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Abstract

In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower
triangular array determined by the pair (g(t), f (t)) and has the generic element dn,k = [t

n/cn]g(t)( f (t))k/ck , where cn is a fixed
sequence of non-zero constants with c0 = 1.

We demonstrate that the generalized Riordan arrays have similar properties to those of the classical Riordan arrays. Based on
the definition, the iteration matrices related to the Bell polynomials are special cases of the generalized Riordan arrays and the
set of iteration matrices is a subgroup of the Riordan group. We also study the relationships between the generalized Riordan
arrays and the Sheffer sequences and show that the Riordan group and the group of Sheffer sequences are isomorphic. From the
Sheffer sequences, many special Riordan arrays are obtained. Additionally, we investigate the recurrence relations satisfied by
the elements of the Riordan arrays. Based on one of the recurrences, some matrix factorizations satisfied by the Riordan arrays
are presented. Finally, we give two applications of the Riordan arrays, including the inverse relations problem and the connection
constants problem.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The central concepts in this article are Riordan arrays and Sheffer sequences. Let us first make a brief introduction.
In 1978, Rogers [26] introduced the renewal array, which is a generalization of the Pascal, Catalan and Motzkin

triangles. Kettle [16] used the theory of renewal arrays to study other types of combinatorial triangles, especially those
found in walk problems. In 1991, Shapiro et al. [32] further generalized the same concept under the name of Riordan
array, gave a clear formulation of the theory of Riordan arrays and presented many applications. Sprugnoli [35,36]
also investigated the Riordan arrays and showed that they constitute a practical device for solving combinatorial sums
by means of the generating functions and the Lagrange inversion formula. In the following days, many works on the
Riordan arrays have been done, for example [9,13,14,17–22,24,31,44,46]. From the works referred to above, we can
see that the theory of Riordan arrays is indeed a powerful tool to study combinatorial sums and special sequences.
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The Sheffer sequence is a very general concept and includes many polynomial sequences as its special cases. There
are also several similar concepts in the literature, such as sequences of Sheffer A-type zero [33,34] and generalized
Appell sequences [3,5–7], and in the present paper, we will follow the definitions of Rota and Roman. In [28–30], Rota
and Roman et al. developed the theory of modern umbral calculus and studied the Sheffer sequences systematically
by the umbral method. In these papers, a polynomial sequence sn(x) is Sheffer if and only if the generating function
of sn(x) has the following form

A(t)ex B(t)
=

∞∑
k=0

sk(x)

k!
tk .

By the definition, many well-known polynomial sequences are Sheffer, for example, the Hermite polynomials, the
generalized Bernoulli and Euler polynomials and the Laguerre polynomials. In [27], Roman further developed the
theory of umbral calculus and generalized the concept of Sheffer sequence. In this paper, sn(x) is a generalized
Sheffer sequence if and only if the generating function has the form

A(t)εx (B(t)) =
∞∑

k=0

sk(x)

ck
tk, (1.1)

where εx (t) =
∑
∞

k=0 xk tk/ck is a generalization of the exponential series. According to the definition (1.1), more
special polynomial sequences are included, such as the Gegenbauer polynomials, the Chebyshev polynomials and the
Jacobi polynomials. The reader is referred to [27–30] for more Sheffer sequences and their properties.

The connection between the Riordan arrays and the Sheffer sequences has already been pointed out by Shapiro
et al. [32] and Sprugnoli [13,35,36]. In fact, the classical Riordan arrays studied by Shapiro and Sprugnoli et al. are
related to the 1-umbral calculus and thus related to the Sheffer sequence defined by (1.1) where ck = 1. In the present
paper, we will introduce the concept of generalized Riordan array, and give explicitly the relationships between the
generalized Riordan arrays and the generalized Sheffer sequences defined by (1.1). Moreover, we will consider some
properties and applications of the generalized Riordan arrays.

This article is organized as follows. In Section 2, we will introduce the concepts of generalized Riordan array
and Riordan group. Based on the definitions, some properties will be demonstrated, and it will also be shown that
the iteration matrices related to the Bell polynomials are special cases of the generalized Riordan arrays and the
set of iteration matrices is a subgroup of the Riordan group. Section 3 is devoted to the relationships between the
Riordan arrays and the generalized Sheffer sequences, and we can see that the Riordan group and the group of Sheffer
sequences are in fact isomorphic. Based on the studies of these two sections, in Section 4, we give some special
Riordan arrays from the Sheffer sequences. In Section 5, we concentrate on the recurrence relations satisfied by the
elements of the Riordan arrays, and from one of these recurrences we construct some matrix factorizations for the
Riordan arrays. Finally, in Section 6, we present two applications, including the inverse relations problem and the
connection constants problem. Some results of the present paper can be obtained by other methods but they are given
in order to show the power of the theory of Riordan arrays.

2. Riordan arrays and Riordan group

Since formal series play a predominant role in the present paper, we would like to introduce some basic definitions
first. For more details of formal power series, the reader is referred to the paper of Niven [23] and the book of
Comtet [12, Section 1.12].

Let C be a field of characteristic zero. Let F be the set of all formal power series in the indeterminate t over C.
Thus an element of F has the form

f (t) =
∞∑

k=0

ak tk,

where ak ∈ C for all k ∈ N, and N := {0, 1, 2, . . .}. The order o( f (t)) of a power series f (t) is the smallest
integer k for which the coefficient of tk does not vanish. The series f (t) has a multiplicative inverse, denoted by
f (t)−1 or 1/ f (t), if and only if o( f (t)) = 0. We call such a series invertible. The series f (t) has a compositional
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inverse, denoted by f̄ (t) and satisfying f ( f̄ (t)) = f̄ ( f (t)) = t , if and only if o( f (t)) = 1. We call any series with
o( f (t)) = 1 a delta series.

If ( fn)n∈N is a sequence of real numbers, the formal power series f (t) =
∑
∞

k=0 fk tk/ck is called the generating
function of the sequence, where (cn)n∈N is a fixed sequence of non-zero constants with c0 = 1, given once and for
all. Particularly, f (t) is the ordinary generating function if cn = 1, and f (t) is the exponential generating function if
cn = n!.

As usual, the notation [tn
] stands for the “coefficient of” operator, and if f (t) =

∑
∞

k=0 fk tk , then [tn
] f (t) = fn .

Similarly, if f (t) =
∑
∞

k=0 fk tk/ck , then [tn/cn] f (t) = fn . It is easy to see that [tn/cn] f (t) = cn[tn
] f (t).

Definition 2.1. A generalized Riordan array with respect to the sequence cn is a pair (g(t), f (t)) of formal power
series, where g(t) =

∑
∞

k=0 gk tk/ck and f (t) =
∑
∞

k=1 fk tk/ck with f1 6= 0, i.e., f (t) is a delta series. The Riordan
array (g(t), f (t)) defines an infinite, lower triangular array (dn,k)0≤k≤n<∞ according to the rule:

dn,k =

[
tn

cn

]
g(t)

( f (t))k

ck
, (2.1)

where the functions g(t)( f (t))k/ck are called the column generating functions of the Riordan array.

By the definition, the classical Riordan arrays introduced and studied by Shapiro et al. [32] and Sprugnoli [35]
correspond to the case of cn = 1, and the exponential Riordan arrays presented in [9,46] correspond to the case of
cn = n!.

One of the most important applications of the theory of Riordan arrays is to deal with the summation of the form∑n
k=0 dn,khk . To see this, the reader is referred to [35,36]. In the context of the generalized Riordan arrays, for the

summation given above, we have the following theorem.

Theorem 2.2. Let D = (g(t), f (t)) = (dn,k)n,k∈N be a Riordan array with respect to cn and let h(t) =
∑
∞

k=0 hk tk/ck
be the generating function of the sequence hn . Then we have

n∑
k=0

dn,khk =

[
tn

cn

]
g(t)h( f (t)), (2.2)

or equivalently,

(g(t), f (t)) ∗ h(t) = g(t)h( f (t)).

Proof. Based on the definition, we have
n∑

k=0

dn,khk =

∞∑
k=0

[
tn

cn

]
g(t)

( f (t))k

ck
hk =

[
tn

cn

]
g(t)

∞∑
k=0

hk
( f (t))k

ck
=

[
tn

cn

]
g(t)h( f (t)).

This completes the proof. �

Analogous to the classical case [35, Theorem 1.2], we can prove the next result, which is the inverse of Theorem 2.2.

Theorem 2.3. Let D = (dn,k)0≤k≤n<∞ be an infinite triangle such that for every sequence (hk)k∈N we have∑n
k=0 dn,khk = [tn/cn]g(t)h( f (t)), where h(t) =

∑
∞

k=0 hk tk/ck is the generating function of the sequence hk
and g(t), f (t) are two formal power series not depending on h(t). Then the triangle defined by the Riordan array
(g(t), f (t)) coincides with (dn,k)n,k∈N.

Proof. It is the same as that of [35, Theorem 1.2]. For any k ∈ N, take the sequence which is 0 everywhere except in
the kth element hk = 1. Then h(t) =

∑
∞

i=0 hi t i/ci = tk/ck and
∑n

i=0 dn,i hi = dn,k = [tn/cn]g(t)( f (t))k/ck , which
proves the assertion of the theorem. �

With Theorem 2.2, we can further compute the product of two Riordan arrays (g(t), f (t)) ∗ (h(t), l(t)). In fact,
the column generating function of (h(t), l(t)) is h(t)(l(t))k/ck . Thus, by matrix multiplication, the column generating
function of the product (g(t), f (t)) ∗ (h(t), l(t)) is

g(t)h( f (t))
(l( f (t)))k

ck
,
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which means the product is also a Riordan array, i.e.,

(g(t), f (t)) ∗ (h(t), l(t)) = (g(t)h( f (t)), l( f (t))). (2.3)

Analogous to the classical case, for a fixed sequence cn , the set of all Riordan arrays (g(t), f (t)) with g(t) an
invertible series is a group.

Theorem 2.4. For any fixed sequence cn , the set of all Riordan arrays (g(t), f (t)) with g(t) an invertible series is a
group under matrix multiplication. Moreover, the identity of this group is (1, t) and the inverse of the array (g(t), f (t))
is (1/g( f̄ (t)), f̄ (t)), where f̄ (t) is the compositional inverse of f (t).

Proof. Denote the set by R. Then R is closed under matrix multiplication according to (2.3) and the multiplication
is associative. The array (1, t) is an element of R and for each array (g(t), f (t)) ∈ R, there exists an array
(1/g( f̄ (t)), f̄ (t)) ∈ R, for which we have

(g(t), f (t)) ∗ (1, t) = (g(t), f (t)) = (1, t) ∗ (g(t), f (t)),

(g(t), f (t)) ∗

(
1

g( f̄ (t))
, f̄ (t)

)
= (1, t) =

(
1

g( f̄ (t))
, f̄ (t)

)
∗ (g(t), f (t)).

Then R is a group and the proof is complete. �

The group introduced in Theorem 2.4 is called the Riordan group with respect to cn . It should be noticed that, for
any fixed sequence cn , the identity (1, t) of the Riordan group R is the usual infinite identity matrix I . Actually, by
Eq. (2.1), the generic element of (1, t) is

dn,k =

[
tn

cn

]
tk

ck
=

cn

ck
[tn−k
]1 = δn,k,

where δn,k is the Kronecker delta defined by δn,n = 1 and δn,k = 0 for n 6= k.
A large number of infinite lower triangular arrays are Riordan arrays. Particularly, the iteration matrices are in this

case. With every formal power series f (t) =
∑
∞

k=1 fk tk/ck , we associate the infinite lower iteration matrix with
respect to cn [12, p. 145]:

B( f (t)) :=


1 0 0 0 · · ·

0 B1,1 0 0 · · ·

0 B2,1 B2,2 0 · · ·

0 B3,1 B3,2 B3,3 · · ·

...
...

...
...

. . .

 ,
where Bn,k = Bn,k( f1, f2, . . .) is the Bell polynomial with respect to cn , defined as follows:

1
ck
( f (t))k =

∞∑
n=k

Bn,k
tn

cn
. (2.4)

Therefore, Bn,k = [tn/cn]( f (t))k/ck which implies that the iteration matrix B( f (t)) is the Riordan array (1, f (t)).
Now, the following important property of the iteration matrix [12, p. 145, Theorem A]

B( f (g(t))) = B(g(t)) ∗ B( f (t))

is trivial in the context of the theory of Riordan arrays, i.e.,

(1, f (g(t))) = (1, g(t)) ∗ (1, f (t));

and the well-known Faà di Bruno formula [12, p. 137, Theorem A] is a specialization of the summation rule (2.2):

n∑
k=1

Bn,k(g1, g2, . . . , gn−k+1) fk =

[
tn

n!

]
f (g(t)).



6470 W. Wang, T. Wang / Discrete Mathematics 308 (2008) 6466–6500

Additionally, for any delta series f (t), (1, f̄ (t)) = B( f̄ (t)) is also an iteration matrix. Thus, the set of iteration
matrices with respect to cn , denoted by B, is a nonempty subset of the Riordan group R with respect to cn , closed under
multiplication and taking inverses in R. These indicate that B is a subgroup of R and we call it the associated subgroup.

It can be shown that the set of Riordan arrays which have the form (g(t), t), where g(t) is an invertible series, is
also a subgroup of R. We call it the Appell subgroup and denote it by A. Since

(g(t), f (t)) = (g(t), t) ∗ (1, f (t)) = (1, f (t)) ∗ (g( f̄ (t)), t),

then we have AB = B A = R. The reader can see the paper [31] by Shapiro for more subgroups.

3. Riordan arrays and Sheffer sequences

The Riordan arrays determined by an invertible series and a delta series play a very important role in the present
paper, and in this section, we will consider the relationships between such Riordan arrays and the Sheffer sequences.

Definition 3.1 ([27, Theorem 5.3]). Let f (t) be a delta series and let g(t) be an invertible series; we say that the
sequence sn(x) is Sheffer for the pair (g(t), f (t)) if and only if

∞∑
k=0

sk(x)
tk

ck
=

1

g( f̄ (t))
εx ( f̄ (t)), (3.1)

where εx (t) =
∑
∞

k=0 xk tk/ck is the generalized exponential series (εx (t) = ext for cn = n! and εx (t) = 1/(1−xt) for
cn = 1). Particularly, the Sheffer sequence for (1, f (t)) is called the associated sequence for f (t), and the generating
function (3.1) reduces to

∞∑
k=0

sk(x)
tk

ck
= εx ( f̄ (t));

the Sheffer sequence for (g(t), t) is called the Appell sequence for g(t), and the generating function (3.1) reduces to
∞∑

k=0

sk(x)
tk

ck
=

1
g(t)

εx (t).

By Definitions 2.1 and 3.1, the following theorem can be established.

Theorem 3.2. For any fixed sequence cn , if dn,k is the generic element of the Riordan array (g(t), f (t)), then the
polynomial sequence

∑n
k=0 dn,k xk is Sheffer for (1/g( f̄ (t)), f̄ (t)). Conversely, if the sequence sn(x) =

∑n
k=0 sn,k xk

is Sheffer for (g(t), f (t)), then the coefficient sn,k is the generic element of the Riordan array (1/g( f̄ (t)), f̄ (t)).

Proof. From the definition, we have
∑
∞

n=k dn,k tn/cn = g(t)( f (t))k/ck . Thus

∞∑
k=0

(
∞∑

n=k

dn,k
tn

cn

)
xk
=

∞∑
n=0

(
n∑

k=0

dn,k xk

)
tn

cn

=

∞∑
k=0

g(t)
( f (t))k

ck
xk
= g(t)

∞∑
k=0

xk

ck
( f (t))k = g(t)εx ( f (t)).

Therefore, the first statement of the theorem can be proved by means of (3.1). To prove the second statement we
observe that

∞∑
n=0

sn(x)
tn

cn
=

∞∑
n=0

(
n∑

k=0

sn,k xk

)
tn

cn
=

∞∑
k=0

(
∞∑

n=k

sn,k
tn

cn

)
xk
=

1

g( f̄ (t))

∞∑
k=0

( f̄ (t))k
xk

ck
.

By equating the coefficients of xk in the last equation, we have
∞∑

n=k

sn,k
tn

cn
=

1

g( f̄ (t))

( f̄ (t))k

ck

and then sn,k is the generic element of the Riordan array (1/g( f̄ (t)), f̄ (t)). �
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With some specializations, we can obtain from Theorem 3.2 the relationship between the iteration matrices and the
associated sequences, which has already been indicated by Roman [28, Section 4.1.8] for the case cn = n!.

As an example of Theorem 3.2, consider the classical Riordan array
(

1
1−t ,

t
1−t

)
. The generic element is

[tn
]

1
1−t

(
t

1−t

)k
=
( n

k

)
, then

(
1

1−t ,
t

1−t

)
is the well-known Pascal matrix. The corresponding row generating functions

are (x + 1)n , which form the Sheffer sequence for
(

1
1+t ,

t
1+t

)
. The inverse of the array

(
1

1−t ,
t

1−t

)
is
(

1
1+t ,

t
1+t

)
,

whose generic element is (−1)n−k
( n

k

)
. Now, the row generating functions are (x − 1)n , which form the Sheffer

sequence for
(

1
1−t ,

t
1−t

)
.

As another example, let us consider the exponential Riordan array (1, log(1 + t)). The generic element is
[tn/n!](log(1+ t))k/k! = s(n, k), the Stirling number of the first kind [12, p. 212]; and the row generating functions
are

∑n
k=0 s(n, k)xk

= (x)n , which are lower factorial polynomials defined by (x)n = x(x−1)(x−2) · · · (x−n+1) and
form the sequence associated to et

−1 [28, Section 4.1.2]. The inverse of the array (1, log(1+ t)) is (1, et
−1), whose

generic element is [tn/n!](et
−1)k/k! = S(n, k), the Stirling number of the second kind [12, p. 206].

∑n
k=0 S(n, k)xk

are called the exponential polynomials and denoted by φn(x). The sequence φn(x) is associated to log(1 + t) [28,
Section 4.1.3]. More Riordan arrays can be found in the next section.

It is instructive to further study the relationship between the Riordan arrays and the Sheffer sequences, from the
group point of view.

If pn(x) and qn(x) =
∑n

k=0 qn,k xk are two sequences of polynomials, then the umbral composition of qn(x) with
pn(x) is the sequence

qn(x) ◦ pn(x) = qn(p(x)) =
n∑

k=0

qn,k pk(x).

Roman [28, Theorem 3.5.5] (see also [30, p. 708, Theorem 7]) shows that in the case of cn = n!, the set of Sheffer
sequences is a group under umbral composition. Particularly, if sn(x) is Sheffer for (g(t), f (t)) and rn(x) is Sheffer
for (h(t), l(t)), then rn(s(x)) is Sheffer for (g(t)h( f (t)), l( f (t))). In the general case, the composition rule still
holds [27, Theorem 8.4] and following the methods developed in [28, Section 3.5] by Roman, we can prove that
the set of Sheffer sequences is also a group with the set of associated sequences and the set of Appell sequences its
subgroups. Moreover, in view of (2.3), it can be readily found that the umbral composition and the Riordan array
product formally follow the same rule. This fact implies the next result.

Theorem 3.3. For any fixed sequence cn , the Riordan group R and the group of Sheffer sequences S are isomorphic.

Proof. Define σ : R → S by σ(g(t), f (t)) = sn(x), where sn(x) is Sheffer for (1/g( f̄ (t)), f̄ (t)). Because f̄ (t) is
uniquely determined by f (t) and sn(x) is uniquely determined by the pair (1/g( f̄ (t)), f̄ (t)) [27, Theorem 5.1], the
map σ is well defined. Now, let us prove that σ is an isomorphism.

In fact, if sn(x) is Sheffer for (h(t), l(t)), then there exists a Riordan array (1/h(l̄(t)), l̄(t)) such that
σ(1/h(l̄(t)), l̄(t)) = sn(x). This indicates that σ is surjective. Next, suppose

σ(g1(t), f1(t)) = σ(g2(t), f2(t)) = sn(x),

where sn(x) is Sheffer for (h(t), l(t)). Then f̄1(t) = l(t) = f̄2(t) and f1(t) = l̄(t) = f2(t). Additionally, we have
g1( f̄1(t)) = 1/h(t) = g2( f̄2(t)) which leads us to the fact that

g1( f̄1( f1(t))) = g1(t) =
1

h(l̄(t))
= g2( f̄2( f2(t))) = g2(t).

Therefore, (g1(t), f1(t)) = (g2(t), f2(t)) and σ is injective.
We have shown that σ is a bijection, and it remains to check that σ preserves the group operation. To do this,

suppose σ(g(t), f (t)) = qn(x) where qn(x) is Sheffer for (1/g( f̄ (t)), f̄ (t)), and σ(h(t), l(t)) = pn(x) where pn(x)
is Sheffer for (1/h(l̄(t)), l̄(t)). By the umbral composition, we have

σ(g(t), f (t)) ◦ σ(h(t), l(t)) = qn(x) ◦ pn(x) = qn(p(x)),
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where the sequence qn(p(x)) is Sheffer for(
1

h(l̄(t))g( f̄ (l̄(t)))
, f̄ (l̄(t))

)
.

On the other hand, by Eq. (2.3) we have

σ((g(t), f (t)) ∗ (h(t), l(t))) = σ(g(t)h( f (t)), l( f (t))) = sn(x),

where the sequence sn(x) is Sheffer for(
1

g( f̄ (l̄(t)))h(l̄(t))
, f̄ (l̄(t))

)
.

Thus, qn(p(x)) = sn(x) which shows that

σ((g(t), f (t)) ∗ (h(t), l(t))) = σ(g(t), f (t)) ◦ σ(h(t), l(t)).

Therefore, σ is indeed an isomorphism and R ∼= S. �

Theorem 3.4. The associated subgroup of R (i.e., the group of iteration matrices) and the group of associated
sequences are isomorphic. The Appell subgroup of R and the group of Appell sequences are isomorphic.

4. Special Riordan arrays from Sheffer sequences

According to Theorem 3.2, the Riordan arrays can be obtained from the Sheffer sequences, and in this section, we
will present some Riordan arrays in this way. The Sheffer sequences used here can be found in the works of Roman
[27,28].

4.1. The case of cn = n!

4.1.1. The Hermite polynomials [28, Section 4.2.1]

The Hermite polynomials H (v)
n (x) form the Sheffer sequence for the pair (exp(vt2/2), t). By Theorem 3.2,

H (v)
n,k := [x

k
]H (v)

n (x) is the generic element of the Riordan array (exp(−vt2/2), t):

H (v)
n,k =

[
tn

n!

]
e−

vt2
2

tk

k!
=

n!

k!
[tn−k
]e−

vt2
2 =


0, n − k odd,

n!

k!

(− v2 )
n−k

2

( n−k
2 )!

, n − k even.
(4.1)

Therefore, the explicit expression of the Hermite polynomials is

H (v)
n (x) =

n∑
k=0

n−k even

n!

k!

(− v2 )
n−k

2

( n−k
2 )!

xk
=

n∑
k=0

k even

n!

(n − k)!

(− v2 )
k
2

( k
2 )!

xn−k
=

[ n
2

]∑
k=0

(
−
v

2

)k (n)2k

k!
xn−2k .

The inverse of the Riordan array (exp(−vt2/2), t) is (exp(vt2/2), t), whose generic element can be obtained easily
from (4.1) by replacing v with −v.

4.1.2. The generalized Bernoulli polynomials [28, Section 4.2.2]

The generalized Bernoulli polynomials B(α)n (x) are Sheffer for
((

et
−1
t

)α
, t
)

, then the corresponding Riordan

array is
((

t
et−1

)α
, t
)

, whose generic element is

[xk
]B(α)n (x) =

[
tn

n!

](
t

et − 1

)α tk

k!
=

n!

k!
[tn−k
]

(
t

et − 1

)α
=

(n

k

)
B(α)n−k,
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where B(α)k := B(α)k (0) are the generalized Bernoulli numbers. From the equation above, the generic element of((
t

et − 1

)α
, t

)−1

=

((
et
− 1
t

)α
, t

)
=

((
t

et − 1

)−α
, t

)

is
( n

k

)
B(−α)n−k ; while if we compute it by [12, p. 141, Theorem B], we have[

tn

n!

](
et
− 1
t

)α tk

k!
=

n!

k!
[tn−k
]

(
1+

∞∑
i=1

1
i + 1

t i

i !

)α
=

(n

k

) n−k∑
i=0

(α)i Bn−k,i

(
1
2
,

1
3
, . . .

)
, (4.2)

where Bn,k are the partial exponential Bell polynomials [12, p. 133]. Thus, the following expressions for the
generalized Bernoulli polynomials can be derived:

B(α)n (x) =
n∑

k=0

(n

k

)
B(α)n−k xk

=

n∑
k=0

(n

k

) n−k∑
i=0

(−α)i Bn−k,i

(
1
2
,

1
3
, . . .

)
xk .

Moreover, by setting α = 1, we can obtain from (4.2) the Riordan array(
et
− 1
t

, t

)
=

((n

k

) 1
n − k + 1

)
n,k∈N

.

4.1.3. The generalized Euler polynomials [28, Section 4.2.3]

The generalized Euler polynomials E (α)n (x) are Sheffer for
((

et
+1
2

)α
, t
)

, then the corresponding Riordan array is((
2

et + 1

)α
, t

)
=

((n

k

)
E (α)n−k(0)

)
n,k∈N

,

and the inverse array is((
et
+ 1
2

)α
, t

)
=

((n

k

)
E (−α)n−k (0)

)
n,k∈N

=

((n

k

) n−k∑
i=0

(α)i 2−i S(n − k, i)

)
n,k∈N

. (4.3)

In fact,[
tn

n!

](
et
+ 1
2

)α tk

k!
=

n!

k!
[tn−k
]

(
1+

∞∑
i=1

1
2

t i

i !

)α

=

(n

k

) n−k∑
i=0

(α)i Bn−k,i

(
1
2
,

1
2
, . . .

)
=

(n

k

) n−k∑
i=0

(α)i 2−i S(n − k, i),

where we have made use of the expression of the Bell polynomials [12, p. 134, Eq. (3d)] and the fact that
Bn,k(1, 1, 1, . . .) = S(n, k) [12, p. 135, Eq. (3g)] in the last step. By means of (4.3), we obtain the formulae for
the generalized Euler polynomials:

E (α)n (x) =
n∑

k=0

(n

k

)
E (α)n−k(0)x

k
=

n∑
k=0

(n

k

) n−k∑
i=0

(−α)i 2−i S(n − k, i)xk .

When α = 1, the generic element of the Riordan array
(

et
+1
2 , t

)
is 1

2

( n
k

)
for n 6= k and 1 for n = k, which can be

deduced directly from (4.3).

4.1.4. The Laguerre polynomials [28, Section 4.3.1]

The Laguerre polynomials L(α)n (x) form the Sheffer sequence for ((1 − t)−α−1, t/(t − 1)) and the corresponding
Riordan array is ((1− t)−α−1, t/(t − 1)). It is interesting to notice that the inverse of the Riordan array ((1− t)−α−1,
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Table 1
Some exponential Riordan arrays and the corresponding Sheffer sequences

Riordan array Generic element dn,k Sheffer sequence Sheffer pair

(1, log(1+ t)) s(n, k) Lower factorial (x)n (1, et
− 1)

(1, et
− 1) S(n, k) Exponential φn(x) (1, log(1+ t))

(1, teat )
( n

k
)
(ak)n−k ∑n

k=0
( n

k
)
(ak)n−k xk

(
1,
∑
∞
k=1

(−ak)k−1

k! tk
)

(
e−

vt2
2 , t

) 0, n − k odd

n!

k!

(− v2 )
n−k

2

( n−k
2 )!

, n − k even
Hermite H (v)

n (x)

(
e
vt2
2 , t

)
((

t
et−1

)α
, t
) ( n

k
)

B(α)n−k Bernoulli B(α)n (x)
((

et
−1
t

)α
, t
)

((
2

et+1

)α
, t
) ( n

k
)

E(α)n−k (0) Euler E(α)n (x)
((

et
+1
2

)α
, t
)

(
(1− t)−α−1, t

t−1

)
(−1)k n!

k!

(
n+α
n−k

)
Laguerre L(α)n (x)

(
(1− t)−α−1, t

t−1

)
(

t
log(1+t) , log(1+ t)

) bn(0), k = 0
n

k
s(n − 1, k − 1), k ≥ 1

Bernoulli II bn(x)
(

t
et−1

, et
− 1

)
(
e−t , log

(
1+ t

a
)) ∑(

n
j

)
(−1)n− j a− j s( j, k) Poisson–Charlier

(
ea(et

−1), a(et
− 1)

)
(

ea(et
−1), a(et

− 1)
)

ak ∑(
n
j

)
φn− j (a)S( j, k)

(
e−t , log

(
1+ t

a
))

(
eβt , 1− et

)
(−1)k

∑(
n
j

)
βn− j S( j, k) Actuarial a(β)n (x)

(
1

(1−t)β
, log(1− t)

)
(

1
(1−t)β

, log(1− t)
)

(−1)n
∑(

n
j

)
(−β)n− j s( j, k)

(
eβt , 1− et

)

t/(t − 1)) is just itself, that is, ((1− t)−α−1, t/(t − 1))2 = I . Furthermore, the generic element is

[xk
]L(α)n (x) =

[
tn

n!

]
1
k!

(
−1

t − 1

)α+1 ( t

t − 1

)k

= (−1)k
n!

k!
[tn−k
](1− t)−(α+k+1)

= (−1)k
n!

k!

(
n + α

n − k

)
.

This implies that

L(α)n (x) =
n∑

k=0

n!

k!

(
n + α

n − k

)
(−x)k .

For convenience, we list some exponential Riordan arrays and their corresponding Sheffer sequences in Table 1.

4.2. Other cases

4.2.1. The polynomials of the Gegenbauer case [27, p. 97]

In this case, the sequence cn is taken as 1/
(
−λ
n

)
. Let sn(x) be the Sheffer sequence for the pair (g(t), f (t)) where

g(t) =

(
2

1+
√

1− t2

)λ0

, f (t) =
−t

1+
√

1− t2
.

Then f̄ (t) = −2t/(1 + t2) and g( f̄ (t)) = (1 + t2)λ0 . The sequence sn(x) is related to the Gegenbauer polynomials
and [xk

]sn(x) is the generic element of the Riordan array R = ((1+ t2)−λ0 ,−2t/(1+ t2)).

[xk
]sn(x) =

[
tn

cn

]
(1+ t2)−λ0

ck

(
−2t

1+ t2

)k
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=
cn

ck
(−2)k[tn−k

]

∞∑
j=0

(
−λ0 − k

j

)
t2 j
=


0, n − k odd,
cn

ck
(−2)k

(
−λ0 − k

n−k
2

)
, n − k even,

from which the explicit expression of sn(x) can be obtained:

sn(x) =
n∑

k=0
n−k even

(
−λ
k

)
(
−λ
n

) (−λ0 − k
n−k

2

)
(−2)k xk

=

[ n
2

]∑
k=0

(
−λ

n−2k

) (
−λ0−n+2k

k

)
(
−λ
n

) (−2x)n−2k . (4.4)

The inverse of R is

((
2

1+
√

1−t2

)λ0

, −t

1+
√

1−t2

)
, with the following generic element:

[
tn

cn

]
1
ck

(
2

1+
√

1− t2

)λ0
(

−t

1+
√

1− t2

)k

=
cn

ck
2λ0(−1)k[tn−k

]

(
1+

√
1− t2

)−λ0−k

=
cn

ck
2λ0(−1)k[tn−k

]

∞∑
j=0

(λ0 + k)(λ0 + k + 2 j − 1) j−1

2λ0+k+2 j j !
t2 j

=


0, n − k odd,

cn

ck

(−1)k(λ0 + k)(λ0 + n − 1) n−k
2 −1

2n
( n−k

2

)
!

, n − k even,

where we have used the formula [27, p. 94, Eq. (9.1)]

(1+
√

1− z)−α =
∞∑

k=0

α(α + 2k − 1)k−1

2α+2kk!
zk .

4.2.2. The polynomials of the Chebyshev case [27, p. 99]

In this case we take cn = (−1)n . The Sheffer sequence Tn(x) for the pair

(g(t), f (t)) =

(
1

√
1− t2

,
−t

1+
√

1− t2

)
is related to the Chebyshev polynomials of the first kind. Since g( f̄ (t)) = 1+t2

1−t2 , then the corresponding Riordan array

is
(

1−t2

1+t2 ,
−2t
1+t2

)
, whose generic element is

[xk
]Tn(x) =

[
tn

cn

]
1
ck

1− t2

1+ t2

(
−2t

1+ t2

)k

=
cn

ck
(−2)k[tn−k

]

(
1

(1+ t2)k+1 −
t2

(1+ t2)k+1

)
.

Because

1

(1+ t2)k+1 −
t2

(1+ t2)k+1 =

∞∑
i=0

(
−k − 1

i

)
t2i
−

∞∑
i=0

(
−k − 1

i

)
t2i+2

= 1+
∞∑

i=1

((
−k − 1

i

)
−

(
−k − 1
i − 1

))
t2i
= 1+

∞∑
i=1

(−1)i
k + 2i

i

(
k + i − 1

i − 1

)
t2i ,
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we have

[xk
]Tn(x) =


0, n − k odd,

(−2)n, n − k = 0,

cn

ck
(−2)k

(−1)
n−k

2 n
n−k

2

(
k + n−k

2 − 1
n−k

2 − 1

)
, n − k even and n 6= k,

which can be used to get the explicit expression for Tn(x):

Tn(x) =
n−2∑
k=0

n−k even

(−1)n−k(−2)k
(−1)

n−k
2 n

n−k
2

(
k + n−k

2 − 1
n−k

2 − 1

)
xk
+ (−2)n xn

=

[ n
2

]∑
k=1

(−1)kn

k

(
n − k − 1

k − 1

)
(−2x)n−2k

+ (−2)n xn
=

[ n
2

]∑
k=0

(−1)kn

n − k

(
n − k

k

)
(−2x)n−2k .

The Sheffer sequence Un(x) for the pair

(g(t), f (t)) =

(
2− 2

√
1− t2

t2 ,
−t

1+
√

1− t2

)
is related to the Chebyshev polynomials of the second kind. Since g( f̄ (t)) = 1+ t2, then the corresponding Riordan

array is
(

1
1+t2 ,

−2t
1+t2

)
, which has the following generic element:

[xk
]Un(x) =

[
tn

cn

]
1
ck

1

1+ t2

(
−2t

1+ t2

)k

=
cn

ck
(−2)k[tn−k

]

∞∑
i=0

(
−k − 1

i

)
t2i
=


0, n − k odd,
cn

ck
(−2)k

(
−k − 1

n−k
2

)
, n − k even.

Therefore, we have

Un(x) =
n∑

k=0
n−k even

(−1)n−k(−2)k
(
−k − 1

n−k
2

)
xk
=

[ n
2

]∑
k=0

(
−n + 2k − 1

k

)
(−2x)n−2k .

4.2.3. The polynomials of the Jacobi case [27, p. 103]

Let cn =
22n
〈1+α〉n

〈1+α+β〉2n
, where 〈x〉n is the rising factorial defined by 〈x〉n = x(x + 1)(x + 2) · · · (x + n − 1). Suppose

Jn(x) is the Sheffer sequence for the pair (g(t), f (t)), where

g(t) =

(
2

1+
√

1+ 2t

)1+α+β

, f (t) =
1+ t −

√
1+ 2t

t
.

From [27, p. 104], we know that Jn(x) is related to the Jacobi polynomials. Since f̄ (t) = 2t/(1 − t)2 and
g( f̄ (t)) = (1− t)1+α+β , then [xk

]Jn(x) is the generic element of the Riordan array ((1− t)−(1+α+β), 2t/(1− t)2).
By the definition, we have

[xk
]Jn(x) =

[
tn

cn

]
1
ck

1

(1− t)1+α+β

(
2t

(1− t)2

)k

=
cn

ck
2k
(
α + β + n + k

n − k

)
= 2k 22n−2k

〈1+ α + k〉n−k

〈1+ α + β + 2k〉2n−2k

(
α + β + n + k

n − k

)
=

(
α + β + n + k

n − k

)
(α + n)n−k

(α + β + 2n)2n−2k
22n−k .
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Thus, the following expression holds:

Jn(x) =
n∑

k=0

(
α + β + n + k

n − k

)
(α + n)n−k

(α + β + 2n)2n−2k
22n−k xk .

4.2.4. The polynomials of the q-case [27, p. 107]
In this case, let

cn =
(1− q)(1− q2) · · · (1− qn)

(1− q)n
=

(q; q)n
(1− q)n

= n!q ,

which is the q-analog of n! [1, Section 10.2]. Define the sequence [x]a,n by

[x]a,0 = 1, [x]a,n = (x − a)(x − qa) · · · (x − qn−1a),

and let [x]i := [x]1,i . From [27, p. 108] we know that [x]a,n is Sheffer for the pair (εa(t), t). Then the generic element
of the Riordan array (1/εa(t), t) is [xk

][x]a,n . Since

1
εa(t)

=

∞∑
k=0

(1− q)k

(1− q)(1− q2) · · · (1− qk)
q

(
k
2

)
(−at)k =

∞∑
k=0

q

(
k
2

)
(−at)k

1
ck
,

we have

[xk
][x]a,n =

[
tn

cn

]
1

εa(t)

tk

ck
=

cn

ck
[tn−k
]

∞∑
i=0

q

(
i
2

)
(−at)i

1
ci
=

[
n
k

]
q

q

(
n−k

2

)
(−a)n−k,

[x]a,n =
n∑

k=0

[
n
k

]
q
(−a)n−kq

(
n−k

2

)
xk, (4.5)

where[
n
k

]
q
=

cn

ckcn−k
=

(1− q) · · · (1− qn)

(1− q) · · · (1− qk)(1− q) · · · (1− qn−k)
=

(q; q)n
(q; q)k(q; q)n−k

is the q-binomial coefficient. In addition to these, by the definition, we can easily find that the Riordan array(
1

εa(t)
, t

)−1

= (εa(t), t) =

([
n
k

]
q

an−k

)
n,k∈N

.

The q-Bernoulli polynomials Bn(x) [27, p. 111] are Sheffer for the pair ((ε1(t) − 1)/t, t). Therefore, [xk
]Bn(x)

is the generic element of the Riordan array (t/(ε1(t) − 1), t). According to Definition 3.1, Bn(x) has the following
generating function

∞∑
k=0

Bk(x)
tk

ck
=

t

ε1(t)− 1
εx (t).

Letting x = 1 gives

t

ε1(t)− 1
=

1
ε1(t)

∞∑
k=0

Bk(1)tk

ck
=

∞∑
i=0

q

(
i
2

)
(−t)i

ci

∞∑
j=0

B j (1)t j

c j

=

∞∑
n=0

n∑
i=0

[
n
i

]
q

q

(
i
2

)
(−1)iBn−i (1)

tn

cn
.

Thus, we have

[xk
]Bn(x) =

[
tn

cn

]
t

ε1(t)− 1
tk

ck
=

[
n
k

]
q

n−k∑
i=0

[
n − k

i

]
q

q

(
i
2

)
(−1)iBn−k−i (1),
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Table 2
Some Riordan arrays in various cases of cn

cn Riordan array Generic element dn,k Sheffer Seq.

1(
−λ
n

) (
(1+ t2)−λ0 , −2t

1+t2

) 0, n − k odd

cn

ck
(−2)k

(
−λ0 − k

n−k
2

)
, n − k even

Gegenbauer

1(
−λ
n

) ((
2

1+
√

1−t2

)λ0
, −t

1+
√

1−t2

) cn

ck

(−1)k (λ0 + k)(λ0 + n − 1) n−k
2 −1

2n
(

n−k
2

)
!

for n − k even & 0 for n − k odd

(−1)n
(

1−t2

1+t2 ,
−2t

1+t2

) 0 for n − k odd
(−2)n for n = k &

cn

ck
(−2)k

(−1)
n−k

2 n
n−k

2

(
k + n−k

2 − 1
n−k

2 − 1

)
for n − k even and n 6= k

Chebyshev I

(−1)n
(

1
1+t2 ,

−2t
1+t2

) 0, n − k odd

cn

ck
(−2)k

(
−k − 1

n−k
2

)
, n − k even

Chebyshev II

22n
〈1+α〉n

〈1+α+β〉2n

(
1

(1−t)1+α+β
, 2t
(1−t)2

)
cn
ck

2k
(
α+β+n+k

n−k

)
Jacobi

(q;q)n
(1−q)n

(
1

εa (t)
, t
) [

n
k

]
q

q

(
n−k

2

)
(−a)n−k

[x]a,n

(q;q)n
(1−q)n (εa(t), t)

[
n
k

]
q

an−k

(q;q)n
(1−q)n

(
t

ε1(t)−1 , t
) [

n
k

]
q

∑n−k
i=0

[
n − k

i

]
q

q

(
i
2

)
(−1)i Bn−k−i (1) q-Bernoulli

which implies that

Bn(x) =
n∑

k=0

[
n
k

]
q

n−k∑
i=0

[
n − k

i

]
q

q

(
i
2

)
(−1)iBn−k−i (1)xk

=

n∑
k=0

[
n
k

]
q

n∑
i=k

[
n − k
i − k

]
q

q

(
i−k

2

)
(−1)i−kBn−i (1)xk

=

n∑
i=0

[
n
i

]
q
Bn−i (1)

i∑
k=0

[
i
k

]
q
(−1)i−kq

(
i−k

2

)
xk
=

n∑
i=0

[
n
i

]
q
Bn−i (1)[x]i ,

where the last equation comes from (4.5).

The Riordan arrays presented in this subsection are listed in Table 2.

5. Recurrence relations and matrix factorizations

In this section, we study the recurrence relations satisfied by the elements of the Riordan arrays. Additionally,
based on one of the recurrences, we also give some matrix factorizations for the Riordan arrays.

5.1. Recurrence relations

Let us first consider the A-sequence of a Riordan array.
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For the classical Riordan array (g(t), f (t)), Rogers [26] found that every element dn+1,k+1, n, k ∈ N, can be
expressed as a linear combination of the elements in the preceding row, i.e.,

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · =

∞∑
j=0

a j dn,k+ j .

The sequence A = (ak)k∈N is fixed and we call it the A-sequence of the Riordan array. Rogers has shown that
the A-sequence only depends on f (t): let A(t) =

∑
∞

k=0 ak tk be the generating function of the sequence A, then
f (t) = t A( f (t)). Moreover, Rogers has also shown that the A-sequence determines an infinite triangle as a Riordan
array. The reader is referred to the papers of Rogers [26] and Sprugnoli [35] for more details of this concept.

Based on the theory of A-sequences for the classical Riordan arrays, we can further develop the corresponding
theory for the generalized Riordan arrays.

Theorem 5.1. The quantity dn,k is the generic element of the generalized Riordan array (g(t), f (t)) with respect to
cn if and only if ckdn,k/cn is the generic element of the classical Riordan array (g(t), f (t)).

Proof. By Definition 2.1, we have

dn,k =

[
tn

cn

]
g(t)

( f (t))k

ck
=

cn

ck
[tn
]g(t)( f (t))k,

which is equivalent to the fact that ckdn,k/cn = [tn
]g(t)( f (t))k . This completes the proof. �

Despite its simple proof, Theorem 5.1 is an important result, because it shows that the generalized Riordan arrays
can always be reduced to the classical case. From Theorem 5.1, the next two theorems can be obtained without
difficulty.

Theorem 5.2. For any generalized Riordan array (g(t), f (t)) = (dn,k)n,k∈N, every element dn+1,k+1, n, k ∈ N, can
be expressed as follows:

dn+1,k+1 =

∞∑
j=0

cn+1ck+ j

ck+1cn
a j dn,k+ j , (5.1)

where the sum is actually finite and the sequence A = (ak)k∈N is fixed. It is called the A-sequence of the generalized
Riordan array and it only depends on f (t). That is, let A(t) =

∑
∞

k=0 ak tk , then

f (t) = t A( f (t)), A(t) =
t

f̄ (t)
.

Proof. According to the results of Rogers [26], for the classical Riordan array (g(t), f (t)) = (d∗n,k)n,k∈N, there exists
a unique sequence A = (ak)k∈N that satisfies the statements of the theorem. Then d∗n+1,k+1 =

∑
∞

j=0 a j d∗n,k+ j and
f (t) = t A( f (t)). By Theorem 5.1, d∗n,k = ckdn,k/cn , so we have

ck+1

cn+1
dn+1,k+1 =

∞∑
j=0

a j
ck+ j

cn
dn,k+ j ,

which leads us to the recurrence (5.1) at once. �

Theorem 5.3. Let cn be a sequence of non-zero constants with c0 = 1, and let D := (dn,k)0≤k≤n<∞ be an infinite
triangle such that dn,n 6= 0, ∀n ∈ N and for which the relation (5.1) holds true for some sequence A = (ak)k∈N,
a0 6= 0. Then D is a generalized Riordan array (g(t), f (t)) with respect to cn , where g(t) =

∑
∞

k=0 dk,0tk/ck and
f (t) is the unique solution of f (t) = t A( f (t)) with A(t) =

∑
∞

k=0 ak tk .

Proof. Define d∗n,k = ckdn,k/cn , then d∗n,n 6= 0, ∀n ∈ N and d∗n+1,k+1 =
∑
∞

j=0 a j d∗n,k+ j . In view of [26,35], the

infinite triangle D∗ = (d∗n,k)n,k∈N is the classical Riordan array (g(t), f (t)), where g(t) =
∑
∞

k=0 d∗k,0tk and f (t) is
the unique solution of f (t) = t A( f (t)). Thus, g(t) =

∑
∞

k=0 c0dk,0tk/ck =
∑
∞

k=0 dk,0tk/ck , and by Theorem 5.1,
D = (dn,k)n,k∈N is the generalized Riordan array (g(t), f (t)) with respect to cn . �
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Next, we will demonstrate another two recurrences related to the elements of the generalized Riordan arrays.

Theorem 5.4. For any generalized Riordan array (g(t), f (t)) = (dn,k)n,k∈N, we have

dn,k −
cn

ncn−1
d̃n−1,k =

n∑
l=k

cn

cl−1cn−l+1

n − l + 1
n

fn−l+1
kck−1

ck
dl−1,k−1, n, k ≥ 1, (5.2)

where d̃n,k is the generic element of the Riordan array (g′(t), f (t)), g′(t) is the derivative of g(t), and fk are the
coefficients of the delta series f (t) =

∑
∞

k=1 fk tk/ck .

Proof. The column generating function is

∞∑
n=k

dn,k
tn

cn
= g(t)

( f (t))k

ck
. (5.3)

Differentiate (5.3) with respect to t ,

∞∑
n=k

dn,k
ntn−1

cn
= g′(t)

( f (t))k

ck
+

kck−1

ck
g(t) f ′(t)

( f (t))k−1

ck−1

=

∞∑
n=k

d̃n,k
tn

cn
+

kck−1

ck

∞∑
i=k−1

di,k−1
t i

ci

∞∑
j=0

( j + 1) f j+1
t j

c j+1

=

∞∑
n=k

d̃n,k
tn

cn
+

kck−1

ck

∞∑
n=k−1

n∑
i=k−1

cn

ci cn−i+1
(n − i + 1) fn−i+1di,k−1

tn

cn
,

and identify the coefficients of tn−1/cn−1 in the equation above, then we have

ncn−1

cn
dn,k = d̃n−1,k +

n−1∑
i=k−1

cn−1

ci cn−i
(n − i) fn−i

kck−1

ck
di,k−1,

which, after some transformations, leads us to (5.2) finally. �

For the iteration matrix with respect to cn , d̃n−1,k = 0 because of the fact that g′(t) = 0. Thus, (5.2) reduces to

dn,k =

n∑
l=k

cn

cl−1cn−l+1

n − l + 1
n

fn−l+1
kck−1

ck
dl−1,k−1, (5.4)

which has been given in [39, Lemma 3.1].

Theorem 5.5. For any generalized Riordan array (g(t), f (t)) = (dn,k)n,k∈N, we have

ck

ck−1
dn,k =

n∑
l=k

cn

cl−1cn−l+1
fn−l+1dl−1,k−1, n, k ≥ 1, (5.5)

where fk are the coefficients of the delta series f (t) =
∑
∞

k=1 fk tk/ck .

Proof. From (5.3), we have
∞∑

n=k

ck

ck−1
dn,k

tn

cn
= f (t)g(t)

( f (t))k−1

ck−1
=

∞∑
i=1

fi
t i

ci

∞∑
j=k−1

d j,k−1
t j

c j

=

∞∑
n=k

n−1∑
j=k−1

fn− j d j,k−1
cn

c j cn− j

tn

cn
.

By equating the coefficients of tn/cn , we can obtain the desired result. �
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For convenience, let us give the specializations of the recurrences (5.1), (5.2) and (5.5) for the cases cn = 1 and
cn = n!, respectively.

Corollary 5.6. For any classical Riordan array (g(t), f (t)) = (dn,k)n,k∈N, we have

dn+1,k+1 =

∞∑
j=0

a j dn,k+ j , (5.6)

dn,k −
1
n

d̃n−1,k =

n∑
l=k

k

n
(n − l + 1) fn−l+1dl−1,k−1, (5.7)

dn,k =

n∑
l=k

fn−l+1dl−1,k−1. (5.8)

Corollary 5.7. For any exponential Riordan array (g(t), f (t)) = (dn,k)n,k∈N, we have

dn+1,k+1 =

∞∑
j=0

n + 1
k + 1

(
k + j

j

)
j !a j dn,k+ j , (5.9)

dn,k − d̃n−1,k =

n∑
l=k

(
n − 1
l − 1

)
fn−l+1dl−1,k−1, (5.10)

kdn,k =

n∑
l=k

(
n

l − 1

)
fn−l+1dl−1,k−1. (5.11)

It should be noticed that, according to Theorem 5.1, the recurrences presented in Corollaries 5.6 and 5.7 are in fact
equivalent to the general ones (i.e., recurrences (5.1), (5.2) and (5.5)).

5.2. Matrix factorizations

The lower triangular matrices and matrix factorizations problem have catalyzed many investigations in recent
years. The Pascal matrix and several generalized Pascal matrices first received wide concern [2,4,42,43,45]; some
other lower triangular matrices were also studied systematically, for example, the Stirling matrices of the first kind
and of the second kind [10,11], the Lah matrix [38], and the matrix related to the idempotent numbers [41]. From [12,
Sections 3.3 and 3.7], we know that the matrices referred to above are all special iteration matrices. Based on this fact,
we have presented in [39] a unified approach to the matrix factorizations problem.

Peart and Woodson [24] did some researches on this problem with a different method. They showed that some
classical Riordan arrays have triple factorization of the form R = PC F , where P,C, F are also Riordan arrays.

Particularly, P =
(

1
1−bt ,

t
1−bt

)
is a Pascal-type matrix, C = (c(λt2), tc(λt2)) involves the generating function c(t)

for the Catalan numbers, and F =
(

1
1−εt−δt2 , t

)
involves the Fibonacci generating function.

Here, we will give some factorizations satisfied by the Riordan arrays. Our results are based on the third recurrence
(5.5) obtained in Section 5.1.

Actually, from (5.5), we have

ckdn,k =

n∑
l=k

cn

cl−1cn−l+1
fn−l+1ck−1dl−1,k−1. (5.12)

Now, defining R̂n and Pn to be the n × n matrices by

(R̂n)i, j = c j di, j , (Pn)i, j =


ci

c j−1ci− j+1
fi− j+1, if j ≥ 1,

di,0, if j = 0,
for i, j ∈ N,
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and using the notation ⊕ for the direct sum of two matrices, we can obtain a matrix factorization from Eq. (5.12),
i.e., R̂n = Pn(1⊕ R̂n−1). Moreover, let Rn and Dn be the n × n matrices satisfying

(Rn)i, j = di, j , Dn = diag{c0, c1, . . . , cn−1}, for i, j ∈ N,

and analogous to [4,10,39,42,43], for any k × k matrix Pk , define the n × n matrix P̄k by

P̄k =

(
In−k O
O Pk

)
.

Then R̂n = Rn Dn , P̄n = Pn , and we have the next theorem.

Theorem 5.8. The following factorizations hold:

R̂n = Rn Dn = Pn([1] ⊕ R̂n−1) = P̄n P̄n−1 · · · P̄1.

Because cn 6= 0, the matrix Dn has the inverse D−1
n = diag

{
1
c0
, 1

c1
, . . . , 1

cn−1

}
, by which we obtain the

factorizations for all Riordan arrays.

Theorem 5.9. The Riordan array R has the following factorizations:

Rn = Pn([1] ⊕ R̂n−1)D
−1
n = P̄n P̄n−1 · · · P̄1 D−1

n . (5.13)

If the Riordan array R has the inverse R−1, then

R−1
n = Dn([1] ⊕ D−1

n−1 R−1
n−1)P

−1
n = Dn P̄−1

1 P̄−1
2 · · · P̄

−1
n .

5.3. Examples

Now, let us give some examples for the recurrences and matrix factorizations.

5.3.1. The Pascal matrix
The classical Riordan array R = (1/(1 − t), t/(1 − t)) is just the Pascal matrix

(( n
k

))
n,k∈N. Because g′(t) =

1/(1− t)2, we have

d̃n−1,k = [t
n−1
]g′(t)( f (t))k = [tn−1−k

](1− t)−k−2
=

(
n

k + 1

)
.

Thus, in view of fk = 1, we deduce from (5.7) that(
n + 1
k + 1

)
=

n∑
l=k

(n − l + 1)
(

l − 1
k − 1

)
.

The other two recurrence relations for R given by Corollary 5.6 are trivial. Since f̄ (t) = t/(1 + t), then A(t) =

t/ f̄ (t) = 1 + t and (5.6) gives
(

n+1
k+1

)
=
( n

k

)
+

(
n

k+1

)
. Next, (5.8) gives

( n
k

)
=
∑n

l=k

(
l−1
k−1

)
. Finally, we consider

the factorizations of R. Since Dn = In , then R̂n = Rn . Moreover, (Pn)i, j = fi− j+1 = 1. Thus, we have

Rn = Pn([1] ⊕ Rn−1) = P̄n P̄n−1 · · · P̄1. (5.14)

When n = 4, (5.14) turns to
1
1 1
1 2 1
1 3 3 1

 =


1
1 1
1 1 1
1 1 1 1




1
1
1 1
1 2 1


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=


1
1 1
1 1 1
1 1 1 1




1
1
1 1
1 1 1




1
1

1
1 1

 .

5.3.2. The Stirling matrices of both kinds
The Riordan array (1, log(1+t)) = (s(n, k))n,k∈N is the Stirling matrix of the first kind and the generating function

of the A-sequence is

A(t) =
t

f̄ (t)
=

t

et − 1
=

∞∑
j=0

B j
t j

j !
,

where B j are the Bernoulli numbers (see, e.g., [12, p. 48]). Then (5.9) reduces to

s(n + 1, k + 1) =
∞∑
j=0

n + 1
k + 1

(
k + j

j

)
B j s(n, k + j).

Additionally, because fk = (−1)k−1(k − 1)!, we obtain from (5.10) and (5.11) that

s(n, k) =
n∑

l=k

(
n − 1
l − 1

)
(−1)n−l(n − l)!s(l − 1, k − 1),

ks(n, k) =
n∑

l=k

(
n

l − 1

)
(−1)n−l(n − l)!s(l − 1, k − 1).

Let us turn to the matrix factorization. Now (R̂n)i, j = j !s(i, j) and (Pn)i, j =

(
i

j−1

)
(−1)i− j (i − j)! for j ≥ 1.

When n = 5, (5.13) gives


1

1
−1 1
2 −3 1
−6 11 −6 1

=


1
1
−1 2
2 −3 3
−6 8 −6 4




1
1

1
−1 2
2 −6 6





1
1

1
2

1
6

1
24


.

The Riordan array (1, et
− 1) = (S(n, k))n,k∈N is the Stirling matrix of the second kind. For this array,

A(t) =
t

f̄ (t)
=

t

log(1+ t)
=

∞∑
j=0

b j (0)
t j

j !
,

where b j (0) are the Bernoulli numbers of the second kind [28, p. 114] and they are also called the Cauchy numbers
of the first kind (see [12, p. 294] and [21]). Then we have

S(n + 1, k + 1) =
∞∑
j=0

n + 1
k + 1

(
k + j

j

)
b j (0)S(n, k + j).

Next, because fk = 1, (5.10) and (5.11) lead us at once to

S(n, k) =
n∑

l=k

(
n − 1
l − 1

)
S(l − 1, k − 1),

kS(n, k) =
n∑

l=k

(
n

l − 1

)
S(l − 1, k − 1).
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By means of [12, p. 209, Eq. (3f)], we obtain

k!S(n, k) =
n∑

l=k

(
n

l − 1

)
(k − 1)!S(l − 1, k − 1) = kn

−

k−1∑
j=1

(k) j S(n, j).

Finally, from the fact that (R̂n)i, j = j !S(i, j) and (Pn)i, j =

(
i

j−1

)
, we can give the factorization of the array. When

n = 5 it is


1

1

1 1

1 3 1

1 7 6 1

 =


1

1

1 2

1 3 3

1 4 6 4




1

1

1

1 2

1 6 6





1

1
1
2

1
6

1
24


.

5.3.3. The Riordan array related to the polynomials of the Gegenbauer case

According to the discussion of Section 4.2.1, we know that

(
1

(1+ t2)λ0
,
−2t

1+ t2

)
n,k
=


0, n − k odd,
cn

ck
(−2)k

(
−λ0 − k

n−k
2

)
, n − k even.

Because f̄ (t) = −t

1+
√

1−t2
, the generating function of the A-sequence is

A(t) =
t

f̄ (t)
= −1−

√
1− t2 = −2−

∞∑
i=1

( 1
2 )i

i !
(−1)i t2i

= −2+
∞∑

i=1

(2i − 2)!

22i−1i !(i − 1)!
t2i .

Therefore, when n − k is even, (5.1) gives(
−λ0 − k − 1

n−k
2 − 1

)
=

∞∑
i=1

1
i

(
2i − 2
i − 1

)(
−λ0 − k − 2i

n−k
2 − i

)
.

Upon setting n→ 2n + k, this reduces to(
−λ0 − k − 1

n − 1

)
=

∞∑
i=1

1
i

(
2i − 2
i − 1

)(
−λ0 − k − 2i

n − i

)
.

It is interesting to notice that the quantity 1
i

(
2i−2
i−1

)
is a Catalan number [12, p. 53]. Next, by computation,

g′(t) = −2λ0t (1+ t2)−λ0−1. Thus, when n − k ≥ 2 and n − k is even, we have

d̃n−1,k =

[
tn−1

cn−1

]
g′(t)

( f (t))k

ck
=

cn−1

ck
(−2)k+1λ0[t

n−k−2
](1+ t2)−λ0−1−k

=
cn−1

ck
(−2)k+1λ0[t

n−k−2
]

∞∑
i=0

(
−λ0 − 1− k

i

)
t2i
=

cn−1

ck
(−2)k+1λ0

(
−λ0 − 1− k

n−k
2 − 1

)
,

by which, we can compute the left-hand side of (5.2):

cn

ck
(−2)k

(
−λ0 − k

n−k
2

)
−

cn

ncn−1

cn−1

ck
(−2)k+1λ0

(
−λ0 − 1− k

n−k
2 − 1

)
=

cn

ck
(−2)k

k(λ0 + n)

n(λ0 + k)

(
−λ0 − k

n−k
2

)
.
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From

f (t) =
−2t

1+ t2 = −2
∞∑

i=0

(−1)i t2i+1,

we deduce that fn−l+1 = −2(−1)
n−l

2 cn−l+1 if n − l is even and 0 if n − l is odd. Furthermore, if n − k and n − l are
even, then l − k is even, so the right-hand side of (5.2) yields

cn

ck
(−2)k

k

n

n∑
l=k

l−k even

(n − l + 1)(−1)
n−l

2

(
−λ0 − k + 1

l−k
2

)
.

Combining with the left-hand side and doing some computation, we have

λ0 + n

λ0 + k

(
−λ0 − k

n−k
2

)
=

n−k
2∑

j=0

(n − k − 2 j + 1)(−1)
n−k

2 − j
(
−λ0 − k + 1

j

)
for n − k even.

Once again, let n→ 2n + k, then the identity above turns to

λ0 + 2n + k

λ0 + k

(
−λ0 − k

n

)
=

n∑
j=0

(2n − 2 j + 1)(−1)n− j
(
−λ0 − k + 1

j

)
.

Finally, when n − k is even, the recurrence (5.5) gives

(
−λ0 − k

n−k
2

)
=

n−k∑
j=0

j even

(
−λ0 − k + 1

j
2

)
(−1)

n− j−k
2 =

n−k
2∑

j=0

(
−λ0 − k + 1

j

)
(−1)

n−k
2 − j ,

which is equivalent to [12, p. 10, Eq. (5h)](
−λ0 − k

n

)
=

n∑
j=0

(−1)n− j
(
−λ0 − k + 1

j

)
.

Let us consider the factorization of the Riordan array. If i − j is even,

(Pn)i, j =
ci

c j−1ci− j+1
fi− j+1 =

ci

c j−1ci− j+1
(−2)(−1)

i− j
2 ci− j+1 =

ci

c j−1
(−2)(−1)

i− j
2 ,

and if i − j is odd, (Pn)i, j = 0. Then for n = 4 we have


1
0 −2
−c2λ0 0 4

0 2
c3

c1
(λ0 + 1) 0 −8

 =


1
0 −2c1

−c2λ0 0 −2
c2

c1

0 2c3 0 −2
c3

c2



×


1

1
0 −2c1
−c2λ0 0 4c2




1
1
c1

1
c2

1
c3

 .
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5.3.4. The Riordan array related to the polynomials of the Jacobi case
From Section 4.2.3, we know that(

1

(1− t)1+α+β
,

2t

(1− t)2

)
=

(
cn

ck
2k
(
α + β + n + k

n − k

))
n,k∈N

.

Since f̄ (t) = 1+t−
√

1+2t
t , then

A(t) =
t

f̄ (t)
=

t2

1+ t −
√

1+ 2t
= 1+ t +

√
1+ 2t

= 2+ 2t +
∞∑

i=2

(−1)i−1(2i − 2)!

i !(i − 1)!2i−1 t i
= 2+ 2t +

∞∑
i=2

(
−

1
2

)i−1 1
i

(
2i − 2
i − 1

)
t i ,

where the Catalan numbers can be found again. With some computation, we have(
α + β + n + k + 2

n − k

)
−

(
α + β + n + k

n − k

)
− 2

(
α + β + n + k + 1

n − k − 1

)
= −

(
α + β + n + k

n − k − 2

)
.

Thus, the recurrence (5.1) gives(
α + β + n + k

n − k − 2

)
=

n−k∑
i=2

(−1)i
1
i

(
2i − 2
i − 1

)(
α + β + n + k + i

n − k − i

)
.

Next, because g′(t) = (1+ α + β)(1− t)−(2+α+β), we have

d̃n−1,k =

[
tn−1

cn−1

]
g′(t)

( f (t))k

ck
=

cn−1

ck
(1+ α + β)2k

(
α + β + n + k

n − k − 1

)
.

Making use of the fact that fk = 2kck , we obtain from (5.2) that

α + β + 2n + 1
α + β + 2k + 1

(
α + β + n + k

n − k

)
=

n∑
l=k

(n − l + 1)2
(
α + β + l + k − 2

l − k

)
.

Also, (5.5) gives(
α + β + n + k

n − k

)
=

n∑
l=k

(n − l + 1)
(
α + β + l + k − 2

l − k

)
.

Additionally, since (Pn)i, j = 2 ci
c j−1

(i − j + 1), then the following matrix factorization holds:

1

c1

(
α + β + 1

1

)
2

c2

(
α + β + 2

2

)
2

c2

c1

(
α + β + 3

1

)
4

c3

(
α + β + 3

3

)
2

c3

c1

(
α + β + 4

2

)
4

c3

c2

(
α + β + 5

1

)
8



=



1

c1

(
α + β + 1

1

)
2c1

c2

(
α + β + 2

2

)
4c2 2

c2

c1

c3

(
α + β + 3

3

)
6c3 4

c3

c1
2

c3

c2


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×



1
1

c1

(
α + β + 1

1

)
2c1

c2

(
α + β + 2

2

)
2c2

(
α + β + 3

1

)
4c2





1
1
c1

1
c2

1
c3

 .

Finally, we would like to give the factorization of the Riordan array (1/εa(t), t), whose generic element is[
n
k

]
q

q

(
n−k

2

)
(−a)n−k . Now (Pn)i, j =

1−q i

1−q for i = j and 0 for i 6= j . Therefore, we have

1
−a 1

qa2
−

1− q2

1− q
a 1

−q3a3 1− q3

1− q
qa2

−
1− q3

1− q
a 1

 =


1
−a 1

qa2 0
1− q2

1− q

−q3a3 0 0
1− q3

1− q



×


1

1
−a 1

qa2
−

1− q2

1− q
a

1− q2

1− q





1
1
c1

1
c2

1
c3

 .

In the following examples, we will concentrate on the three recurrence relations.

5.3.5. The Riordan arrays related to the Poisson–Charlier polynomials
According to Table 1, the Riordan array R =

(
e−t , log

(
1+ t

a

))
with the generic element

dn,k =

n∑
j=0

(
n

j

)
(−1)n− j a− j s( j, k)

corresponds to the Poisson–Charlier polynomials [28, Section 4.3.3]. Since f̄ (t) = a(et
− 1), then

A(t) =
t

a(et − 1)
=

1
a

∞∑
i=0

Bi
t i

i !

and (5.9) turns to

dn+1,k+1 =

∞∑
j=0

n + 1
k + 1

(
k + j

j

)
B j

a
dn,k+ j ,

where B j are the Bernoulli numbers. Next, from g′(t) = −e−t , we have

d̃n−1,k = −

n−1∑
j=0

(
n − 1

j

)
(−1)n−1− j a− j s( j, k).

Then the left-hand side of (5.10) gives

n∑
j=0

(
n

j

)
(−1)n− j a− j s( j, k)+

n−1∑
j=0

(
n − 1

j

)
(−1)n−1− j a− j s( j, k)
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=

n−1∑
j=0

(
n − 1
j − 1

)
(−1)n− j a− j s( j, k)+ a−ns(n, k) =

n∑
j=0

(
n − 1
j − 1

)
(−1)n− j a− j s( j, k).

Because fk = (−1)k−1(k − 1)!/ak , by series rearrangement, the right-hand side of (5.10) yields

n∑
j=k

(
n − 1
j − 1

)
(−1)n− j (n − j)!a−n

(
n∑

l= j

al− j

(l − j)!

)
s( j − 1, k − 1).

Thus, the following identity holds:

n∑
j=k

(
n − 1
j − 1

)
(−a)n− j s( j, k) =

n∑
j=k

(n − 1)!
( j − 1)!

(−1)n− j

(
n∑

l= j

al− j

(l − j)!

)
s( j − 1, k − 1).

Finally, with some computation, we deduce from (5.11) that

k
n∑

j=k

(
n

j

)
(−a)n− j s( j, k) =

n∑
j=k

n!

( j − 1)!
(−1)n− j

(
n∑

l= j

al− j

(l − j)!(n − l + 1)

)
s( j − 1, k − 1).

Recall that φn(x) are the exponential polynomials (see the second example given below Theorem 3.2 and [28,
Section 4.1.3]). From Table 1, we know that the Riordan array(

ea(et
−1), a(et

− 1)
)
=

(
ak

n∑
j=0

(
n

j

)
φn− j (a)S( j, k)

)
n,k∈N

is the inverse of R. Because the generating function of the A-sequence is

A(t) =
t

log(1+ t
a )
= a

∞∑
k=0

bk(0)
k!ak tk,

we obtain the following recurrence:

dn+1,k+1 =

∞∑
j=0

n + 1
k + 1

(
k + j

j

)
a1− j b j (0)dn,k+ j ,

where b j (0) are the Bernoulli numbers of the second kind (see Section 5.3.2 and [28, p. 114]). Additionally, since
g′(t) = ea(et

−1)aet , then

d̃n−1,k =

[
tn−1

(n − 1)!

]
ea(et

−1)aet ak(et
− 1)k

k!

=

[
tn−1

(n − 1)!

]
ea(et

−1)
(
(k + 1)

ak+1(et
− 1)k+1

(k + 1)!
+ a

ak(et
− 1)k

k!

)
= ak+1(k + 1)

n−1∑
j=0

(
n − 1

j

)
φn−1− j (a)S( j, k + 1)+ ak+1

n−1∑
j=0

(
n − 1

j

)
φn−1− j (a)S( j, k)

= ak+1
n−1∑
j=0

(
n − 1

j

)
φn−1− j (a)S( j + 1, k + 1).

Based on the fact that [28, p. 64, Eq. (4.1.5)] φn+1(x) = x
∑n

k=0

( n
k

)
φk(x) and by the method of series rearrangement,

the right-hand side of (5.10) gives

ak−1
n∑

j=k

(
n − 1
j − 1

)
φn− j+1(a)S( j − 1, k − 1).
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Then from (5.10) we have

a
n∑

j=k

(
n

j

)
φn− j (a)S( j, k)− a2

n−1∑
j=k

(
n − 1

j

)
φn−1− j (a)S( j + 1, k + 1)

=

n∑
j=k

(
n − 1
j − 1

)
φn− j+1(a)S( j − 1, k − 1). (5.15)

With a similar method, we can obtain from (5.11) that

k
n∑

j=k

(
n

j

)
φn− j (a)S( j, k) =

n∑
j=k

(
n

j − 1

)(
φn− j+2(a)

a
− φn− j+1(a)

)
S( j − 1, k − 1). (5.16)

In particular, because φn(1) = Bn , where Bn are the Bell numbers [12, p. 210], (5.15) and (5.16) will further give
the next two identities:

n∑
j=k

(
n

j

)
Bn− j S( j, k)−

n−1∑
j=k

(
n − 1

j

)
Bn−1− j S( j + 1, k + 1)

=

n∑
j=k

(
n − 1
j − 1

)
Bn− j+1S( j − 1, k − 1),

k
n∑

j=k

(
n

j

)
Bn− j S( j, k) =

n∑
j=k

(
n

j − 1

)
(Bn− j+2 −Bn− j+1)S( j − 1, k − 1).

5.3.6. The Riordan arrays related to the Actuarial polynomials
From Table 1, it can be seen that the Riordan array R = (eβt , 1− et ) with the generic element

(−1)k
n∑

j=0

(
n

j

)
βn− j S( j, k)

corresponds to the Actuarial polynomials [28, Section 4.3.4]. In the light of

A(t) =
t

log(1− t)
=

∞∑
j=0

(−1) j+1b j (0)
t j

j !
,

we have

dn+1,k+1 =

∞∑
j=0

n + 1
k + 1

(
k + j

j

)
(−1) j+1b j (0)dn,k+ j .

Next, since g′(t) = βeβt , then

d̃n−1,k = (−1)k
n−1∑
j=0

(
n − 1

j

)
βn− j S( j, k).

Based on (5.10) and (5.11), the following two identities hold:

n∑
j=k

(
n − 1
j − 1

)
βn− j S( j, k) =

n∑
j=k

(
n − 1
j − 1

)
(1+ β)n− j S( j − 1, k − 1),

k
n∑

j=k

(
n

j

)
βn− j S( j, k) =

n∑
j=k

(
n

j − 1

)
((1+ β)n− j+1

− βn− j+1)S( j − 1, k − 1).
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The inverse of R is

((1− t)−β , log(1− t)) =

(
(−1)n

n∑
j=0

(
n

j

)
(−β)n− j s( j, k)

)
n,k∈N

.

For this array,

A(t) =
t

1− et = −

∞∑
j=0

B j
t j

j !
,

which leads us to the recurrence

dn+1,k+1 = −

∞∑
j=0

n + 1
k + 1

(
k + j

j

)
B j dn,k+ j .

Since g′(t) = β(1− t)−β−1, then

d̃n−1,k = (−1)n
n−1∑
j=0

(
n − 1

j

)
(−β)n− j s( j, k).

With some computation, we deduce from (5.10) and (5.11) that

n∑
j=k

(
n − 1
j − 1

)
(−β)n− j s( j, k) =

n∑
j=k

(n − 1)!
( j − 1)!

(−1)n− j

(
n− j∑
l=0

(
β + l − 1

l

))
s( j − 1, k − 1),

k
n∑

j=k

(
n

j

)
(−β)n− j s( j, k) =

n∑
j=k

n!

( j − 1)!
(−1)n− j

(
n− j∑
l=0

(
β + l − 1

l

)
1

n − j + 1− l

)
s( j − 1, k − 1).

5.3.7. Some classical Riordan arrays
Let us consider the classical Riordan array [36, p. 227](

1

(1− t)p+1 log
1

1− t
,

t

(1− t)q

)
=

((
Hp+n+(q−1)k − Hp+qk

) ( p + n + (q − 1)k
n − k

))
n,k∈N

,

where Hn =
∑n

k=1 1/k are the Harmonic numbers. From

g′(t) =
p + 1

(1− t)p+2 log
1

1− t
+

1

(1− t)p+2 ,

we obtain that

d̃n,k = (p + 1)
(
Hp+(q−1)k+n+1 − Hp+qk+1

) ( p + (q − 1)k + n + 1
p + qk + 1

)
+

(
p + (q − 1)k + n + 1

p + qk + 1

)
.

Additionally, fk =

(
q+k−2

k−1

)
. Therefore, (5.7) and (5.8) give(

1
p + qn + 1

+ Hp+n+(q−1)k − Hp+qk+1

)
p + qn + 1
p + qk + 1

(
p + n + (q − 1)k

n − k

)
=

n∑
l=k

(n − l + 1)
(

q + n − l − 1
n − l

) (
Hp+l−k+q(k−1) − Hp+q(k−1)

) ( p + l − k + q(k − 1)
l − k

)
,

(
Hp+n+(q−1)k − Hp+qk

) ( p + n + (q − 1)k
n − k

)
=

n∑
l=k

(
q + n − l − 1

n − l

) (
Hp+l−k+q(k−1) − Hp+q(k−1)

) ( p + l − k + q(k − 1)
l − k

)
.
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When p = 0 and q = 1, the above two identities reduce to

(Hn+1 − Hk+1)

(
n + 1
k + 1

)
=

n∑
l=k

(n − l + 1) (Hl−1 − Hk−1)

(
l − 1
k − 1

)
,

(Hn − Hk)
(n

k

)
=

n∑
l=k

(Hl−1 − Hk−1)

(
l − 1
k − 1

)
.

The classical Riordan array (ept , teqt ) has dn,k =
(p+qk)n−k

(n−k)! as its generic element [36, p. 218]. By computation

d̃n−1,k = p (p+qk)n−k−1

(n−k−1)! and fk =
qk−1

(k−1)! , then from (5.7) and (5.8) we have

(p + qn)(p + qk)n−k−1
=

n∑
l=k

(
n − k

l − k

)
(n − l + 1)qn−l(p + qk − q)l−k,

(p + qk)n−k
=

n∑
l=k

(
n − k

l − k

)
qn−l(p + qk − q)l−k .

The second identity is trivial. Let l → l + k and n→ n + k, then the first identity turns to

(p + q(n + k))(p + qk)n−1
=

n∑
l=0

(n

l

)
(n − l + 1)qn−l(p + qk − q)l .

Finally, for the classical Riordan array ((1+αt)p, t (1+αt)q) =
((

p+qk
n−k

)
αn−k

)
n,k∈N

(see [36, p. 224]), we have

d̃n−1,k = p
(

p+qk−1
n−k−1

)
αn−k and fk =

(
q

k−1

)
αk−1, then (5.7) and (5.8) yield

p + qn

p + qk

(
p + qk

n − k

)
=

n∑
l=k

(
q

n − l

)(
p + qk − q

l − k

)
(n − l + 1),

(
p + qk

n − k

)
=

n∑
l=k

(
q

n − l

)(
p + qk − q

l − k

)
,

where the second identity is also a trivial one.

5.3.8. The Riordan arrays related to the generalized Bernoulli and Euler polynomials

According to Section 4.1.2, we know that the exponential Riordan array
((

t
et−1

)α
, t
)
=

(( n
k

)
B(α)n−k

)
n,k∈N

corresponds to the generalized Bernoulli polynomials. Since

g′(t) = α

(
t

et − 1

)α−1 et
− 1− tet

(et − 1)2
= α

(
t

et − 1

)α−1 ( 1
et − 1

−
t

et − 1
−

t

(et − 1)2

)
,

then

d̃n−1,k =

[
tn−1

(n − 1)!

]
g′(t)

tk

k!

= α
(n − 1)!

k!
[tn−1−k

]

(
1
t

(
t

et − 1

)α
−

(
t

et − 1

)α
−

1
t

(
t

et − 1

)α+1
)

=
α

n − k

(
n − 1

k

)(
B(α)n−k − (n − k)B(α)n−k−1 − B(α+1)

n−k

)
=

α

n − k

(
n − 1

k

)(
B(α)n−k − B(α+1)

n−k (1)
)
,
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where the last step comes from the fact that [28, p. 95, Eq. (4.2.6)] B(α)n (x + 1) = B(α)n (x) + nB(α−1)
n−1 (x). Now, the

recurrence (5.10) gives(n

k

)
B(α)n−k −

α

n − k

(
n − 1

k

)(
B(α)n−k − B(α+1)

n−k (1)
)
=

(
n − 1
k − 1

)
B(α)n−k .

Replacing k by n − k and doing some simplification, we have

B(α+1)
k (1) =

(
1−

k

α

)
B(α)k (0).

Analogously, for the Riordan array
((

2
et+1

)α
, t
)
=

(( n
k

)
E (α)n−k(0)

)
n,k∈N

, we have

g′(t) = −α

((
2

et + 1

)α
−

1
2

(
2

et + 1

)α+1
)

and then

d̃n−1,k = −α

(
n − 1

k

)(
E (α)n−1−k(0)−

1
2

E (α+1)
n−1−k(0)

)
.

Therefore, (5.10) yields(n

k

)
E (α)n−k(0)+ α

(
n − 1

k

)(
E (α)n−1−k(0)−

1
2

E (α+1)
n−1−k(0)

)
=

(
n − 1
k − 1

)
E (α)n−k(0).

Making use of the formula [28, p. 103, Eq. (4.2.11)] E (α)n (x + 1) = 2E (α−1)
n (x)− E (α)n (x), we get

2E (α)k (0) = −αE (α+1)
k−1 (1).

6. Some applications

6.1. Inverse relations

The problem of inverse relations is one of the most interesting subjects in combinatorics and there is a vast literature
on it. For a fundamental discussion, the reader is referred to the famous book [25] by Riordan.

The theory of matrices is an important tool to study the inverse relations. In fact, let A = (an,k)0≤k≤n<∞
and B = (bn,k)0≤k≤n<∞ be two infinite lower triangular matrices. Then A and B are inverse to each other
(i.e.,

∑n
l=k an,lbl,k = δn,k) is equivalent to the existence of the following inverse relation

yn =

n∑
k=0

an,k xk, xn =

n∑
k=0

bn,k yk . (6.1)

According to the rule explained above, it is easy to see that the Riordan arrays can be used to study the inverse
relations. In particular, given a Sheffer sequence, by Theorem 3.2, we can get the corresponding Riordan array R and
then the inverse array R−1. From R and R−1, an inverse relation can be established. Thus, we have a method to find
the inverse relations systematically and we can further get the inversion of a given combinatorial sum. The reader can
read the paper [32] by Shapiro et al. to see some examples.

It should be noticed that Corsani, Merlini and Sprugnoli [13] have also investigated the problem of inverting
combinatorial sums by the theory of Riordan arrays. However, the combinatorial sums they dealt with, such as
an =

∑
k dn,kbk , could not be inverted in terms of the orthogonality relation because the infinite, lower triangular

array P = (dn,k)n,k∈N’s diagonal elements were equal to zero (except d0,0). They presented that for these sums, a
left-inverse P̄ such that P̄ P = I could be found and therefore they could left-invert the original combinatorial sum
and obtain bn =

∑
k d̄n,kak . More results on both the problem of inverse relations and the theory of Riordan arrays

can be found in [14,20,22].
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Additionally, in the book [28], Roman presented an interesting approach to the inverse relations based on the
theories of Sheffer sequences and umbral calculus (see [28, Theorem 5.5.1]). In this section, we will also show that
Roman’s approach is trivial from the theory of Riordan arrays point of view; it is equivalent to giving a Riordan array
R and its inverse R−1.

Let us go into the details. All the Riordan arrays presented from now on have inverse, in other words, they are all
determined by an invertible series and a delta series. As just introduced, from such a Riordan array (g(t), f (t)) =
(an,k)n,k∈N and its inverse (1/g( f̄ (t)), f̄ (t)) = (bn,k)n,k∈N, an inverse relation which has the form (6.1) can be
obtained, and we can deduce the inversion of a combinatorial sum by the corresponding inverse relation.

A particular instance is the generalized Stirling number pair introduced and studied by Hsu [15]. Let f (t) be a
delta series and let

1
k!
( f (t))k =

∞∑
n=0

A1(n, k)
tn

n!
,

1
k!
( f̄ (t))k =

∞∑
n=0

A2(n, k)
tn

n!
.

Then A1(n, k) and A2(n, k) are called a generalized Stirling number pair. In the context of the theory of Riordan
arrays, A1(n, k) and A2(n, k) are generic elements of the Riordan arrays (1, f (t)) and (1, f̄ (t)), respectively. So we
have

yn =

n∑
k=0

A1(n, k)xk, xn =

n∑
k=0

A2(n, k)yk .

The interested readers can see the relative papers, e.g., [15,46], for the applications of the generalized Stirling number
pairs.

From Section 4.1.2, we can see that the Riordan array
((

t
et−1

)α
, t
)
=

(( n
k

)
B(α)n−k

)
n,k∈N

has the inverse((
et
−1
t

)α
, t
)
=

(( n
k

)
B(−α)n−k

)
n,k∈N

. Thus, we have

yn =

n∑
k=0

(n

k

)
B(α)n−k xk, xn =

n∑
k=0

(n

k

)
B(−α)n−k yk .

Particularly, when α = 1, the inverse relation above will reduce to

yn =

n∑
k=0

(n

k

)
Bn−k xk, xn =

n∑
k=0

(n

k

) 1
n − k + 1

yk . (6.2)

Since
n∑

k=m

(n

k

)
Bn−k S(k,m) =

[
tn

n!

]
t

et − 1
1

m!
(et
− 1)m

=
n!

m!
[tn−1
](et
− 1)m−1

=
n

m
S(n − 1,m − 1),

then the inverse relation (6.2) gives

n∑
k=m

(n

k

) 1
n − k + 1

k

m
S(k − 1,m − 1) =

1
m

n∑
k=m

(
n

k − 1

)
S(k − 1,m − 1) = S(n,m).

Also by (6.2), from

n∑
k=0

(n

k

)
Bn−k xk

= Bn(x),

we have
n∑

k=0

(n

k

) 1
n − k + 1

Bk(x) = xn .
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From Section 4.1.3, we know that the Riordan array
(

2
et+1 , t

)
=
(( n

k

)
En−k(0)

)
n,k∈N has the inverse

(
et
+1
2 , t

)
,

whose generic element dn,k is 1
2

( n
k

)
for n 6= k and 1 for n = k. Thus, from

n∑
k=0

(n

k

)
En−k(0)xk

= En(x),

we have

n−1∑
k=0

1
2

(n

k

)
Ek(x)+ En(x) = xn .

Next, from Section 4.2.1, we know that the inverse of the Riordan array ((1 + t2)−λ0 ,−2t/(1 + t2)) is((
2

1+
√

1−t2

)λ0

, −t

1+
√

1−t2

)
. In view of the generic elements of these two arrays, we have the following inverse

pair:

yn =

[ n
2

]∑
k=0

(
−λ

n−2k

) (
−λ0−n+2k

k

)
(
−λ
n

) (−2)n−2k xn−2k, (6.3)

xn =

[ n
2

]∑
k=0

(
−λ

n−2k

)
(−1)n(λ0 + n − 2k)(λ0 + n − 1)k−1(

−λ
n

)
2nk!

yn−2k . (6.4)

For instance, since the polynomials sn(x) of the Gegenbauer case have the expression (4.4), then xn can be expressed
as a linear combination of sn(x) by (6.4).

Finally, from Section 4.2.4, the inverse of the Riordan array (1/εa(t), t) is (εa(t), t). Thus, based on their generic
elements, the following inverse relation holds:

yn =

n∑
k=0

[
n
k

]
q
(−a)n−kq

(
n−k

2

)
xk, xn =

n∑
k=0

[
n
k

]
q

an−k yk .

As an example, from (4.5), we have

xn
=

n∑
k=0

[
n
k

]
q

an−k
[x]a,k .

We could give more inverse relations by this way; instead in the following we will focus on the theorem below.

Theorem 6.1. For any invertible series h(t), and any delta series f (t) and l(t), we can construct two Riordan arrays
which are inverse to each other:

R = (h( f̄ (t)), l( f̄ (t))), R−1
=

(
1

h(l̄(t))
, f (l̄(t))

)
.

Suppose the generic elements are an,k and bn,k , respectively, then we have the following inverse pair:

yn =

n∑
k=0

an,k xk, xn =

n∑
k=0

bn,k yk .

From the theory of Riordan arrays point of view, this theorem is trivial. But it is actually equivalent to the following
theorem, which generalizes the result of Roman [28, Theorem 5.5.1] and is not trivial.
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Theorem 6.2. Let pn(x) be associated to f (t) and let qn(x) be associated to l(t). Then for any invertible series h(t)
we have the inverse pair

yn =

n∑
k=0

〈h(t)(l(t))k |pn(x)〉

ck
xk, xn =

n∑
k=0

〈h(t)−1( f (t))k |qn(x)〉

ck
yk .

The proof of Theorem 6.2 is the same as that of [28, Theorem 5.5.1], and in this theorem, the notation 〈L|p(x)〉
denotes the action of a linear functional L on a polynomial p(x) and if f (t) =

∑
∞

k=0 ak tk , then 〈 f (t)|xn
〉 =

[tn/cn] f (t) = cnan . For more details, the reader is referred to [27,28]. Now, let us verify the equivalence of
Theorems 6.1 and 6.2.

In fact, let pn(x) =
∑n

j=0 an, j x j , then

1
ck
〈h(t)(l(t))k |pn(x)〉 =

1
ck

〈
h(t)(l(t))k

∣∣∣∣∣ n∑
j=0

an, j x j

〉

=
1
ck

n∑
j=0

an, j 〈h(t)(l(t))
k
|x j
〉 =

1
ck

n∑
j=0

an, j

[
t j

c j

] (
h(t)(l(t))k

)
. (6.5)

Since pn(x) is the Sheffer sequence for the pair (1, f (t)), then according to Theorem 3.2, an, j is the generic element
of the Riordan array (1, f̄ (t)). By the summation rule (2.2), the right-hand side of (6.5) equals

1
ck

[
tn

cn

]
h( f̄ (t))(l( f̄ (t)))k =

[
tn

cn

]
h( f̄ (t))

(l( f̄ (t)))k

ck
,

which means 1
ck
〈h(t)(l(t))k |pn(x)〉 is the generic element of the Riordan array (h( f̄ (t)), l( f̄ (t))). Analogously, we

can prove that 1
ck
〈h(t)−1( f (t))k |qn(x)〉 is the generic element of

(
1

h(l̄(t))
, f (l̄(t))

)
. Therefore, the equivalence of these

two theorems is verified.
Because the examples presented in [28, Section 5.5] are all special cases of Theorem 6.2, they can also be deduced

from Theorem 6.1. To show the power of the theorem, we would like to give two instances.

6.1.1. f (t) = −t

1+
√

1−t2
, l(t) = 2−2

√
1−t2

t , h(t) = 2−2
√

1−t2

t2

These series come from the pair
(

2−2
√

1−t2

t2 , −t

1+
√

1−t2

)
which corresponds to the Sheffer sequence Un(x)

introduced in Section 4.2.2. From these series, we have f̄ (t) = −2t
1+t2 , l̄(t) = 4t

4+t2 and then

h( f̄ (t)) = 1+ t2, l( f̄ (t)) = −2t;
1

h(l̄(t))
=

4

4+ t2 , f (l̄(t)) = −
1
2

t.

The generic element of (h( f̄ (t)), l( f̄ (t))) is

an,k =

[
tn

cn

]
(1+ t2)

(−2)k tk

ck
=

cn

ck
(−2)k[tn−k

](1+ t2) =
cn

ck
(−2)k(δn,k + δn,k+2),

that is,

an,k =


(−2)n, if n = k,
cn

ck
(−2)k, if n = k + 2,

0, else.

The generic element of
(

1
h(l̄(t))

, f (l̄(t))
)

is

bn,k =

[
tn

cn

]
4

4+ t2

(
−

1
2

)k tk

ck
=

cn

ck

(
−

1
2

)k

[tn−k
]

∞∑
i=0

(−1)i

22i
t2i
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=

0, n − k odd,
cn

ck
(−1)k(−1)

n−k
2

1
2n , n − k even.

Because these two Riordan arrays are inverse to each other, we have



1
0 −2
c2 0 4

0 −2
c3

c1
0 −8

0 0 4
c4

c2
0 16





1

0 −
1
2

−
1
4

c2 0
1
4

0
1
8

c3

c1
0 −

1
8

1
16

c4 0 −
1
16

c4

c2
0

1
16


=


1

1
1

1
1

 .

By Theorem 6.1, the following inverse relation holds:

yn = (−2)n xn +
cn

cn−2
(−2)n−2xn−2,

xn =

n∑
k=0

n−k even

cn

ck
(−1)k(−1)

n−k
2

1
2n yk =

[ n
2

]∑
k=0

cn

cn−2k
(−1)n−k 1

2n yn−2k,

which, by letting yn/cn → yn and (−2)n xn/cn → xn , reduces to

yn = xn + xn−2, xn =

[ n
2

]∑
k=0

(−1)k yn−2k .

6.1.2. f (t) = 1+t−
√

1+2t
t , l(t) = 2t

1+
√

1+2t
, h(t) =

(
2

1+
√

1+2t

)1+α+β

These series come from the pair
((

2
1+
√

1+2t

)1+α+β
, 1+t−

√
1+2t

t

)
which corresponds to the Sheffer sequence

Jn(x) introduced in Section 4.2.3. By computation, we have f̄ (t) = 2t
(1−t)2

, l̄(t) = t2
+2t
2 and then

h( f̄ (t)) = (1− t)1+α+β , l( f̄ (t)) =
2t

1− t
;

1

h(l̄(t))
=

(
2+ t

2

)1+α+β

, f (l̄(t)) =
t

2+ t
.

The generic element of (h( f̄ (t)), l( f̄ (t))) is

an,k =

[
tn

cn

]
1
ck
(1− t)1+α+β

(
2t

1− t

)k

= 2k cn

ck

(
1+ α + β − k

n − k

)
(−1)n−k

;

and the generic element of
(

1
h(l̄(t))

, f (l̄(t))
)

is

bn,k =

[
tn

cn

]
1
ck

(
2+ t

2

)1+α+β ( t

2+ t

)k

=
cn

ck

(
1+ α + β − k

n − k

)
1
2n .

Therefore, we have the inverse pair

yn =

n∑
k=0

cn

ck

(
1+ α + β − k

n − k

)
(−1)n−k2k xk,

xn =

n∑
k=0

cn

ck

(
1+ α + β − k

n − k

)
1
2n yk .

Upon letting yn/cn → yn , 2n xn/cn → xn and −2− α − β → p, this inverse pair will reduce to
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yn =

n∑
k=0

(
n + p

n − k

)
xk, xn =

n∑
k=0

(
n + p

n − k

)
(−1)n−k yk,

which is the c = 1 case of [25, p. 69, Table 2.6, Entry 5].

Now, we briefly introduce the Riordan inverse chain. Let A, B, C be three Riordan arrays defined by

A = (g(t), f (t)) = (an,k)n,k∈N, B = (h1(t), l1(t)) = (bn,k)n,k∈N,

C = (h2(t), l2(t)) = (cn,k)n,k∈N.

Suppose the sequences xn , yn satisfy the relation yn =
∑n

k=0 an,k xk and construct two sequences x∗n , y∗n as follows:

x∗n =
n∑

k=0

bn,k xk, y∗n =
n∑

k=0

cn,k yk .

If y∗n =
∑n

k=0 an,k x∗k , then (A; B,C) is called a Riordan inverse chain. Additionally, we say that the sequences xn ,
yn form a Riordan pair of A and we denote it by (A; xn, yn).

Ma [17] investigated the Riordan inverse chains for the classical case cn = 1 and gave some applications to
combinatorial sums. It can be verified that the results established for the classical case in [17] are valid for the general
case. We present here the main theorem of [17].

Theorem 6.3. Let A, B, C be the three Riordan arrays defined above, then the Riordan inverse chain (A; B,C) exists
if and only if

h1(t)g( f̄ (t)) = h2( f̄ (t))g(l2( f̄ (t))), l1(t) = f (l2( f̄ (t))),

where f̄ (t) is the compositional inverse of f (t).

6.2. Connection constants problem

The connection constants problem is to determine the connection constants an,k in the expression rn(x) =∑n
k=0 an,ksk(x), where rn(x) and sn(x) are sequences of polynomials. Roman shows that the umbral methods give an

explicit solution to this problem when the sequences involved are Sheffer (see [27, Theorem 8.5] and [28, Section 5.1]).
In this section, we will consider this problem in the context of the theory of Riordan arrays. Our result (Theorem 6.4)
is equivalent to Roman’s one [27, Theorem 8.5], but easier to follow.

Theorem 6.4. Let sn(x) be Sheffer for (g(t), f (t)) and let rn(x) be Sheffer for (h(t), l(t)). Suppose rn(x) =∑n
k=0 an,ksk(x), then an,k is the generic element of the Riordan array(

g(l̄(t))

h(l̄(t))
, f (l̄(t))

)
.

Proof. We prove the theorem by the technique of matrix representation. Let

S[x] = (s0(x), s1(x), . . .)
T, R[x] = (r0(x), r1(x), . . .)

T, X = (1, x, x2, . . .)T.

According to Theorem 3.2,

S[x] =

(
1

g( f̄ (t))
, f̄ (t)

)
∗ X, R[x] =

(
1

h(l̄(t))
, l̄(t)

)
∗ X.

Then X = (g(t), f (t)) ∗ S[x] and by (2.3), we have

R[x] =

(
1

h(l̄(t))
, l̄(t)

)
∗ (g(t), f (t)) ∗ S[x] =

(
g(l̄(t))

h(l̄(t))
, f (l̄(t))

)
∗ S[x].

This completes the proof. �
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Corollary 6.5. Let sn(x) be Sheffer for (g(t), f (t)) and suppose xn
=
∑n

k=0 an,ksk(x), then an,k is the generic
element of the Riordan array (g(t), f (t)).

Let sn(x) =
∑n

k=0 sn,k xk . According to Theorem 3.2, we know that (sn,k)n,k∈N is just the inverse of the Riordan
array (g(t), f (t)). This fact also leads us to Corollary 6.5. The reader can find some examples in Section 6.1. Now let
us give some applications of Theorem 6.4.

6.2.1. The polynomials of the Chebyshev case

From Section 4.2.2 or [27, p. 99], we know that Tn(x) form the Sheffer sequence for the pair
(

1√
1−t2

, −t

1+
√

1−t2

)
and Un(x) form the Sheffer sequence for the pair

(
2−2
√

1−t2

t2 , −t

1+
√

1−t2

)
. Suppose Un(x) =

∑n
k=0 an,k Tk(x), then by

Theorem 6.4, an,k is the generic element of the Riordan array (1/(1− t2), t) with respect to cn = (−1)n , so an,k = 1
if n − k is even and 0 if n − k is odd, and we have

Un(x) =
n∑

k=0

an,k Tk(x) =
n∑

k=0
n−k even

Tk(x) =

[ n
2

]∑
k=0

Tn−2k(x).

Next, suppose Tn(x) =
∑n

k=0 bn,kUk(x), then bn,k is the generic element of the Riordan array (1 − t2, t). By
computation, we have bn,k = δn,k − δn,k+2, then

Tn(x) = Un(x)−Un−2(x).

6.2.2. The generalized Bernoulli and Euler polynomials

In 2003, Cheon [8] studied the classical Bernoulli polynomials Bn(x) and the classical Euler polynomials
En(x), by making use of the technique of matrix representation. Srivastava and Pintér [37] followed Cheon’s work
and established two relations involving the generalized Bernoulli polynomials B(α)n (x) and the generalized Euler
polynomials E (α)n (x).

We also presented two relations between B(α)n (x) and E (α)n (x) with matrix representation [40], which are in fact
the generalizations of the results of [8,37], and in this section we will give them again by the theory of Riordan arrays.

From Sections 4.1.2 and 4.1.3, we know that B(α)n (x) are Sheffer for the pair
((

et
−1
t

)α
, t
)

and E (α)n (x) are Sheffer

for the pair
((

et
+1
2

)α
, t
)

. Suppose B(α)n (x) =
∑n

k=0 an,k E (β)k (x), then an,k is the generic element of the Riordan

array
((

2
et+1

)−β (
t

et−1

)α
, t

)
. By computation, we have

an,k =

[
tn

n!

](
2

et + 1

)−β ( t

et − 1

)α tk

k!
=

n!

k!
[tn−k
]

∞∑
i=0

E (−β)i (0)
t i

i !

∞∑
j=0

B(α)j (0)
t j

j !

=

(n

k

) n−k∑
i=0

(
n − k

i

)
E (−β)i (0)B(α)n−k−i (0).

Since

∞∑
i=0

E (−β)i (0)
t i

i !
=

(
2

et + 1

)−β
=

1
2β
(et
+ 1)β =

1
2β

∞∑
m=0

(
β

m

)
emt

=
1

2β

∞∑
m=0

(
β

m

) ∞∑
i=0

mi t i

i !
=

∞∑
i=0

(
1

2β

∞∑
m=0

(
β

m

)
mi

)
t i

i !
,
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then E (−β)i (0) = 1
2β
∑
∞

m=0

(
β
m

)
mi and

an,k =

(n

k

) n−k∑
i=0

(
n − k

i

)
1

2β

∞∑
m=0

(
β

m

)
mi B(α)n−k−i (0) =

1
2β

(n

k

) ∞∑
m=0

(
β

m

)
B(α)n−k(m),

B(α)n (x) =
1

2β

n∑
k=0

(n

k

) ∞∑
m=0

(
β

m

)
B(α)n−k(m)E

(β)
k (x).

Next, suppose E (α)n (x) =
∑n

k=0 bn,k B(β)k (x), where β ∈ N, then bn,k is the generic element of the Riordan array((
t

et−1

)−β (
2

et+1

)α
, t

)
. By computation,

bn,k =

[
tn

n!

](
t

et − 1

)−β ( 2
et + 1

)α tk

k!
=

(n

k

) n−k∑
i=0

(
n − k

i

)
B(−β)i (0)E (α)n−k−i (0).

Since [28, p. 99] S(n, k) =
( n

k

)
B(−k)

n−k (0), where S(n, k) are the Stirling numbers of the second kind, then

S(i + β, β) =
(

i+β
β

)
B(−β)i (0) and we have

bn,k =

(n

k

) n−k∑
i=0

(
n − k

i

)(
i + β

β

)−1

S(i + β, β)E (α)n−k−i (0),

E (α)n (x) =
n∑

k=0

(n

k

) n−k∑
i=0

(
n − k

i

)(
i + β

β

)−1

S(i + β, β)E (α)n−k−i (0)B
(β)
k (x).
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