF/Q : AF → AQ denotes the trace map.

To an irreducible admissible representation σ of GL1(AF ) or GL2(AF ), one
associates in the usual way

• the finite L-function L(s, σ) =
∏
ν<∞ L(s, σν),

• the completed L-function Λ(s, σ) =
∏
ν L(s, σν), and

• the epsilon factor ε(s, σ) =
∏
ν ε(s, σ, ψν)

where the local Euler factors are those defined in [JL70]. The finite L-function can
be written formally as a Dirichlet series

L(s, σ) =
∑
n

λσ(n)

N(n)s

where n runs through the integral ideals of F and N(n) ∈ N denotes the absolute
norm of n.

In the cases of interest to us, the L-functions are explicitly described below.
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• If p is a non-archimedean place of F and if χ : F×p → C× is a character,
then

L(s, χ) =

{
1 +

χ(ωp)
N(p)s + · · ·+ χ(ωp)

n

N(p)ns + · · · if χ is unramified,

1 otherwise,

where ωp ∈ OFν denotes a chosen uniformizer.
• If ν is a non-archimedean place of F and if π is an irreducible admissible

generic representation of GL2(Fν), then

L(s, π) =


1 if π is supercuspidal,

L(s+ 1
2 , χ) if σ ' St(χ) = χ · St is Steinberg,

L(s, χ1)L(s, χ2) if σ ' I(χ1, χ2) where χ1 6' χ2|·|±1 is a principal series.

Let π be a cuspidal automorphic representation of GL2(AF ) such that

• π∞ is a discrete series representation, and
• either [F : Q] is odd or kν = kν′ mod 2 for all archimedean places ν and
ν′ of F where πν is the discrete series representation of weight kν .

The Ramanujan-Petersson conjecture is known for such π, which states that the
local representations πν are tempered for all ν (cf. [Bla06, Theorem 1]).

Let E/F be a Galois extension of totally real number fields. Let BCE/F (π) =
⊗νBCEν/Fν (πν) denote the (Langlands) base change of π to E. This is the irre-
ducible admissible representation of GL2(AE) which is determined by the condition
that for all places ν of E,

rec(BCEν/Fν (πν)) ' rec(πν)|W ′ν
as Weil-Deligne representations. Here rec denotes the local Langlands correspon-
dence, normalised as in [HT01], that associates to an irreducible admissible repre-
sentation of GLn(k) an n-dimensional Weil-Deligne representation of W ′k where k
is a local field field of characteristic 0. The Langlands functoriality conjectures pre-
dict that BCE/F (π) should be an automorphic representation, and as BCE/F (π)∞
is a discrete series representations one expects the following.

Conjecture 2.1. The representation BCE/F (π) is a cuspidal automorphic repre-
sentation.

Remark 2.2. If either E/F is solvable or F = Q, then the conjecture is known due
to the work of Langlands [Lan80] and Dieulefait [Die12] respectively.

Conjecture 2.3. For all unitary Hecke characters ω : E×\A×E → C× the com-
pleted L-functions Λ(s,BCE/F (π)⊗ ω) and Λ(s,BCE/F (π∨)⊗ ω−1)

(i) converge absolutely in some right half plane R(s) > M ;
(ii) continue to meromorphic functions of C;
(iii) satisfy the functional equation

Λ(s,BCE/F (π)⊗ ω) = ε(s,BCE/F (π)⊗ ω)Λ(s,BCE/F (π∨)⊗ ω−1);

and if ω is unramified at all finite places, the completed L-function Λ(s,BCE/F (π)⊗
ω) continues to an analytic function of C that is bounded in vertical strips.

Lemma 2.4. Conjecture 2.1 and Conjecture 2.3 are equivalent.
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Proof. The contragredient of the base change is isomorphic to the base change of
the contragredient that is

BCE/F (π∨) ' BCE/F (π)∨

as irreducible admissible representations of GL2(AE). It follows from well known
properties of the L-functions associated to cuspidal automorphic representations
(cf. [JL70, Theorem 11.1]) that Conjecture 2.1 implies Conjecture 2.3. The fact
that Conjecture 2.3 implies Conjecture 2.1 follows from the Booker-Krishnamurthy
[BK12, Theorem 1.1] improvement of the Weil converse theorem. �

Let ω : E×\A×E → C× be a unitary Hecke character that is unramified at all
finite places. We wish to make progress towards Conjecture 2.3 by studying the
L-function

Λ(s,BCE/F (π)⊗ ω).

We are unable to study this L-function directly, and shall instead study the related
Dirichlet series

D(s, π, ω,E/F ) =
∑
n

λπ(NE/F (n))λω(n)

N(n)s

where n runs through the integral ideals of E and NE/F denotes the relative norm
map.

Lemma 2.5. The Dirichlet series D(s, π, ω,E/F ) converges absolutely in the right
half plane R(s) > 1.

Proof. The representation π is tempered at all finite places. Consequently for all
δ > 0, we have the bound

λπ(a)� N(a)δ

where a denotes an integral ideal of F . The Hecke character ω is unitary and
unramified at all finite places, which implies that |λω(n)| = 1 for all integral ideals
n of E. It follows that D(s, π, ω,E/F ) converges absolutely in the right half plane
<(s) > 1 + δ. �

Lemma 2.6. The Dirichlet series D(s, π, ω,E/F ) admits an Euler product expan-
sion over F . That is formally,

D(s, π, ω,E/F ) =
∏
p

Dp(s, π, ω,E/F )

where p runs through the prime ideals of OF and

Dp(s, π, ω,E/F ) =

∞∑
n1=0

· · ·
∞∑

nr=0

λπ(p(n1+···+nr)fE/F,p)λω(qn1
1 · · · qnrr )

N(p)(n1+···+nr)fE/F,ps

where q1, . . . , qr denote the distinct prime ideals of OE lying above p and fE/F,p =
[OE/q1 : OF /p] denotes the relative residue extension degree.

Proof. If n and n′ are integral ideals of E such that NE/F (n) and NE/F (n′) are
relatively prime as integral ideals of F , then

λπ(NE/F (nn′)) = λπ(NE/F (n)NE/F (n′)) = λπ(NE/F (n))λπ(NE/F (n′)).

Such integral ideals n and n′ are relatively prime, and we see that

λω(nn′) = λω(n)λω(n′).
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It follows that the Dirichlet series D(s, π, ω,E/F ) admits an Euler product expan-
sion over F where

Dp(s, π, ω,E/F ) =
∑
n

λπ(NE/F (n))λω(n)

N(n)s

where n runs through the integral ideals of E such that NE/F (n) = pn for some
n ≥ 0. The integral ideals n are of the form qn1

1 · · · qnrr where n1, . . . , nr ≥ 0. As
the extension E/F is Galois NE/F (qi) = pfE/F,p for all i = 1, . . . , r. �

Lemma 2.7. Let p denote a prime ideal of OF , then the local Euler factor

Dp(s, π, ω,E/F )

converges absolutely in the right half plane R(s) > 0.

Proof. The definition of the local Euler factor states that

Dp(s, π, ω,E/F ) =

∞∑
n1=0

· · ·
∞∑

nr=0

λπ(p(n1+···+nr)fE/F,p)λω(qn1
1 · · · qnrr )

N(p)(n1+···+nr)fE/F,ps

As the representation π is tempered at all finite places and the Hecke character ω
is unitary, we have the bound, valid for all δ > 0,

λω(a)λπ(NE/F (a))� N(a)δ

where a denotes an integral ideal of E. It follows that Dp(s, π, ω,E/F ) converges
absolutely in the right half plane R(s) > δ. �

Lemma 2.8. Let n = p1 · · · pr where the pi are prime ideals of OE that are totally
split over distinct prime ideals of OF . If π is unramified at the places NE/F (pi) for
all i = 1, . . . , r, then

λπ(NE/F (n))λω(n) = λBCE/F (π)⊗ω(n).

Proof. As the Hecke character ω is unramified at all finite places, it follows that

λBCE/F (π)⊗ω(n) = λBCE/F (π)(n)λω(n).

As the prime pi is totally split above F , we see that

BCE/F (π)pi ' πNE/F (pi)

for all i = 1, . . . , r. Finally as the pi lie above distinct prime ideals of OF , we see
that

λπ(NE/F (n)) =

r∏
i=1

λπ(NE/F (pi)).

The result follows. �

Lemma 2.9. Let A > 0. Assume that the Dirichlet series D(s, π, ω,E/F ) has an
analytic continuation to the right half plane <(s) > 1

2 +A and that the Euler factors

Dp(s, π, ω,E/F ) are non-zero in the right half plane <(s) > 1
2 + A for all prime

ideals p of OF . Then the L-function

L(s,BCE/F (π)⊗ ω)

converges absolutely in the right half plane R(s) > 1 and has an analytic continua-
tion to the right half plane <(s) > 1

2 +A.
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Proof. By Lemma 2.6, we can write formally

L(s,BCE/F (π)⊗ ω) = D(s, π, ω,E/F )
∏
p

Lp(s,BCE/F (π)⊗ ω)

Dp(s, π, ω,E/F )

where p runs through the prime ideals of OF and

Lp(s,BCE/F (π)⊗ ω) =

r∏
i=1

L(s, (BCE/F (π)⊗ ω)qi)

where q1, . . . , qr are the distinct primes of OE lying above a prime ideal p. The
result will follow if we can show that the Dirichlet series

(2.1)
∏
p

Lp(s,BCE/F (π)⊗ ω)

Dp(s, π, ω,E/F )

converges to an analytic function for R(s) > 1
2 +A.

As the representation π is tempered at all finite places, we have the bound, valid
for all δ > 0,

λπ(a)� N(a)δ

where a denotes an integral ideal of F . If R(s) > δ, then this gives the bound

Dp(s, π, ω,E/F ) = 1 +

∞∑
n1,...,nr=0
n1+···+nr≥1

λπ(p(n1+···+nr)fE/F,p)λω(qn1
1 · · · qnrr )

N(p)(n1+···+nr)fE,ps

= 1 + O(N(p)fE/F,p(δ−R(s))).

If R(s) > 1
2 + A, then by assumption Dp(s, π, ω,E/F ) 6= 0, and we obtain the

bound

Dp(s, π, ω,E/F )−1 � 1.

The Langlands base change of a tempered representation remains tempered. It
follows that the representation BCE/F (π) ⊗ ω is tempered at all places, and we
have the bound

λBCE/F (π)⊗ω(a)� N(a)δ

where a denotes an integral ideal of E. (We remark that this bound implies that
the L-function L(s,BCE/F (π) ⊗ ω) converges absolutely in the right half plane
R(s) > 1 + δ.) If p is such that fE/F,p ≥ 2, then arguing as before, we obtain the
bound

Lp(s,BCE/F (π)⊗ ω)−Dp(s, π, ω,E/F )� N(p)2(δ−R(s)).

If p is totally split in E and πp is unramified, then we can apply Lemma 2.8 to
obtain the bound

Lp(s,BCE/F (π)⊗ ω)−Dp(s, π, ω,E/F )� N(p)2(δ−R(s)).

We can now combine our obtained bounds assuming that p is either totally split in
E and πp is unramified, or fE/F,p ≥ 2. If R(s) > 1

2 +A, then we obtain the bound

Lp(s,BCE/F (π)⊗ ω)

Dp(s, π, ω,E/F )
= 1+

Lp(s,BCE/F (π)⊗ ω)−Dp(s, π, ω,E/F )

Dp(s, π, ω,E/F )
� N(p)2(δ−R(s)).
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We are left to consider the finite number of remaining p. In this case we remark
that Lp(s,BCE/F (π)⊗ ω) converges absolutely if R(s) > δ. Thus

Lp(s,BCE/F (π)⊗ ω)

Dp(s, π, ω,E/F )

defines an analytic function in the right half plane <(s) > 1
2 +A.

Combing our results, we deduce that the Dirichlet series (2.1) defines an analytic
function in the right half plane defined by R(s) > 1

2 + A and 2(δ − R(s)) < −1,

that is R(s) > 1
2 + max(A, δ). The result follows. �

Lemma 2.10. If π is not unramified at a prime ideal p, then Dp(s, π, ω,E/F )
converges and is non-zero in the right half plane <(s) > 0.

Proof. The representation πp is a tempered representation that is not unramified.
Consequently, πp will be either supercuspidal, Steinberg St(χ) where χ is a unitary
character, or a principal series I(χ1, χ2) where χ1 and χ2 are unitary characters and
χ1 is not unramified. By considering the possible cases, we observe that the local
L-function L(s, πp) will either be equal to 1 or of the form L(s + 1

2 , χ) or L(s, χ)

where χ : F×p → C× is a unitary character. In the first case Dp(s, π, ω,E/F ) = 1,

in the second case Dp(s, π, ω,E/F ) =
∏

q|p L(s+ 1
2 , (χ ◦ NEq/Fp

)⊗ ωq) and in the

third case Dp(s, π, ω,E/F ) =
∏

q|p L(s, (χ ◦ NEq/Fp
) ⊗ ωq). The local L-function

of a unitary character is non-zero in the open half plane R(s) > 0. �

Lemma 2.11. Let V denote the finite set of prime ideals of OF

V =

{
p :

∞∑
n=0

(n+ 1)d−1(dn+ 1)N(p)−
n
2 > 2

}
where d = [E : F ]. Then for all p 6∈ V , Dp(s, π, ω,E/F ) is non-zero in the right
half plane <(s) > 1

2 .

Proof. Let p 6∈ V . If πp is not unramified, then the result follows by Lemma
2.10. We are left to consider the case that πp is unramified tempered, that is
πp ' I(χ1, χ2) is a principal series where both χ1 and χ2 are unitary unramified
characters. In this case L(s, πp) = L(s, χ1)L(s, χ2). It follows that

λπ(pn) =
∑
i+j=n

λχ1
(pi)λχ2

(pj).

for all n ≥ 0. This gives the bound |λπ(pn)| ≤ n+ 1 for all n ≥ 0. We must study
the local Euler factor

Dp(s, π, ω,E/F ) = 1 +

∞∑
n1,...,nr=0
n1+···+nr≥1

λπ(p(n1+···+nr)fE/F,p)λω(qn1
1 · · · qnrr )

N(p)(n1+···+nr)fE/F,ps
.

The local Euler factor will be non-zero if we can show that for <(s) > 1
2 ,

∞∑
n1,...,nr=0

∣∣∣∣λπ(p(n1+···+nr)fE/F,p)λω(qn1
1 · · · qnrr )

N(p)(n1+···+nr)fE/F,ps

∣∣∣∣ < 2.
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We observe that
∞∑

n1,...,nr=0

∣∣∣∣λπ(p(n1+···+nr)fE/F,p)λω(qn1
1 · · · qnrr )

N(p)(n1+···+nr)fE/F,ps

∣∣∣∣
<

∞∑
n1,...,nr=0

(n1 + · · ·+ nr)fE/F,p + 1)N(p)−
n1+···+nr

2 fE/F,p

≤
∞∑

n1,...,nr=0

((n1 + · · ·+ nr)d+ 1)N(p)−
n1+···+nr

2

≤
∞∑
n=0

(n+ 1)r−1(dn+ 1)N(p)−
n
2

≤
∞∑
n=0

(n+ 1)d−1(dn+ 1)N(p)−
n
2 .

�

We can collect the results of this section to obtain the desired lemma.

Lemma 2.12. Let E/F be a Galois extension of totally real number fields. Let π
be a cuspidal automorphic representation of GL2(AF ) such that

• π∞ is a discrete series representation, and
• either [F : Q] is odd or kν = kν′ mod 2 for all archimedean places ν and
ν′ of F where πν is the discrete series representation of weight kν .

Let ω : E×\A×E → C× be a unitary Hecke character that is unramified at all finite
places. Assume that the Dirichlet series D(s, π, ω,E/F ) has an analytic continua-
tions to the right half plane <(s) > 1

2 + A for some A > 0 and that π is not un-
ramified for all p ∈ V (see Lemma 2.11). Then the L-function Λ(s,BCE/F (π)⊗ω)
converges absolutely in the right half plane R(s) > 1 and has an analytic continua-
tion to the right half plane R(s) > 1

2 +A.

Proof. We begin by noting that the Euler factors L(s, (BCE/F (π)⊗ω)ν) at archimedean

places ν of E are analytic in the closed right half plane R(s) ≥ 1
2 (cf. [BK11, §4.3]).

The result now follows by Lemma 2.9 whose hypotheses are satisfied by Lemma
2.10 and Lemma 2.11. �

3. Analysis of the Dirichlet series D(s, π, ω,E/F )

In this section, we shall apply the Petersson trace formula to study the analytic
properties of the Dirichlet series D(s, π, ω,E/F ). Let E/F be a Galois extension
of totally real number fields. Let π1, . . . , πr be distinct cuspidal automorphic repre-
sentations of GL2(AF ). Let ω : E×\A×E → C× be a unitary Hecke character that
is unramified at all finite places.

Lemma 3.1. Assume that there exist non-zero constants cπi ∈ C× for i = 1, . . . , r
and that there exists a δ ∈ R such that for almost all prime ideals p of OF , we have
the bound

r∑
i=1

cπiλπi(p)
∑
n

g(
N(n)

X
)λπi(NE/F (n))λω(n)� Xδ
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where n runs through the integral ideals of E and g ∈ C∞c (R) is a smooth non-
negative test function with compact support in (0,∞). Then for all i = 1, . . . , r, the
Dirichlet series

D(s, πi, ω, E/F ) =
∑
n

λπi(NE/F (n))λω(n)

N(n)s

converges to an analytic function in the right half plane <(s) > δ.

Proof. By strong multiplicity 1 for cuspidal automorphic representations ofGL2(AF ),
we can find prime ideals p1, . . . , pr of OF such that the matrix (λπi(pj)) is non sin-

gular. Let A = (λπi(pj)) which is also non-singular, and we shall write A−1 = (ai,j)
for the inverse of A. Then for i = 1, . . . , r, we have the bound

cπi
∑
n

g(
N(n)

X
)λπi(NE/F (n))λω(n)� ai,1X

δ + · · ·+ ai,rX
δ � Xδ.

This implies that for i = 1, . . . , r, the Dirichlet series D(s, πi, ω, E/F ) converges to
an analytic function in the right half plane <(s) > δ. �

3.1. A first case. To provide support to our approach, we shall analyse the case
where E/F = Q(

√
D)/Q is a real quadratic extension and ω : E×\A×E → C× the

identity Hecke character.

3.1.1. The Petersson trace formula. For N ∈ N, we define the groups

K0(N) =

{(
a b
c d

)
∈ GL2(Ẑ) : c ∈ N Ẑ

}
and

K1(N) =

{(
a b
c d

)
∈ K0(N) : d ∈ 1 +N Ẑ

}
.

Let k > 2 be an integer, let N ∈ N, and let φ : (Z/NZ)× → C× be a primitive
Dirichlet character. Let Ak(N,φ) denote the set of equivalence classes of cuspidal
automorphic representations π of GL2(AQ) such that

• the central character of π, ωπ : Q×\A×Q → C× is equal to the composite

A×Q → Ẑ× → (Z/NZ)×
φ→ C×

where the first two maps are the natural projection maps from the decom-

position A×Q = Q×(R×+ × Ẑ×),
• π∞ is the discrete series representation of weight k, and

• πK1(N)
f 6= 0.

We shall further assume that φ(−1) = (−1)k as otherwise the set of automorphic
representations Ak(N,φ) = ∅ will be trivial. The classical Petersson trace formula
(see for example [KL06, Corollary 3.12]) can be rephrased to give the following
statement.

Lemma 3.2. For all m,n ∈ N,

ψ(N)−1(k − 2)!

(4π)k−1

∑
π∈Ak(N,φ)

λπ(m)λπ(n) = δm,n+
2π

ik

∑
c>0

c=0 mod N

1

c
Sφ(m,n; c)Jk−1

(
4π
√
mn

c

)
where

• ψ(N) = [GL2(Ẑ) : K0(N)],
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• δm,n =

{
1 if m = n,

0 otherwise,

• Sφ(m,n; c) =
∑
x∈(Z/cZ)× φ

−1(x)e(mx+nxc ) is the Kloosterman sum, and

• Jk−1 is the Bessel function.

3.1.2. The analysis. Let D > 1 be a square free integer and let E/F = Q(
√
D)/Q

be the corresponding real quadratic extension. Let g ∈ C∞c (R) be a smooth non-
negative test function with compact support in (0,∞). For m ∈ N, we shall be
interested in the smoothly weighted sum

S(m,X) =
∑

π∈Ak(N,φ)

λπ(m)
∑
n

g

(
N(n)

X

)
λπ(N(n))

where n runs through the integral ideals of E = Q(
√
D). We shall first split the

sum via the ideal class group of E. Let ξ1, . . . , ξh be a set of integral ideals of E
that form a set of representatives of the class group Cl(E) of E. We can write

S(m,X) = S(ξ1,m,X) + · · ·+ S(ξh,m,X)

where for all i = 1, . . . , h,

S(ξi,m,X) =
∑

π∈Ak(N,φ)

λπ(m)
∑

α∈OE/O×E

g

(
N((α) · ξi)

X

)
λπ(N((α) · ξi)).

Lemma 3.3. Assume that D = 2, 3 mod 4. If k ≥ 6, then we have the bound

S(m,X)� X
3
4+

5
2(k−3) .

Remark 3.4. The assumption that D = 2, 3 is wholly unnecessary and can easily
be removed. It was added to simplify notation in the proof of the lemma.

Remark 3.5. The trivial bound coming from the Ramanujan-Petersson conjecture
for the π ∈ Ak(N,φ) is S(m,X)� X1+δ valid for all δ > 0.

Proof. Let i ∈ {1, . . . , h}. It will suffice to obtain the bound S(ξi,m,X) �
X

3
4+

5
2(k−3) . Rearranging the terms in the sum, we have that

S(ξi,m,X) =
∑

α∈OE/O×E

g

(
N((α) · ξi)

X

) ∑
π∈Ak(N,φ)

λπ(m)λπ(N((α) · ξi)).
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Applying the Petersson trace formula (cf. Lemma 3.2), we can write

S(ξi,m,X) =
(4π)k−1

ψ(N)−1(k − 2)!

∑
α∈OE/O×E

g

(
N((α) · ξi)

X

)
δm,N((α)·ξi) +

2π

ik

∑
c>0

c=0 mod N

1

c
Sφ(m,N((α) · ξi); c)Jk−1(

4π
√
mN((α) · ξi)

c
)


�

∑
α∈OE/O×E

∑
c>0

c=0 mod N

g

(
N((α) · ξi)

X

)
1

c
Sφ(m,N((α) · ξi); c)Jk−1(

4π
√
mN((α) · ξi)

c
)

� X
3
4 +

∑
α∈OE/O×E

∑
X

1
2
+B≥c>0

c=0 mod N

g

(
N((α) · ξi)

X

)
1

c
Sφ(m,N((α) · ξi); c)Jk−1(

4π
√
mN((α) · ξi)

c
)

where B = 5
4(k−3) and the last line follows from an application of Lemma 3.6. We

note that B < 1
2 as k ≥ 6.

We shall convert the sum over OE/O×E to a smoothly weighted sum over Z×Z.
To do so, we recall that for all t ∈ R and for all principal ideals n of OE , there
exists a unique representative α = a+ b

√
D such that

• a+ b
√
D > 0, and

• t < log|a+ b
√
D| ≤ t+R where R is the regulator of Q(

√
D).

Let f ∈ C∞c (R) be a smooth test function with compact support whose Fourier

transform at 0 is equal to F̂ (0) =
∫
R
f(t) dt = 1. Then

LX :=
∑

α∈OE/O×E

∑
X

1
2
+B≥c>0

c=0 mod N

g

(
N((α) · ξi)

X

)
1

c
Sφ(m,N((α) · ξi); c)Jk−1(

4π
√
mN((α) · ξi)

c
)

= F̂ (0)
∑

X
1
2
+B≥c>0

c=0 mod N

∑
α∈OE/O×E

g

(
N((α) · ξi)

X

)
1

c
Sφ(m,N((α) · ξi); c)Jk−1(

4π
√
mN((α) · ξi)

c
)

=
∑

X
1
2
+B≥c>0

c=0 mod N

∑
a,b∈Z

H(a+ b
√
D)g

(
N(ξi)|a2 −Db2|

X

)

1

c
Sφ(m,N(ξi)|a2 −Db2|; c)Jk−1(

4π
√
mN(ξi)|a2 −Db2|

c
)

where

H(z) =

{
0 if z ≤ 0,∫ log|z|
log|z|−R f(t) dt otherwise.
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The function H is easily seen to be a smooth function with compact support in
(0,∞). As both the functions g and H have support in (0,∞), we see that

LX =
∑

X
1
2
+B≥c>0

c=0 mod N

∑
a,b∈Z

H(a+ b
√
D)g

(
N(ξi)(a

2 −Db2)

X

)

1

c
Sφ(m,N(ξi)(a

2 −Db2); c)Jk−1(
4π
√
mN(ξi)(a2 −Db2)

c
)

=
∑

X
1
2
+B≥c>0

c=0 mod N

∑
a,b∈Z

c−1Iξi,c(a, b)Sφ(m,N(ξi)(a
2 −Db2); c)

where Iξi,c(a, b) = H(a+ b
√

2)g
(

N(ξi)(a
2−Db2)
X

)
Jk−1(

4π
√
mN(ξi)(a2−Db2)

c ).

We shall expand out the Kloosterman sum and then perform Poisson summation
on the variables a and b modulo c. This gives the following

LX =
∑

X
1
2
+B≥c>0

c=0 mod N

∑
x∈(Z/cZ)×

φ−1(x)
∑
a,b∈Z

c−1Iξi,c(a, b)e(
mx+ N(ξi)(a

2 −Db2)x

c
)

=
∑

X
1
2
+B≥c>0

c=0 mod N

∑
x∈(Z/cZ)×

φ−1(x)
∑

a0,b0∈(Z/cZ)

e(
mx+ N(ξi)(a

2
0 −Db20)x

c
)

∑
a=a0 mod c
b=b0 mod c

c−1Iξi,c(a, b)

=
∑

X
1
2
+B≥c>0

c=0 mod N

∑
x∈(Z/cZ)×

φ−1(x)
∑

a0,b0∈(Z/cZ)

e(
mx+ N(ξi)(a

2
0 −Db20)x

c
)
∑
r,s∈Z

c−3Îξi,c(
r

c
,
s

c
)e(

ra0 + sb0
c

)

where

Îξi,c(
r

c
,
s

c
) =

∫
R

∫
R

Iξi,c(t1, t2)e(−r
c
t1 −

s

c
t2) dt1dt2.

Thus we are left to study the sum

LX =
∑

X
1
2
+B≥c>0

c=0 mod N

∑
r,s∈Z

c−3Îξi,c(
r

c
,
s

c
)Aφ(m,N(ξi),−DN(ξi), r, s, c)

where

Aφ(m,N(ξi),−DN(ξi), r, s, c) =
∑

x∈(Z/cZ)×

φ−1(x)
∑

a0,b0∈(Z/cZ)

e(
mx+ N(ξi)(a

2
0 −Db20)x+ ra0 + sb0

c
).

Let δ > 0 and let

D = {(r, s) ∈ Z× Z : |s−
√
Dr| < X−

1
2+B+δ and |s+

√
Dr| < X

1
2+B+δ}.

We shall study the two sums

L′X =
∑

X
1
2
+B≥c>0

c=0 mod N

∑
(r,s)∈D

c−3Îξi,c(
r

c
,
s

c
)Aφ(m,N(ξi),−DN(ξi), r, s, c)

and

L′′X =
∑

X
1
2
+B≥c>0

c=0 mod N

∑
(r,s) 6∈D

c−3Îξi,c(
r

c
,
s

c
)Aφ(m,N(ξi),−DN(ξi), r, s, c)
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By applying the trivial bound |Aφ(m,N(ξi),−DN(ξi), r, s, c)| ≤ c3 along with
Lemma 3.7, we can bound the sum L′′X absolutely as

L′′X � XT

which is valid for all T ∈ R. It follows that LX � L′X and we are left to bound
the sum

L′X =
∑

(r,s)∈D

∑
X

1
2
+B≥c>0

c=0 mod N

c−3Îξi,c(
r

c
,
s

c
)Aφ(m,N(ξi),−DN(ξi), r, s, c).

Let r, s ∈ Z such that −4DN(ξi)
2m+ N(ξi)Dr

2 −N(ξi)s
2 6= 0. We note that all

elements (r, s) ∈ D satisfy this property when X is sufficiently large. Applying the
respective definitions, we have that∑

X
1
2
+B≥c>0

c=0 mod N

c−3Îξi,c(
r

c
,
s

c
)Aφ(m,N(ξi),−DN(ξi), r, s, c)

=
∑

X
1
2
+B≥c>0

c=0 mod N

c−3Aφ(m,N(ξi),−DN(ξi), r, s, c)

∫
R

∫
R

H(t1 + t2
√
D)

g

(
N(ξi)(t

2
1 −Dt22)

X

)
Jk−1(

4π
√
mN(ξi)(t21 −Dt22)

c
)e(−r

c
t1 −

s

c
t2) dt1dt2.

If we perform the change of variables u1 = t1 + t2
√
D, u2 = c−2(t2 − t2

√
D) and

bring the c-sum inside the double integral, we obtain the following absolute bound

1

2
√
D

∫
R

∫
R

|H(u1)Jk−1

(
4π
√
mN(ξi)u1u2

)
|

∑
X

1
2
+B≥c>0

c=0 mod N

c−1|Aφ(m,N(ξi),−DN(ξi), r, s, c)g

(
N(ξi)u1u2c

2

X

)
|du2du1

(3.1)

By Lemma 3.13, the L-function
∞∑
c=1

c=0 mod N

c−sc−1Aφ(m,N(ξi),−DN(ξi), r, s, c)

converges absolutely and is bounded in vertical strips in the right half plane R(s) >
1. We may contour shift to obtain the bound (cf. [Ven02, §6.5.1])∑
X

1
2
+B≥c>0

c=0 mod N

c−1Aφ(m,N(ξi),−DN(ξi), r, s, c)g

(
N(ξi)u1u2c

2

X

)
�
(

X

u1u2N(ξi)

)A

which is valid for all A > 1
2 . We shall apply this bound for A = 3

4 + δ since using

the bound Jk−1(z) � min(1, z−
1
2 ) this ensures that the double integral of (3.1)

converges. This gives a bound for (3.1) of O(X
3
4+δ). That is we have bounded the

contribution of a single (r, s) ∈ D by O(X
3
4+δ). By Lemma 3.8, the cardinality of

the set |D| = O(X2B+2δ). Putting everything together, we have the bound

L′X � X
3
4+2B+3δ
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valid for all δ > 0.
�

3.1.3. Auxillary lemmas. We have collected the Lemmas needed in Section 3.1.2.
Unless otherwise specified, we shall keep the notations and assumptions of Section
3.1.2.

Lemma 3.6. Let B > 0. Then if k > 3, we have the bound∑
α∈OE/O×E

∑
c>X

1
2
+B

c=0 mod N

∣∣∣∣∣g
(

N((α) · ξi)
X

)
1

c
Sφ(m,N((α) · ξi); c)Jk−1(

4π
√
mN((α) · ξi)

c
)

∣∣∣∣∣� X2+B(3−k)

for all i = 1, . . . , h.

Proof. By applying the trivial bound for the Kloosterman sum |Sφ(m,N(n); c)| ≤ c2
along with Bessel function asymptotic Jk−1(z)� zk−1 for z � 1, we see that∑

α∈OE/O×E

∑
c>X

1
2
+B

c=0 mod N

∣∣∣∣∣g
(

N((α) · ξi)
X

)
1

c
Sφ(m,N((α) · ξi); c)Jk−1(

4π
√
mN((α) · ξi)

c
)

∣∣∣∣∣
�

∑
α∈OE/O×E

|g
(

N((α) · ξi)
X

)
|

∑
c>X

1
2
+B

c=0 mod N

c

(√
N((α) · ξi)

c

)k−1

�
∑

α∈OE/O×E

|g
(

N((α) · ξi)
X

)
|X

k−1
2

∑
c>X

1
2
+B

c=0 mod N

c2−k

�
∑

α∈OE/O×E

|g
(

N((α) · ξi)
X

)
|X

k−1
2 X( 1

2+B)(3−k)

� XX
k−1
2 X( 1

2+B)(3−k) = X2+B(3−k)

where the last line follows from the fact the the number of principal ideals (α) of
OE for which N((α)) = O(X) is O(X). �

Lemma 3.7. Assume that we are not in the case where r = s = 0. Then for all
integers K ∈ N, we have the bounds

Îξi,c

(r
c
,
s

c

)
� (s−

√
Dr)−KX1−K( 1

2−B)

and

Îξi,c

(r
c
,
s

c

)
� (s+

√
Dr)−KX1+K( 1

2+B)

for all c ≤ X 1
2+B and for all i = 1, . . . h.

Proof. We begin with the definition

Îξi,c(
r

c
,
s

c
) =

∫
R

∫
R

H(t1+t2
√
D)g

(
N(ξi)(t

2
1 −Dt22)

X

)
Jk−1(

4π
√
mN(ξi)(t21 −Dt22)

c
)e(−r

c
t1−

s

c
t2) dt1dt2.
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We now perform a change of variables u1 = t1 + t2
√
D and u2 = t1 − t2

√
D. This

gives that

Îξi,c(
r

c
,
s

c
) = − 1

2
√
D

∫
R

∫
R

H(u1)g

(
N(ξi)u1u2

X

)
Jk−1(

4π
√
mN(ξi)u1u2

c
)e(

β

c
u2+

α

c
u1) du2du1

where α = − 1
2
√
D

(
√
Dr+ s) and β = − 1

2
√
D

(−
√
Dr+ s). After performing another

change of variables u2 7→ u2X, we see that

Îξi,c(
r

c
,
s

c
) = − X

2
√
D

∫
R

∫
R

H(u1)g (N(ξi)u1u2) Jk−1(
4π
√
mN(ξi)Xu1u2

c
)e(

βX

c
u2+

α

c
u1) du2du1

The first (resp. second) bound is now obtained by integrating by parts K-times
on the u2-variable (resp. u1-variable). Let us sketch the argument in the case of
the first bound. After integrating by parts K-times on the u2-variable, we observe
that

Îξi,c(
r

c
,
s

c
) = − X

2
√
D

(
c

βX

)K ∫
R

∫
R

e(
βX

c
u2+

α

c
u1)

∂K

∂uK2

(
H(u1)g (N(ξi)u1u2) Jk−1(

4π
√
mN(ξi)Xu1u2

c
)

)
du2du1

The partial derivative is a sum of terms of the form(√
X

c

)α1

uα2
1 uα3

2 H(α4)(u1)g(α5)(N(ξi)u1u2)J
(α6)
k−1 (

4π
√
mN(ξi)Xu1u2

c
)

where α1, α4, α5, α6 ∈ N0 and α2, α3 are (half)-integers such that |αj | ≤ K for
all j = 1, . . . , 6. As both H and g are smooth functions with compact support in
(0,∞), we obtain the bound

Îξi,c(
r

c
,
s

c
)� X

(
c

βX

)K
max

1,

(√
X

c

)K = β−KX1−K max(cK , X
K
2 )� β−KX1−KXK( 1

2+B).

�

Lemma 3.8. Let 0 ≤ A < 1
2 , and let

D = {(r, s) ∈ Z× Z : |s−
√
Dr| < X−

1
2+A and |s+

√
Dr| < X

1
2+A}.

Then the cardinality of the set D is O(X2A).

Proof. By writing s = 1
2

(
s−
√
Dr + s+

√
Dr
)

and r = − 1
2
√
D

(
s−
√
Dr − (s+

√
Dr)

)
,

we obtain the bounds r, s� X
1
2+A. In order for the condition |s−

√
Dr| < X−

1
2+A

to be satisfied, one requires that either

{r
√
D} < X−

1
2+A or {r

√
D} > 1−X− 1

2+A

where {z} denotes the non-integer part of a z ∈ R. Furthermore, for any such r
there exists at most a single s for which the condition is satisfied. By the Weyl
equidistribution theorem, the number of such r is O(X−

1
2+AX

1
2+A) = O(X2A).

�

We shall have need of the following type of exponential sum.

Aφ(m,A,B, r, s, c) =
∑

x∈(Z/cZ)×

φ−1(x)e(
mx

c
)

∑
a0,b0∈(Z/cZ)

e(
Axa20 + ra0 +Bxb20 + sb0

c
).
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where m,A,B, r, s ∈ Z, φ is a Dirichlet character modulo some integer N , and N |c.
We can rewrite this sum in terms of quadratic Gauss sums to give

Aφ(m,A,B, r, s, c) =
∑

x∈(Z/cZ)×

φ−1(x)e(
mx

c
)G(Ax, r, c)G(Bx, s, c)

where G(α, β, γ) =
∑
z∈(Z/γZ) e(

αz2+βz
γ ) denotes the usual quadratic Gauss sum

defined for α, β ∈ Z and γ ∈ N.

Lemma 3.9. The exponential sum Aφ(m,A,B, r, s, c) is multiplicative in the sense
that writing c = uv where gcd(u, v) = 1, we have that

Aφ(m,A,B, r, s, c) = Aφu(mv′, Av′, Bv′, rv′, sv′, u)Aφv (mu′, Au′, Bu′, ru′, su′, v)

where u′, v′ ∈ Z such that vv′ + uu′ = 1 and we have decomposed the Dirichlet
character φ = φu × φv : (Z/uZ)× × (Z/vZ)× → C×.

Proof. This follows directly from the definition. �

Lemma 3.10. We have the bound |Aε(m,A,B, r, s, c)| ≤ |gcd(A, c) gcd(B, c)|c2.

Proof. This follows from the quadratic Gauss sum bounds |G(Ax, r, c)| ≤ gcd(A, c)
√
c

and |G(Bx, s, c)| ≤ gcd(B, c)
√
c. �

Lemma 3.11. Assume that γ ∈ N is odd and that gcd(α, γ) = 1. Then for all
β ∈ Z,

G(α, β, γ) = e(
−4αβ2

γ
)

(
α

γ

)
εγ
√
γ

where
( )

denotes the Jacboi symbol, and εγ = 1 if γ = 1 mod 4 and εγ = i
otherwise.

Proof. The quadratic Gauss sum is evaluated here by completing the square to give

G(α, β, γ) = e(
−4αβ2

γ
)G(α, 0, γ).

The result follows from the explicit evaluation of G(α, 0, γ). �

Lemma 3.12. Assume that c is odd, gcd(A, c) = gcd(B, c) = 1, and φ = 1 the
identity character. Then

A1(m,A,B, r, s, c) = cε2c

(
AB

c

) ∑
x∈(Z/cZ)×

e(
(4ABm−Br2 −As2)x

c
)

Proof. By applying Lemma 3.11, we see that

A1(m,A,B, r, s, c) =
∑

x∈(Z/cZ)×

e(
mx

c
)G(Ax, r, c)G(Bx, s, c)

= cε2c
∑

x∈(Z/cZ)×

(
Ax

c

)(
Bx

c

)
e(
mx− 4Ar2x− 4Bs2x

c
)

= cε2c

(
AB

c

) ∑
x∈(Z/cZ)×

e(
mx− 4Ar2x− 4Bs2x

c
)

= cε2c

(
AB

c

) ∑
x∈(Z/cZ)×

e(
(4ABm−Br2 −As2)x

c
)
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where the last line follows as gcd(4AB, c) = 1. �

Lemma 3.13. If 4ABm−Br2 −As2 6= 0, then the L-function

∞∑
c=1

c=0 mod N

Aφ(m,A,B, r, s, c)

cs

converges absolutely and is bounded in vertical strips in right half plane R(s) > 2.

Proof. Let p1, . . . , pr be a finite set of rational primes including the prime 2 such
that for all rational primes p 6= p1, . . . , pr, gcd(A, p) = gcd(B, p) = gcd(N, p) = 1.

We shall decompose c = αβ where α = pl11 · · · plrr for some l1, . . . , lr ∈ N0 and
gcd(pi, β) = 1 for all i = 1, . . . , r. By Lemma 3.9, we can write

Aφ(m,A,B, r, s) = Aφ(mβ′, Aβ′, Bβ′, rβ′, sβ′, α)A1(mα′, Aα′, Bα′, rα′, sα′, β).

where α′, β′ ∈ Z such that αα′ + ββ′ = 1. By Lemma 3.10, the first exponential
sum is bounded

|Aφ(mβ′, Aβ′, Bβ′, rβ′, sβ′, α)| ≤ |AB|α2.

By Lemma 3.12, the second sum is a Ramanujan sum which is bounded by

A1(mα′, Aα′, Bα′, rα′, sα′, β)� β · βδ

valid for all δ > 0. It follows that the L-function
∞∑
c=1

c=0 mod N

Aφ(m,A,B, r, s, c)

cs

converges absolutely and is bounded in vertical strips in the right half plane R(s) >
2 + δ. �

3.1.4. The result.

Theorem 3.14. Let k ≥ 6, let N ∈ N, and let φ : (Z/NZ)× → C× be a primitive
Dirichlet character. Let π ∈ Ak(N,φ) (see Section 3.1.1) be a cuspidal automorphic
representation GL2(AQ) such that πp is not unramified for all rational primes

p < 70. Let E = Q(
√
D) be a quadratic real extension such that D = 2, 3 mod 4.

Then the base change L-function Λ(s,BCE/Q(π))

• converges absolutely in the right half plane R(s) > 1, and
• continues to a holomorphic function in the right half plane R(s) > 3

4 +
5

2(k−3) .

Remark 3.15. Let us remark that in the simple setting of this theorem, the L-
function decomposes as

Λ(s,BCE/Q(π)) = Λ(s, π)Λ(s, π · χE/F )

where χE/F : Q×\A×Q → C× denotes the Hecke character corresponding to the

extension E/Q via class field theory. It then follows from the theory of L-functions
associated to cuspidal automorphic representations of GL2(AQ) that the L-function
Λ(s,BCE/Q(π)) continues to a holomorphic function of the complex plane. We
stress however that the aim of the method detailed in this article is to eventually
obtain results in situations where the known results are no longer available.
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Remark 3.16. As has already been remarked, the condition that D = 2, 3 mod 4
can be removed without any difficulties and was imposed only to simplify notation
in the proof of Lemma 3.3.

Remark 3.17. We have chosen throughout this article to work with the Petersson
trace formula as opposed to more general Petersson-Kuznetsov trace formula which
incorporates the contributions of both Maass forms and Eisenstein series. The
reason being that the spectral side of the Petersson-Kuznetsov is no longer finite
and we can no longer appeal to Lemma 3.1 to separate the Dirichlet series. If
one were willing to admit certain hypotheses (see [Her12a, Hypothesis 1.3] for the
case of the symmetric cube) then one could still separate the Dirichlet series. In
this case, we expect that our analysis could be improved to show the analytic
continuation of the L-function Λ(s,BCE/Q(π)) to the right half plane R(s) > 1

2 for
a general cuspidal automorphic representation of GL2(AQ). The reason being that
in the Petersson-Kuznetsov trace formula the Bessel function Jk−1 is replaced with
a smooth function of compact support which would allow the bound of Lemma 3.3
to be improved.

Proof. By Lemma 3.1 and Lemma 3.3, we see that the Dirichlet seriesD(s, π, 1, E/Q)
continues to an analytic function in the right half plane R(s) > 3

4 + 5
2(k−3) . The

result follows by applying Lemma 2.12 and observing that

V =

{
p :

∞∑
n=0

(n+ 1)(2n+ 1)p−
n
2 > 2

}
= {p : p < 70} .

�
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