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Abstract

In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer
sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities
involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences
and cross sequences.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The Bell polynomials, or more explicitly, the exponential partial Bell polynomials, are defined as follows [3, pp.
133 and 134]:

Definition 1.1. The exponential partial Bell polynomials are the polynomials

Bn,k = Bn,k(x1, x2, . . . , xn−k+1)

in an infinite number of variables x1, x2, . . . , defined by the formal double series expansion:

Φ = Φ(t, u) := exp

(
u
∑
m≥1

xm
tm

m!

)
=

∑
n,k≥0

Bn,k
tn

n!
uk

= 1+
∑
n≥1

tn

n!

{
n∑

k=1

uk Bn,k(x1, x2, . . .)

}
, (1.1)

or by the series expansion:

Φk(t) :=
1
k!

(∑
m≥1

xm
tm

m!

)k

=

∑
n≥k

Bn,k
tn

n!
, k = 0, 1, 2, . . . . (1.2)
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Their exact expression is

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

c1!c2! · · · (1!)c1(2!)c2 · · ·
xc1

1 xc2
2 · · · , (1.3)

where the summation takes place over all integers c1, c2, c3, . . . ≥ 0, such that c1 + 2c2 + 3c3 + · · · = n and
c1 + c2 + c3 + · · · = k.

The Bell polynomials are quite general polynomials and they have been found in many applications in
combinatorics. Comtet [3] devoted much to a thorough presentation of the Bell polynomials in the chapter on identities
and expansions. For more results, the reader is referred to [2, Chapter 11] and [9, Chapter 5].

It is well-known that many special combinatorial sequences can be obtained from the Bell polynomials by
appropriate choice of the variables x1, x2, . . .. For instance, the Bell polynomials include as particular cases the Stirling
numbers of both kinds, the Lah numbers, as well as the idempotent numbers (see [3, p. 135, Theorem B]):

Bn,k(1, 1, 1, . . .) = S(n, k), (Stirling numbers of the second kind),

Bn,k(1!, 2!, 3!, . . .) =
(

n − 1
k − 1

)
n!

k!
, (Lah numbers),

Bn,k(0!, 1!, 2!, . . .) = s(n, k), (unsigned Stirling numbers of the first kind),

Bn,k(1, 2, 3, . . .) =
(n

k

)
kn−k, (idempotent numbers).

Recently, Abbas and Bouroubi [1] studied the Bell polynomials and proposed two general identities by two
different methods, one based on the Lagrange inversion formula and the other based on the binomial sequences.
For convenience, let us list the second identity [1, Theorem 6]:

Bn,k(p0(1), 2p1(1), 3p2(1), . . .) =
(n

k

)
pn−k(k), (1.4)

where pn(x) is a sequence of binomial type which satisfies

pn(x + y) =
n∑

k=0

(n

k

)
pn−k(x)pk(y). (1.5)

Yang [17] further generalized (1.4) and obtained some other identities involving Bell polynomials and binomial
sequences.

A sequence is of binomial type if and only if it is an associated sequence [10, p. 26]. Since an associated sequence
is only a special Sheffer sequence, it will be instructive and interesting to do some research on Bell polynomials and
Sheffer sequences with similar methods to those used in [1] and [17].

The main contributions of this article are in proposing two new characterizations for Sheffer sequences and giving
some general identities involving Bell polynomials and Sheffer sequences.

This article is organized as follows. The definitions of some sequences are introduced at the end of this section.
In Section 2, we demonstrate new characterizations of Sheffer sequences. The relations between Sheffer sequences
and Riordan arrays are also briefly discussed there. Section 3 is devoted to general identities on Bell polynomials and
Sheffer sequences, which generalize some results presented in [1,17]. Moreover, from the general identities, we obtain
two elegant identities for cross sequences. In Section 4, we give some applications, and finally, in Section 5, we give
some further remarks.

Now, let us introduce some definitions. If the formal power series f (t) has a multiplicative inverse, denoted by
f (t)−1 or 1/ f (t), then we call f (t) an invertible series. If the series f (t) has a compositional inverse, denoted by
f̄ (t) and satisfying f ( f̄ (t)) = f̄ ( f (t)) = t , then we call f (t) a delta series.

Definition 1.2 ([10, Theorem 2.3.4]). Let g(t) be an invertible series and let f (t) be a delta series; we say that the
sequence sn(x) is the Sheffer sequence for the pair (g(t), f (t)) if and only if
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∞∑
n=0

sn(x)
tn

n!
=

1

g( f̄ (t))
ex f̄ (t), (1.6)

where f̄ (t) is the compositional inverse of f (t).

Definition 1.3 ([10, p. 17]). The Sheffer sequence for (1, f (t)) is the associated sequence for f (t). If sn(x) is
associated to f (t), then

∑
∞

n=0 sn(x)tn/n! = exp(x f̄ (t)). The Sheffer sequence for (g(t), t) is the Appell sequence
for g(t). If sn(x) is Appell for g(t), then

∑
∞

n=0 sn(x)tn/n! = exp(xt)/g(t).

For example, the Laguerre polynomials L(α)n (x) are Sheffer for ((1− t)−α−1, t/(t − 1)) and the Poisson–Charlier
polynomials cn(x; a) are Sheffer for (ea(et

−1), a(et
− 1)). Moreover, the sequence xn is associated to f (t) = t ; the

Hermite polynomials H (ν)
n (x) are Appell for eνt2/2; the generalized Bernoulli polynomials B(α)n (x) and the generalized

Euler polynomials E (α)n (x) are Appell for
(

et
−1
t

)α
and

(
et
+1
2

)α
, respectively. More Sheffer sequences can be found

in [10, Chapter 4].
Besides the generating function, there are several other ways to characterize Sheffer sequences (see [10, Section

2.3]). We now introduce an algebraic one.

Theorem 1.4 ([10, Theorem 2.3.9]). A sequence sn(x) is Sheffer for (g(t), f (t)), for some invertible g(t), if and only
if

sn(x + y) =
n∑

k=0

(n

k

)
sn−k(x)pk(y), (1.7)

where pn(x) is the associated sequence for f (t). Particularly, if sn(x) is itself an associated sequence, then (1.7) will
reduce to (1.5).

Next, we will give the definition of cross sequences.

Definition 1.5 ([10, Theorem 5.3.1]). A sequence p(λ)n (x) is a cross sequence if and only if

p(λ+µ)n (x + y) =
n∑

k=0

(n

k

)
p(λ)n−k(x)p

(µ)
k (y) (1.8)

for all n ≥ 0 and all real numbers λ and µ.

For example, the generalized Bernoulli polynomials B(α)n (x), the generalized Euler polynomials E (α)n (x), the
Hermite polynomials H (ν)

n (x), and the actuarial polynomials a(β)n (x), are all cross sequences. Additionally, from
Theorem 1.4 or the proof of [10, Theorem 5.3.1], we know that if p(λ)n (x) is a cross sequence, then for each λ it is a
Sheffer sequence with p(0)n (x) the corresponding associated sequence.

The reader is referred to [3, Section 1.12] and [8] for more details on formal power series and to [10–12] for more
results on special types of polynomial sequences.

2. New characterizations of Sheffer sequences

In this section, we will establish two new characterizations of Sheffer sequences, which generalize the results of
Roman [10, Section 4.1.8] and Yang [17, Lemma 2]. Furthermore, it can be found that these two characterizations
indicate the relationships between Sheffer sequences and exponential Riordan arrays.

Theorem 2.1. A sequence sn(x) is Sheffer for (g(t), f (t)), for some invertible g(t), if and only if

sn(x + z) =
n∑

j=0

(
n

j

)
sn− j (z)

j∑
k=0

xk B j,k( f̄1, f̄2, . . . , f̄ j−k+1), (2.1)

where f̄m = m![tm
] f̄ (t), that is, f̄ (t) =

∑
∞

m=1 f̄m tm/m!.
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Proof. If sn(x) is Sheffer for (g(t), f (t)), then by means of (1.1) and (1.6), we have

∞∑
n=0

sn(x + z)
tn

n!
=

1

g( f̄ (t))
ez f̄ (t)ex f̄ (t)

=

∞∑
i=0

si (z)
t i

i !
·

∞∑
j=0

j∑
k=0

xk B j,k( f̄1, f̄2, . . .)
t j

j !

=

∞∑
n=0

n∑
j=0

(
n

j

)
sn− j (z)

j∑
k=0

xk B j,k( f̄1, f̄2, . . .)
tn

n!
,

which yields (2.1) at once. It should be noticed that, for associated sequence pn(x) and for z = 0, (2.1) will reduce to

pn(x) =
n∑

k=0

xk Bn,k( f̄1, f̄2, . . . , f̄n−k+1). (2.2)

This identity comes from the fact that the associated sequence pn(x) satisfies p0(x) = 1 and pn(0) = 0 for n > 0
(see [10, Theorem 2.4.5]). Thus, if a sequence sn(x) satisfies (2.1), then it also satisfies (1.7). By Theorem 1.4, sn(x)
is a Sheffer sequence. �

In the proof of the next result, we will make use of the potential polynomials P(r)n , which are defined for each
complex number r by

∞∑
n=0

P(r)n
tn

n!
=

(
1+

∞∑
i=1

hi
t i

i !

)r

. (2.3)

According to [3, p. 141, Theorem B], P(r)n = P(r)n (h1, h2, . . . , hn) =
∑n

k=0(r)k Bn,k(h1, h2, . . .).

Theorem 2.2. A sequence sn(x) is Sheffer for (g(t), f (t)), for some invertible g(t), if and only if

sn(xy + z) =
n∑

j=0

(
n

j

)
sn− j (z)

j∑
k=0

(x)k B j,k(p1(y), p2(y), . . . , p j−k+1(y)), (2.4)

where (x)k is the falling factorial defined by (x)0 := 1, (x)k := x(x − 1) · · · (x − k + 1) and pn(x) is the associated
sequence for f (t).

Proof. The associated sequence pn(y) has the generating function
∑
∞

i=0 pi (y)t i/ i ! = ey f̄ (t). Since p0(y) = 1, then
Eq. (2.3) indicates that(

ey f̄ (t)
)x
=

(
1+

∞∑
i=1

pi (y)
t i

i !

)x

=

∞∑
n=0

P(x)n (p1(y), p2(y), . . .)
tn

n!

=

∞∑
n=0

n∑
k=0

(x)k Bn,k(p1(y), p2(y), . . .)
tn

n!
.

Hence, for the Sheffer sequence sn(x), we have

∞∑
n=0

sn(xy + z)
tn

n!
=

1

g( f̄ (t))
ez f̄ (t)

(
ey f̄ (t)

)x
=

∞∑
i=0

si (z)
t i

i !
·

∞∑
j=0

j∑
k=0

(x)k B j,k(p1(y), p2(y), . . .)
t j

j !

=

∞∑
n=0

n∑
j=0

(
n

j

)
sn− j (z)

j∑
k=0

(x)k B j,k(p1(y), p2(y), . . .)
tn

n!
.

Identifying the coefficients of tn/n! in the last equation gives (2.4). Analogous to the proof of Theorem 2.1, it can be
found that for the associated sequence pn(x) and for z = 0, Eq. (2.4) will reduce to

pn(xy) =
n∑

k=0

(x)k Bn,k(p1(y), p2(y), . . . , pn−k+1(y)). (2.5)

Thus, if a sequence sn(x) satisfies (2.4), then it also satisfies (1.7). This means sn(x) is a Sheffer sequence. �
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In the above, we obtain two identities for the associated sequence pn(x), i.e., (2.2) and (2.5). Identity (2.2) can
be found in [10, Section 4.1.8] and [17, Lemma 2, Eq. (9)]; while identity (2.5) is a generalization of [17, Lemma 2,
Eq. (10)].

Our results also indicate the relations between Sheffer sequences and Riordan arrays. Because He et al. [5] and the
authors [16] have systematically studied such relations, respectively, in the present paper, only a brief discussion will
be given.

An exponential Riordan array is a pair (g(t), f (t)) of formal power series, where g(t) is an invertible series
and f (t) is a delta series. The Riordan array (g(t), f (t)) defines an infinite, lower triangular array (dn,k)0≤k≤n<∞
according to the rule:

dn,k =

[
tn

n!

]
g(t)

( f (t))k

k!
. (2.6)

The product of two Riordan arrays is still a Riordan array, i.e.,

(g(t), f (t)) ∗ (h(t), l(t)) = (g(t)h( f (t)), l( f (t))).

Moreover, the Riordan array (g(t), f (t)) has inverse (1/g( f̄ (t)), f̄ (t)), where f̄ (t) is the compositional inverse of
f (t). The reader may consult the papers by Shapiro et al. [13] and Sprugnoli [14,15] for more results of the theory of
Riordan arrays; while for some recent developments, the reader may be referred to [4–7,16].

Now, let sn(x) be the Sheffer sequence for (g(t), f (t)) and define sn(x) :=
∑n

k=0 sn,k xk . From (2.1), we have

sn(x) =
n∑

k=0

{
n∑

j=k

(
n

j

)
sn− j (0)B j,k( f̄1, f̄2, . . .)

}
xk, (2.7)

which gives the explicit expression for the coefficients sn,k . The generating function of sn,k is

∞∑
n=k

sn,k
tn

n!
=

∞∑
n=k

n∑
j=k

(
n

j

)
sn− j (0)B j,k( f̄1, f̄2, . . .)

tn

n!

=

∞∑
i=0

si (0)
t i

i !
·

∞∑
j=k

B j,k( f̄1, f̄2, . . .)
t j

j !
=

1

g( f̄ (t))
·
( f̄ (t))k

k!
.

This implies that sn,k are the elements of the exponential Riordan array (1/g( f̄ (t)), f̄ (t)). Define

S[x] = (s0(x), s1(x), s2(x), . . .)
T and X = (1, x, x2, . . .)T,

then

S[x] =

(
1

g( f̄ (t))
, f̄ (t)

)
∗ X and X = (g(t), f (t)) ∗ S[x]. (2.8)

The above discussion can be summarized as the following theorem, which can also be found in [5, Eq. (1.6) and
Theorem 3.3] and [16, Theorem 3.2 and Corollary 6.5].

Theorem 2.3. If the sequence sn(x) =
∑n

k=0 sn,k xk is Sheffer for (g(t), f (t)), then the coefficients sn,k are the
elements of the exponential Riordan array (1/g( f̄ (t)), f̄ (t)). If xn

=
∑n

k=0 an,ksk(x), then an,k are the elements of
the exponential Riordan array (g(t), f (t)).

Let pn(x) :=
∑n

k=0 pn,k xk be the associated sequence for f (t), then the coefficients pn,k are the elements of the
exponential Riordan array (1, f̄ (t)). According to (1.2) and (2.6), pn,k = Bn,k( f̄1, f̄2, . . . , f̄n−k+1). This gives the
interpretation of Eq. (2.2). It should be noticed that the array (1, f̄ (t)) is just the iteration matrix [3, p. 145] for f̄ (t)
and Ωn = 1/n!.

By [3, p. 206, Theorem A], the Stirling numbers of the second kind S(n, k) constitute the exponential Riordan
array (1, et

− 1). Let X̂ = (1, (x)1, (x)2, . . .)T. Because xn
=
∑n

k=0 S(n, k)(x)k (see [3, p. 207, Theorem B]), we
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have X = (1, et
− 1) ∗ X̂ . Combining this matrix equation with (2.8) gives

S[x] =

(
1

g( f̄ (t))
, f̄ (t)

)
∗ (1, et

− 1) ∗ X̂ =

(
1

g( f̄ (t))
, e f̄ (t)

− 1
)
∗ X̂ .

The generic element of the Riordan array
(

1
g( f̄ (t))

, e f̄ (t)
− 1

)
is

[
tn

n!

]
1

g( f̄ (t))

(
e f̄ (t)
− 1

)k

k!
=

[
tn

n!

] ∞∑
i=0

si (0)
t i

i !
·

∞∑
j=k

B j,k(p1(1), p2(1), . . .)
t j

j !

=

n∑
j=k

(
n

j

)
sn− j (0)B j,k(p1(1), p2(1), . . .),

which leads us to the following expression of sn(x):

sn(x) =
n∑

k=0

{
n∑

j=k

(
n

j

)
sn− j (0)B j,k(p1(1), p2(1), . . .)

}
(x)k . (2.9)

It is easy to see that (2.9) is a special case of (2.4).

3. General identities

In this section, we will generalize the results of Abbas–Bouroubi [1] and Yang [17] by substituting Sheffer
sequences for the variables x1, x2, . . . in the Bell polynomials.

Let us first consider the power of the generating function

Ψ(x, t) :=
∞∑

n=0

sn(x)
tn

n!
=

1

g( f̄ (t))
ex f̄ (t),

where sn(x) is Sheffer for (g(t), f (t)). For simplicity, suppose that s0(x) = 1 (see the remarks given in Section 5).
Since 1/g( f̄ (t)) = Ψ(0, t) = 1+

∑
∞

n=1 sn(0)tn/n!, then by the definition of the potential polynomials, we have

(Ψ(x, t))k =

(
1

g( f̄ (t))

)k−1

Ψ(kx, t) =
∞∑

i=0

P(k−1)
i (s1(0), s2(0), . . .)

t i

i !
·

∞∑
j=0

s j (kx)
t j

j !

=

∞∑
n=0

n∑
i=0

(n

i

)
P(k−1)

i (s1(0), s2(0), . . .)sn−i (kx)
tn

n!
(3.1)

and

(Ψ(x, t))k =

(
1

g( f̄ (t))

)k

ekx f̄ (t)
=

∞∑
i=0

P(k)i (s1(0), s2(0), . . .)
t i

i !
·

∞∑
j=0

p j (kx)
t j

j !

=

∞∑
n=0

n∑
i=0

(n

i

)
P(k)i (s1(0), s2(0), . . .)pn−i (kx)

tn

n!
, (3.2)

where pn(x) is the associated sequence for f (t). Now, the following theorem holds.

Theorem 3.1. If sn(x) is the Sheffer sequence for (g(t), f (t)) and satisfies s0(x) = 1, then

Bn,k(s0(x), 2s1(x), 3s2(x), . . .) =
(n

k

) n−k∑
i=0

(
n − k

i

)
sn−k−i (kx)P(k−1)

i (s1(0), s2(0), . . .) (3.3)

=

(n

k

) n−k∑
i=0

(
n − k

i

)
pn−k−i (kx)P(k)i (s1(0), s2(0), . . .), (3.4)

where pn(x) is the associated sequence for f (t).
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Proof. On the one hand,

1
k!
(tΨ(x, t))k =

1
k!

(
t
∞∑

n=0

sn(x)
tn

n!

)k

=
1
k!

(
∞∑

n=1

nsn−1(x)
tn

n!

)k

=

∞∑
n=k

Bn,k(s0(x), 2s1(x), 3s2(x), . . .)
tn

n!
.

On the other hand, in view of (3.1), we have

1
k!
(tΨ(x, t))k =

1
k!

tk(Ψ(x, t))k =
1
k!

tk
∞∑

n=0

n∑
i=0

(n

i

)
P(k−1)

i (s1(0), s2(0), . . .)sn−i (kx)
tn

n!

=

∞∑
n=k

(n

k

) n−k∑
i=0

(
n − k

i

)
sn−k−i (kx)P(k−1)

i (s1(0), s2(0), . . .)
tn

n!
.

Equating the coefficients of tn/n! gives the first identity of the theorem. Analogously, by appealing to (3.2), we can
also obtain the second identity. �

Corollary 3.2 ([17, Theorem 1]). If pn(x) is an associated sequence, then

Bn,k(p0(x), 2p1(x), 3p2(x), . . .) =
(n

k

)
pn−k(kx). (3.5)

Proof. According to [10, Theorem 2.4.5], the associated sequence pn(x) satisfies pn(0) = 0 for n > 0. Therefore,
P(k−1)

i (p1(0), p2(0), p3(0), . . .) = δ0,i and we obtain from (3.3) the identity (3.5). It can be verified that (3.4) will
give the same result. �

Corollary 3.2 is one of the main results of [17], which also generalizes the identity (1.4). Next, it will be shown
that there is a similar identity for cross sequences.

Corollary 3.3. If p(λ)n (x) is a cross sequence and satisfies p(λ)0 (x) = 1, then

Bn,k(p
(λ)
0 (x), 2p(λ)1 (x), 3p(λ)2 (x), . . .) =

(n

k

)
p(kλ)n−k(kx).

Proof. Let Ψ(x, t; λ) :=
∑
∞

n=0 p(λ)n (x)tn/n!. By Definition 1.5, we have

Ψ(x, t; λ)Ψ(y, t;µ) = Ψ(x + y, t; λ+ µ).

Thus,

∞∑
i=0

P(k−1)
i (p(λ)1 (0), p(λ)2 (0), . . .)

t i

i !
=

(
∞∑

n=0

p(λ)n (0)
tn

n!

)k−1

= (Ψ(0, t; λ))k−1
= Ψ(0, t; (k − 1)λ) =

∞∑
i=0

p((k−1)λ)
i (0)

t i

i !
.

Equating the coefficients of t i/ i ! gives

P(k−1)
i (p(λ)1 (0), p(λ)2 (0), . . .) = p((k−1)λ)

i (0),

which, combined with (3.3), leads us to the corollary at once. Analogously, we can obtain the same result from
(3.4). �
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Theorem 3.4. If sn(x) is the Sheffer sequence for (g(t), f (t)) and satisfies s0(x) = 1, then

Bn,k(s1(x), s2(x), s3(x), . . .) =
n∑

i=0

k∑
j=0

(−1)k− j 1
k!

(
k

j

)(n

i

)
sn−i ( j x)P( j−1)

i (s1(0), s2(0), . . .) (3.6)

=

n∑
i=0

k∑
j=0

(−1)k− j 1
k!

(
k

j

)(n

i

)
pn−i ( j x)P( j)

i (s1(0), s2(0), . . .), (3.7)

where pn(x) is the associated sequence for f (t).

Proof. On the one hand,

1
k!
(Ψ(x, t)− 1)k =

1
k!

(
∞∑

n=0

sn(x)
tn

n!
− 1

)k

=
1
k!

(
∞∑

n=1

sn(x)
tn

n!

)k

=

∞∑
n=k

Bn,k(s1(x), s2(x), s3(x), . . .)
tn

n!
.

On the other hand, making use of (3.1), we have

1
k!
(Ψ(x, t)− 1)k =

1
k!

k∑
j=0

(−1)k− j
(

k

j

)
(Ψ(x, t)) j

=

∞∑
n=0

n∑
i=0

k∑
j=0

(−1)k− j 1
k!

(
k

j

)(n

i

)
sn−i ( j x)P( j−1)

i (s1(0), s2(0), . . .)
tn

n!
.

Therefore, the first identity of the theorem can be established by identifying the coefficients. In an analogous way, by
(3.2), we can obtain the second identity. �

Similar to the case of Theorem 3.1, the identities given in Theorem 3.4 will reduce to simpler ones for associated
sequences and cross sequences.

Corollary 3.5 ([17, Theorem 2]). If pn(x) is an associated sequence, then

Bn,k(p1(x), p2(x), p3(x), . . .) =
1
k!

k∑
j=0

(−1)k− j
(

k

j

)
pn( j x).

Corollary 3.6. If p(λ)n (x) is a cross sequence and satisfies p(λ)0 (x) = 1, then

Bn,k(p
(λ)
1 (x), p(λ)2 (x), p(λ)3 (x), . . .) =

1
k!

k∑
j=0

(−1)k− j
(

k

j

)
p( jλ)

n ( j x).

Corollary 3.5 is another main result of [17]. Besides the specializations for associated sequences and cross
sequences, some other corollaries of Theorems 3.1 and 3.4 may also be interesting. For example, we can obtain
from (3.3) and (3.6) the following results.

Corollary 3.7. If sn(x) is a Sheffer sequence and satisfies s0(x) = 1, then

Bn,2(s0(x), 2s1(x), 3s2(x), . . .) =
(n

2

) n−2∑
j=0

(
n − 2

j

)
sn−2− j (2x)s j (0), (3.8)

Bn,2(s1(x), s2(x), s3(x), . . .) =
1
2

n∑
j=0

(
n

j

)
sn− j (2x)s j (0)− sn(x)+

1
2
δ0,n (3.9)

=
1

(n + 1)(n + 2)
Bn+2,2(s0(x), 2s1(x), 3s2(x), . . .)− sn(x)+

1
2
δ0,n . (3.10)
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Proof. To establish (3.8), it suffices to note that for j ≥ 1,

P(1)j (s1(0), s2(0), . . .) =
j∑

l=0

(1)l B j,l(s1(0), s2(0), . . .) = s j (0); (3.11)

while to verify (3.9), we should do more computation. Actually, when k = 2, the right side of (3.6) will reduce to

1
2

n∑
j=0

(
n

j

)
sn− j (0)P

(−1)
j (s1(0), s2(0), . . .)−

n∑
j=0

(
n

j

)
sn− j (x)P

(0)
j (s1(0), s2(0), . . .)

+
1
2

n∑
j=0

(
n

j

)
sn− j (2x)P(1)j (s1(0), s2(0), . . .).

The first term equals δ0,n/2 because

∞∑
n=0

n∑
j=0

(
n

j

)
sn− j (0)P

(−1)
j (s1(0), s2(0), . . .)

tn

n!

=

∞∑
j=0

P(−1)
j (s1(0), s2(0), . . .)

t j

j !
·

∞∑
i=0

si (0)
t i

i !
=

(
1+

∞∑
n=1

sn(0)
tn

n!

)−1

·

∞∑
i=0

si (0)
t i

i !
= 1.

The second term equals −sn(x) because P(0)j (s1(0), s2(0), . . .) = δ0, j . Thus, combining with (3.11), we obtain (3.9).
Finally, by an evident substitution, we obtain (3.10). �

Corollary 3.8. If sn(x) is a Sheffer sequence and satisfies s0(x) = 1, then

Bn,3(s0(x), 2s1(x), 3s2(x), . . .) =
(n

3

) n−3∑
j=0

(
n − 3

j

)
sn−3− j (3x)

j∑
i=0

(
j

i

)
s j−i (0)si (0),

Bn,3(s1(x), s2(x), s3(x), . . .) = −
1
6
δ0,n +

1
2

sn(x)

−
1
2

n∑
j=0

(
n

j

)
sn− j (2x)s j (0)+

1
6

n∑
j=0

(
n

j

)
sn− j (3x)

j∑
i=0

(
j

i

)
s j−i (0)si (0).

Proof. It is similar to the proof of Corollary 3.7 but to derive the final results, Eq. (3.9) has to be made use of. �

When k = 2 or k = 3, Eqs. (3.4) and (3.7) will lead us to the same results. Additionally, because Bn,n(x1, x2, . . .) =

xn
1 and Bn,n−1(x1, x2, . . .) =

1
2 n(n − 1)xn−2

1 x2, we can obtain from the above theorems and corollaries some other
identities, which are left to the interested readers.

4. Applications

In this section, we will give some applications of the general identities obtained in Section 3. The sequences we
chose are all Appell sequences, cross sequences or Sheffer sequences. For associated sequences, the reader is referred
to [1,17] or can deal with them by appealing to Corollaries 3.2 and 3.5.

Example 4.1. The generalized Bernoulli polynomials B(α)n (x) [10, Section 4.2.2] form a cross sequence, then
Corollaries 3.3 and 3.6 give

Bn,k(B
(α)
0 (x), 2B(α)1 (x), 3B(α)2 (x), . . .) =

(n

k

)
B(kα)n−k (kx),

Bn,k(B
(α)
1 (x), B(α)2 (x), B(α)3 (x), . . .) =

1
k!

k∑
j=0

(−1)k− j
(

k

j

)
B( jα)

n ( j x).
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The generalized Euler polynomials E (α)n (x) [10, Section 4.2.3] also form a cross sequence, then we have

Bn,k(E
(α)
0 (x), 2E (α)1 (x), 3E (α)2 (x), . . .) =

(n

k

)
E (kα)n−k (kx),

Bn,k(E
(α)
1 (x), E (α)2 (x), E (α)3 (x), . . .) =

1
k!

k∑
j=0

(−1)k− j
(

k

j

)
E ( jα)

n ( j x).

Moreover, the Hermite polynomials H (ν)
n (x) [10, Section 4.2.1] and the actuarial polynomials a(β)n (x) [10, Section

4.3.4] are both cross sequences, so they satisfy similar identities to those presented above.

Example 4.2. The Laguerre polynomials L(α)n (x) [10, Section 4.3.1] are Sheffer for (g(t) = (1 − t)−α−1, f (t) =
t/(t − 1)) and satisfy

L(α+β+1)
n (x + y) =

n∑
k=0

(n

k

)
L(α)n−k(x)L

(β)
k (y).

Therefore, by setting Ψ(x, t;α) :=
∑
∞

n=0 L(α)n (x)tn/n!, we have

Ψ(x, t;α)Ψ(y, t;β) = Ψ(x + y, t;α + β + 1).

Thus,

∞∑
i=0

P(k−1)
i (L(α)1 (0), L(α)2 (0), . . .)

t i

i !
=

(
∞∑

n=0

L(α)n (0)
tn

n!

)k−1

= Ψ(0, t; (k − 1)α + k − 2),

which implies that P(k−1)
i (L(α)1 (0), L(α)2 (0), . . .) = L((k−1)α+k−2)

i (0). Combining this with Eqs. (3.3) and (3.6), we
obtain

Bn,k(L
(α)
0 (x), 2L(α)1 (x), 3L(α)2 (x), . . .) =

(n

k

)
L(kα+k−1)

n−k (kx),

Bn,k(L
(α)
1 (x), L(α)2 (x), L(α)3 (x), . . .) =

1
k!

k∑
j=0

(−1)k− j
(

k

j

)
L( jα+ j−1)

n ( j x).

Since the associated sequence for f (t) is L(−1)
n (x), then Eqs. (3.4) and (3.7) will give the same identities.

Example 4.3. The Poisson–Charlier polynomials cn(x; a) [10, Section 4.3.3] form the Sheffer sequence for (g(t) =
ea(et

−1), f (t) = a(et
− 1)) and a−n(x)n is the corresponding associated sequence for f (t). Because

cn(x; a) =
n∑

k=0

(n

k

)
(−1)n−ka−k(x)k,

we have cn(0; a) = (−1)n . Moreover, by Definition 1.1, Bi,l((−1)1, (−1)2, . . .) = (−1)i S(i, l), where S(i, l) are the
Stirling numbers of the second kind. Then

P(k−1)
i (c1(0; a), c2(0; a), . . .) =

i∑
l=0

(k − 1)l(−1)i S(i, l) = (1− k)i .

In this case, Theorems 3.1 and 3.4 yield

Bn,k(c0(x; a), 2c1(x; a), 3c2(x; a), . . .) =
(n

k

) n−k∑
i=0

(
n − k

i

)
(1− k)i cn−k−i (kx; a)

=

(n

k

) n−k∑
i=0

(
n − k

i

)
(−k)i a−n+k+i (kx)n−k−i
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and

Bn,k(c1(x; a), c2(x; a), c3(x; a), . . .) =
k∑

j=0

(−1)k− j 1
k!

(
k

j

) n∑
i=0

(n

i

)
(1− j)i cn−i ( j x; a)

=

k∑
j=0

(−1)k− j 1
k!

(
k

j

) n∑
i=0

(n

i

)
(− j)i a−n+i ( j x)n−i ,

respectively.

5. Further remarks

Let sn(x) be the Sheffer sequence for (g(t), f (t)) and define g0 := g(0). Because
∞∑

n=0

sn(0)
tn

n!
= s0(0)+

∞∑
n=1

sn(0)
tn

n!
=

1

g( f̄ (t))
,

we have s0(x) = 1/g0. At the beginning of Section 3, it is supposed that s0(x) = 1, which is equivalent to
g(0) = g0 = 1. This assumption can simplify the derivations and the final results. It can be found that most of
the Sheffer sequences presented in [10] satisfy the condition s0(x) = 1, so Theorems 3.1 and 3.4 will not lose their
generalities.

More general identities, without the restriction s0(x) = 1, can be similarly derived. In fact, according to [3, p. 141,
Eq. (5f)], we have(

1

g( f̄ (t))

)k

=

(
1
g0
+

∞∑
n=1

sn(0)
tn

n!

)k

=

∞∑
i=0

t i

i !

{
i∑

l=0

(k)l

(
1
g0

)k−l

Bi,l(s1(0), s2(0), . . .)

}
,

from which we can obtain two new explicit expressions for the power (Ψ(x, t))k . Thus, the identities related to

Bn,k(s0(x), 2s1(x), 3s2(x), . . .) and Bn,k(s1(x), s2(x), s3(x), . . .)

can be established. However, we chose not to list these identities.
There is a different way to derive more general identities without the restriction s0(x) = 1. Based on the generating

function (1.2), we have(
1

g( f̄ (t))

)k

=

(
∞∑

n=0

sn(0)
tn

n!

)k

= t−k

(
∞∑

n=1

nsn−1(0)
tn

n!

)k

= t−kk!
∞∑

i=k

Bi,k(s0(0), 2s1(0), 3s2(0), . . .)
t i

i !

=

∞∑
i=0

(
i + k

k

)−1

Bi+k,k(s0(0), 2s1(0), 3s2(0), . . .)
t i

i !
. (5.1)

Then we can compute the power (Ψ(x, t))k and obtain the corresponding identities. These are given below.

Theorem 5.1. If sn(x) is the Sheffer sequence for (g(t), f (t)), then

Bn,k(s0(x), 2s1(x), 3s2(x), . . .) =
n

k

n−k∑
i=0

(
n − 1

n − k − i

)
sn−k−i (kx)Bi+k−1,k−1(s0(0), 2s1(0), 3s2(0), . . .)

=

n−k∑
i=0

(
n

n − k − i

)
pn−k−i (kx)Bi+k,k(s0(0), 2s1(0), 3s2(0), . . .),

where pn(x) is the associated sequence for f (t).
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Theorem 5.2. If sn(x) is the Sheffer sequence for (g(t), f (t)), then

Bn,k(s1(x), s2(x), s3(x), . . .)

=

n∑
i=0

k∑
j=0

(−s0(x))
k− j 1

k!

(
k

j

)
(n)i

(i + j − 1)i
sn−i ( j x)Bi+ j−1, j−1(s0(0), 2s1(0), 3s2(0), . . .)

=

n∑
i=0

k∑
j=0

(−s0(x))
k− j 1

k!

(
k

j

)
(n)i

(i + j)i
pn−i ( j x)Bi+ j, j (s0(0), 2s1(0), 3s2(0), . . .),

where pn(x) is the associated sequence for f (t).

The potential polynomial P(r)i (h1, h2, . . . , hi ) for r a nonnegative integer is expressed by the exponential partial
Bell polynomial as(

i + r

r

)
P(r)i (h1, h2, . . . , hi ) = Bi+r,r (1, 2h1, 3h2, . . .)

(see [3, p. 156, Exercise 4]), and so for s0(x) = 1, Theorems 5.1 and 5.2 reduce to Theorems 3.1 and 3.4, respectively.
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