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Abstract

In this paper, we study the relations between the Bell matrix and the Fibonacci matrix, which provide a unified approach to
some lower triangular matrices, such as the Stirling matrices of both kinds, the Lah matrix, and the generalized Pascal matrix. To
make the results more general, the discussion is also extended to the generalized Fibonacci numbers and the corresponding matrix.
Moreover, based on the matrix representations, various identities are derived.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, the lower triangular matrices have catalyzed many investigations. The Pascal matrix and several
generalized Pascal matrices first received wide concern (see, e.g., [2,3,17,18]), and some other lower triangular
matrices were also studied systematically, for example, the Lah matrix [14], the Stirling matrices of the first kind
and of the second kind [5,6].

In this paper, we will study the Fibonacci matrix and the Bell matrix. Let us first consider a special n × n lower
triangular matrix Sn which is defined by

(Sn)i, j =

1, i = j,
−1, i − 2 ≤ j ≤ i − 1,

0, else,
for i, j = 1, 2, . . . , n. (1.1)

Thus, we have

Sn =



1 0 · · · · · · · · · 0
−1 1 0 · · · · · · 0
−1 −1 1 0 · · · 0

0 −1 −1 1
. . .

...
. . .

. . .
. . .

. . .

0 · · · 0 −1 −1 1


.
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By some computation, it is not difficult to find that the inverse of Sn is

S−1
n =



1 0 · · · · · · · · · 0
1 1 0 · · · · · · 0
2 1 1 0 · · · 0

3 2 1 1
. . .

. . .
. . .

. . .
. . .

· · · 3 2 1 1


.

Now, one can observe that the inverse matrix S−1
n is related to the famous Fibonacci numbers, which are defined by

F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2. Actually, if we denote S−1
n by Fn , then

(Fn)i, j = fi, j =

{
Fi− j+1, i − j + 1 > 0,

0, i − j + 1 ≤ 0,
for i, j = 1, 2, . . . , n. (1.2)

For this reason, Fn is called the n × n Fibonacci matrix.
The Fibonacci matrix and several generalizations have already been studied in many works. In [11], the authors

gave the Cholesky factorization of the Fibonacci matrix Fn and discussed the eigenvalues of the symmetric Fibonacci
matrix FnF T

n . In [8,9], the authors studied the generalized Fibonacci matrix as well as the k-Fibonacci matrix.
Moreover, the relations between the Fibonacci matrix and some other lower triangular matrices, such as the Pascal
matrix, the Stirling matrices of the first kind and of the second kind as well as the Bernoulli matrix, were investigated
in [10,19], respectively.

It is well known that many combinatorial sequences, for instance, the Stirling numbers and the Lah numbers, are
special cases of the Bell polynomials (see [1], [4, Chapter 11] and [7, Chapter 3]). Therefore, by means of the study
of the matrix related to the Bell polynomials, we will have a unified approach to various lower triangular matrices. In
[15], we have studied the factorizations of the Bell matrix, and in the present paper, we will do some further researches
on the relations between the Bell matrix and the Fibonacci matrix. Additionally, from the matrix representations, we
will also give some combinatorial identities.

This article is organized as follows. In Section 2, we consider the relations between the matrix related to the
exponential partial Bell polynomials and the Fibonacci matrix. Section 3 is devoted to the identities concerning the
Fibonacci numbers and Section 4 is devoted to the Bell polynomials with respect to Ω as well as the iteration matrix.
Finally, in Section 5, we extend the discussion to the generalized Fibonacci numbers and their corresponding matrix.

2. Relations between Bell matrix and Fibonacci matrix

The exponential partial Bell polynomials are defined as follows [7, pp. 133 and 134]:

Definition 2.1. The exponential partial Bell polynomials are the polynomials

Bn,k = Bn,k(x1, x2, . . . , xn−k+1)

in an infinite number of variables x1, x2, . . . , defined by the series expansion

1
k!

(∑
m≥1

xm
tm

m!

)k

=

∑
n≥k

Bn,k
tn

n!
, k = 0, 1, 2, . . . .

Their exact expression is

Bn,k(x1, x2, . . . , xn−k+1) =

∑ n!

c1!c2! · · · (1!)c1(2!)c2 · · ·
xc1

1 xc2
2 · · · ,

where the summation takes place over all integers c1, c2, c3, . . . ≥ 0, such that c1 + 2c2 + 3c3 + · · · = n and
c1 + c2 + c3 + · · · = k.

By the definition, we can readily obtain some special values of the Bell polynomials. Particularly, we have B0,0 = 1,
Bn,0 = 0, Bn,1 = xn for n ≥ 1 and Bn,k = 0 for n < k. In addition to these, the following lemma holds [7, p. 135].
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Lemma 2.2. For positive integers n and k, we have

Bn,k(1, 1, 1, . . .) = S(n, k), (Stirling number of the second kind),

Bn,k(1!, 2!, 3!, . . .) =

(
n − 1
k − 1

)
n!

k!
= L(n, k), (Lah number),

Bn,k(0!, 1!, 2!, . . .) = s(n, k), (unsigned Stirling number of the first kind),

Bn,k(1, 2, 3, . . .) =

(n

k

)
kn−k, (idempotent number).

The readers are referred to [1] and [4, Chapter 11] for some other sequences which can be obtained from the Bell
polynomials.

Now, define the n × n Bell matrix Bn by (Bn)i, j = Bi, j and denote (Sn)i, j = (F−1
n )i, j = f ′

i, j , where
i, j = 1, 2, . . . , n. In the next lemma, we will consider the matrix multiplications Sn Bn and Bn Sn .

Lemma 2.3. We have Sn Bn = Nn and Bn Sn = Mn , where the n × n matrices Nn and Mn are defined by

(Nn)i, j = qi, j = Bi, j − Bi−1, j − Bi−2, j ,

(Mn)i, j = pi, j = Bi, j − Bi, j+1 − Bi, j+2,

respectively, for i, j = 1, 2, . . . , n.

Proof. From Definition 2.1 and the remark after it, we can determine the elements of the matrix Nn . Especially,
q1,1 = B1,1, q1, j = 0 for j ≥ 2, q2,1 = B2,1 − B1,1, q2,2 = B2,2, and q2, j = 0 for j ≥ 3. The elements of Mn can
also be determined in a similar way.

Let us first verify the equation Sn Bn = Nn .
Since f ′

1, j = B1, j = 0 for j ≥ 2, then
∑n

k=1 f ′

1,k Bk,1 = f ′

1,1 B1,1 = B1,1 = q1,1,
∑n

k=1 f ′

1,k Bk, j = f ′

1,1 B1, j =

0 = q1, j for j ≥ 2. Since f ′

2,1 = −1, f ′

2,2 = 1 and f ′

2, j = 0 for j ≥ 3, then
∑n

k=1 f ′

2,k Bk,1 = f ′

2,1 B1,1 + f ′

2,2 B2,1 =

B2,1− B1,1 = q2,1,
∑n

k=1 f ′

2,k Bk,2 = f ′

2,1 B1,2+ f ′

2,2 B2,2 = B2,2 = q2,2, and
∑n

k=1 f ′

2,k Bk, j = f ′

2,1 B1, j + f ′

2,2 B2, j =

0 = q2, j for j ≥ 3.
Next, let i ≥ 3. In view of (1.1),

∑n
k=1 f ′

i,k Bk, j = f ′

i,i Bi, j + f ′

i,i−1 Bi−1, j + f ′

i,i−2 Bi−2, j = Bi, j − Bi−1, j − Bi−2, j
= qi, j .

Therefore, we have Sn Bn = Nn .
Similar to the preceding process, we can also verify the equation Bn Sn = Mn . �

Since the Fibonacci matrix Fn is the inverse of Sn , the following theorem holds.

Theorem 2.4. The Bell matrix Bn can be factorized as

Bn = FnNn = MnFn . (2.1)

From the factorizations, we have for 1 ≤ k ≤ n that

Bn,k =

n∑
l=k

Fn−l+1(Bl,k − Bl−1,k − Bl−2,k) (2.2)

=

n∑
l=k

(Bn,l − Bn,l+1 − Bn,l+2)Fl−k+1. (2.3)

Let En = (1, 1, . . . , 1)T. Since Bn En = MnFn En and [10, Corollary 2.2]

F1 + F2 + · · · + Fn−2 = Fn − 1, (2.4)

then (2.3) implies that

n∑
k=1

Bn,k =

n∑
k=1

(Bn,k − Bn,k+1 − Bn,k+2)(Fk+2 − 1). (2.5)
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Making use of the general identities (2.2), (2.3) and (2.5), we can obtain the corresponding ones for some special
combinatorial sequences, which are given by the corollaries below. It should be noticed that, from the generating
functions (see [7, pp. 156, 206 and 213]), S(i, j), s(i, j) and L(i, j) will vanish for 0 ≤ i < j . Additionally, we also
follow the convention that S(−1, 1) = s(−1, 1) = L(−1, 1) = 0.

Corollary 2.5. For 1 ≤ k ≤ n,

S(n, k) =

n∑
l=k

Fn−l+1(S(l, k) − S(l − 1, k) − S(l − 2, k))

=

n∑
l=k

(S(n, l) − S(n, l + 1) − S(n, l + 2))Fl−k+1, (2.6)

ω(n) =

n∑
k=1

(S(n, k) − S(n, k + 1) − S(n, k + 2))(Fk+2 − 1),

where ω(n) :=
∑n

k=1 S(n, k) is the Bell number [7, p. 210].

Corollary 2.6. For 1 ≤ k ≤ n,

s(n, k) =

n∑
l=k

Fn−l+1(s(l, k) − s(l − 1, k) − s(l − 2, k))

=

n∑
l=k

(s(n, l) − s(n, l + 1) − s(n, l + 2))Fl−k+1,

n! =

n∑
k=1

(s(n, k) − s(n, k + 1) − s(n, k + 2))(Fk+2 − 1). (2.7)

It should be noticed that (2.6) and (2.7) have been proved in [10].

Corollary 2.7. For 1 ≤ k ≤ n,

L(n, k) =

n∑
l=k

Fn−l+1(L(l, k) − L(l − 1, k) − L(l − 2, k))

=

n∑
l=k

(L(n, l) − L(n, l + 1) − L(n, l + 2))Fl−k+1.

For the idempotent numbers, the next corollary can be derived.

Corollary 2.8. For 1 ≤ k ≤ n,(n

k

)
kn−k

= Fn−k+1 + Fn−k(k
2
+ k − 1) +

n∑
l=k+2

kl−2−k Fn−l+1

((
l

k

)
k2

−

(
l − 1

k

)
k −

(
l − 2

k

))
,

(n

k

)
kn−k

=

n∑
l=k

((n

l

)
ln−l

−

(
n

l + 1

)
(l + 1)n−l−1

−

(
n

l + 2

)
(l + 2)n−l−2

)
Fl−k+1.

3. Identities related to the Fibonacci numbers

Some combinatorial identities have been derived from the matrix representations in the last section. In this section,
we will show that, from a general identity, more identities concerning the Fibonacci numbers can be obtained. In fact,
since Bn,1 = xn , then by setting k = 1 in (2.2), we have the theorem below.
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Theorem 3.1. For sequence {xn} = {x1, x2, . . . , xn, . . .}, the following identity holds:

xn = Fn x1 + Fn−1(x2 − x1) +

n∑
l=3

Fn−l+1(xl − xl−1 − xl−2). (3.1)

Therefore, by choosing different sequences, we can obtain plenty of interesting identities. For example, if xn = 1,
then the summation F1 + F2 + · · · + Fn−2 = Fn − 1 will be obtained again. Also, for n ≥ 3, we have

Hn =
1
2

Fn+2 +

n∑
l=3

Fn−l+1

(
1
l

− Hl−2

)
,

n! = Fn+1 +

n∑
l=3

Fn−l+1l(l − 2)(l − 2)!,

ω(n) = Fn+1 +

n∑
l=3

Fn−l+1(ω(l) − ω(l − 1) − ω(l − 2)),

where Hn := 1 +
1
2 + · · · +

1
n denotes the harmonic number and ω(n) is the Bell number.

It is apparent that we can do more than these. Let us now define xn := Fr
n , where Fn is the nth Fibonacci number

and r is a positive integer, then the general identity (3.1) will lead us to the following theorem.

Theorem 3.2. For each integer r ≥ 1,

Fr
k = Fk +

k∑
l=3

r−1∑
j=1

(
r

j

)
F j

l−1 Fr− j
l−2 Fk−l+1, k ≥ 3, (3.2)

n∑
k=1

Fr
k = Fr

n+2 − 1 −

n+2∑
l=3

r−1∑
j=1

(
r

j

)
F j

l−1 Fr− j
l−2 . (3.3)

Proof. (3.2) follows directly from (3.1) by considering the binomial expansion. Thus,

n∑
k=1

Fr
k = Fr

1 + Fr
2 +

n∑
k=3

Fk +

n∑
k=3

k∑
l=3

(
r−1∑
j=1

(
r

j

)
F j

l−1 Fr− j
l−2

)
Fk−l+1

= Fn+2 − 1 +

n∑
l=3

(
r−1∑
j=1

(
r

j

)
F j

l−1 Fr− j
l−2

)
(Fn−l+3 − 1)

= Fn+2 − 1 +

n∑
l=3

(
r−1∑
j=1

(
r

j

)
F j

l−1 Fr− j
l−2

)
Fn−l+3 −

n∑
l=3

r−1∑
j=1

(
r

j

)
F j

l−1 Fr− j
l−2

= Fr
n+2 − 1 −

n+2∑
l=3

r−1∑
j=1

(
r

j

)
F j

l−1 Fr− j
l−2 ,

where the last step can be obtained by the substitution of identity (3.2). �

In addition to these, by setting xn := nr in (3.1), where r is a non-negative integer, we can obtain the next result.

Theorem 3.3. For each integer r ≥ 0,

kr
= Fk−2 + 2r Fk−1 +

k∑
l=3

Fk−l+1(l
r
− (l − 1)r

− (l − 2)r ), k ≥ 3, (3.4)

n∑
k=1

kr
=

1
r + 1

{Br+1(n + 1) − Br+1} (3.5)
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= Fn + 2r (Fn+1 − 1) +

n∑
l=3

(Fn−l+3 − 1)(lr
− (l − 1)r

− (l − 2)r ), (3.6)

where Br (x) is the Bernoulli polynomial and Br = Br (0) is the Bernoulli number.

Proof. (3.4) is a direct consequence of (3.1). (3.5) is a well-known fact (see, e.g., [7, p. 155]). We now prove (3.6).
Actually, by (2.4) and (3.4),

n∑
k=1

kr
= 1r

+ 2r
+

n∑
k=3

kr

= 1 + 2r
+

n∑
k=3

Fk−2 + 2r
n∑

k=3

Fk−1 +

n∑
l=3

(
n∑

k=l

Fk−l+1

)
(lr

− (l − 1)r
− (l − 2)r )

= Fn + 2r (Fn+1 − 1) +

n∑
l=3

(Fn−l+3 − 1)(lr
− (l − 1)r

− (l − 2)r ).

The proof is complete. �

Theorem 3.3 gives the following special cases.

Corollary 3.4. We have

k = Fk+1 +

k∑
l=4

(3 − l)Fk−l+1, k ≥ 4, (3.7)

n∑
l=1

(n − l + 1)Fl = Fn+4 − n − 3. (3.8)

Proof. (3.7) follows from (3.4) by letting r = 1. For (3.8), identity (3.6) yields

n∑
k=1

k =
n(n + 1)

2
= Fn + 2(Fn+1 − 1) +

n∑
l=3

(Fn−l+3 − 1)(3 − l)

= Fn+3 − 2 + 3
n∑

l=3

Fn−l+3 − 3(n − 2) −

n∑
l=3

l Fn−l+3 +

n∑
l=3

l,

which leads us to
n∑

l=3

l Fn−l+3 = Fn+3 + 3Fn+2 − 3n − 8.

Thus, adding Fn+2 +2Fn+1 to both sides of the above equation, and making use of the recurrence Fn = Fn−1 + Fn−2,
we can finally obtain

∑n
l=1 l Fn−l+3 = Fn+6 − 3n − 8, an equivalent form of formula (3.8). Note that (3.8) can also

be found in [12, p. 157]. �

Corollary 3.5. We have

k2
= Fk −

k∑
l=2

Fk−l+1(l − 1)(l − 5),

n∑
k=1

k2
=

n(n + 1)(2n + 1)

6
= Fn+2 − 1 −

n∑
l=2

(Fn−l+3 − 1)(l − 1)(l − 5).
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4. Iteration matrix and Bell polynomials with respect to Ω

Let f (t) be a formal series of the form:

f (t) =

∑
n≥1

Ωn fn tn,

where Ω1,Ω2, . . . is a reference sequence with Ωn 6= 0. In this way we treat at the same time the case of ordinary
coefficients of f (t) (⇔ Ωn = 1), and the case of Taylor coefficients (⇔ Ωn = 1/n!).

With every series f (t) we associate the infinite lower iteration matrix with respect to Ω :

B = B( f ) :=


B1,1 0 0 · · ·

B2,1 B2,2 0 · · ·

B3,1 B3,2 B3,3 · · ·

...
...

...
. . .

 ,

where Bn,k = BΩ
n,k( f1, f2, . . .) is the Bell polynomial with respect to Ω [7, pp. 137 and 145], defined as follows:

Ωk( f (t))k
=

∑
n≥k

Bn,kΩn tn .

Thus, the Pascal matrix is the iteration matrix for f (t) = t (1 − t)−1, Ωn = 1, and the Stirling matrix of the second
kind is the iteration matrix for f (t) = et

− 1, Ωn = 1/n!.
It is easy to find that Theorem 2.4 and Eq. (2.5) also hold when Bell matrix and exponential partial Bell polynomials

are replaced by iteration matrix and Bell polynomials with respect to Ω , respectively.

For instance, the n × n Pascal matrix Pn , which is defined by (Pn)i, j =

(
i−1
j−1

)
for i, j = 1, 2, . . . , n, can be

factorized as

Pn = Fn ˜Nn = M̃nFn,

where the n × n matrix M̃n is defined by

(M̃n)i, j =

(
i − 1
j − 1

)
−

(
i − 1

j

)
−

(
i − 1
j + 1

)
, for i, j = 1, 2, . . . , n;

because
(

−1
k

)
and

(
−2
k

)
do not vanish when k is a non-negative integer, we should define ˜Nn more carefully, as

follows:

( ˜Nn)i, j =


0, j > i,
1, j = i,
i − 2, j = i − 1,(

i − 1
j − 1

)
−

(
i − 2
j − 1

)
−

(
i − 3
j − 1

)
, else,

for i, j = 1, 2, . . . , n.

Moreover, the following theorem holds.

Theorem 4.1. For 1 ≤ k ≤ n, we have(
n − 1
k − 1

)
=

n∑
l=k

(n − 1)!

(l + 1)!(n − l)!
[l2

+ (n + 1)l − n2
]Fl−k+1, (4.1)

n + 1 =

n∑
l=1

(n − 1)!

(l + 1)!(n − l)!
[l2

+ (n + 1)l − n2
]Fl+2. (4.2)

Proof. (4.1) follows from the factorization Pn = M̃nFn , and (4.2) follows from the equation Pn En = M̃nFn En ,
where En = (1, 1, . . . , 1)T. �
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From another factorization Pn = Fn ˜Nn , one can also derive some identities, for which, the readers are referred
to [10, Section 2].

We have just mentioned that, if Ωn = 1, then the iteration matrix for f (t) = t (1 − t)−1 is the Pascal matrix.
Now, let us consider the power of the Pascal matrix. According to the definition given in [7, p. 147], for each complex
number x , we can obtain the x th order fractionary iterate f 〈x〉(t) and the corresponding iteration matrix P x . More
explicitly, we have (see [15, Example 3.3])

f 〈x〉(t) =

∑
n≥1

f 〈x〉
n tn

=
t

1 − xt
,

∑
n≥k

Bn,k tn
= tk(1 − xt)−k

=

∑
n≥k

(
n − 1
k − 1

)
xn−k tn .

Therefore, the matrix P x
n is defined by

(P x
n )i, j =

(
i − 1
j − 1

)
x i− j , for i, j = 1, 2, . . . , n,

which is the generalized Pascal matrix studied in [17], and we denote it by Pn[x].
In view of Theorem 2.4, Pn[x] has the following factorizations:

Pn[x] = Fn ˆNn = M̂nFn, (4.3)

where ˆNn , M̂n are n × n matrices defined by

( ˆNn)i, j =


0, j > i,
1, j = i,
(i − 1)x − 1, j = i − 1,(

i − 1
j − 1

)
x i− j

−

(
i − 2
j − 1

)
x i− j−1

−

(
i − 3
j − 1

)
x i− j−2, else;

(M̂n)i, j =

(
i − 1
j − 1

)
x i− j

−

(
i − 1

j

)
x i− j−1

−

(
i − 1
j + 1

)
x i− j−2,

for i, j = 1, 2, . . . , n. Thus, we can obtain the next two theorems.

Theorem 4.2. For 1 ≤ k ≤ n, we have(
n − 1
k − 1

)
xn−k

= Fn−k+1 + Fn−k(kx − 1)

+

n∑
l=k+2

Fn−l+1

((
l − 1
k − 1

)
x l−k

−

(
l − 2
k − 1

)
x l−k−1

−

(
l − 3
k − 1

)
x l−k−2

)
, (4.4)

(
n − 1
k − 1

)
xn−k

=

n∑
l=k

((
n − 1
l − 1

)
xn−l

−

(
n − 1

l

)
xn−l−1

−

(
n − 1
l + 1

)
xn−l−2

)
Fl−k+1. (4.5)

Theorem 4.3. We have

xn
= Fn+1 + Fn(x − 1) + (x2

− x − 1)

n−1∑
j=1

F j xn− j−1, (4.6)

2x + n − 1 =

n∑
k=1

x−k
((

n − 1
k − 1

)
x2

−

(
n − 1

k

)
x −

(
n − 1
k + 1

))
Fk+2. (4.7)

Proof. (4.6) follows from (4.4) by setting k = 1. One can also obtain it from Pn[x]En = Fn ˆNn En . (4.7) follows
from another matrix representation Pn[x]En = M̂nFn En . �
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In the following, we will study the series f (t) =
2t

(1−t)2 . For arbitrary sequence Ωn ,

Ωk( f (t))k
= Ωk

(
2t

(1 − t)2

)k

= Ωk2k
∞∑
j=0

(
−2k

j

)
(−1) j tk+ j ,

then the corresponding Bell polynomials are defined by

Bn,k =
Ωk

Ωn

(
−2k

n − k

)
(−1)n−k2k

=
Ωk

Ωn

(
n + k − 1

n − k

)
2k .

Thus, Eq. (2.2) will lead us to the theorem below.

Theorem 4.4. For 1 ≤ k ≤ n, we have

1
Ωn

(
n + k − 1

n − k

)
=

1
Ωk

Fn−k+1 + Fn−k

(
2k

Ωk+1
−

1
Ωk

)
+

n∑
l=k+2

Fn−l+1

(
1
Ωl

(
l + k − 1

l − k

)
−

1
Ωl−1

(
l + k − 2
l − k − 1

)
−

1
Ωl−2

(
l + k − 3
l − k − 2

))
. (4.8)

When Ωn = 1, identity (4.8) yields(
n + k − 1

n − k

)
= Fn−k+1 +

n∑
l=k+1

Fn−l+1
(k2

+ 4kl − 6k − l2
+ 2)(l + k − 3)!

(l − k)!(2k − 1)!
.

If k = 1, the identity above will reduce to

n + Fn =

n∑
l=1

(3 − l)Fn−l+1,

which can also be derived by adding Fk−1 + 2Fk to both sides of Eq. (3.7).
When Ωn = (−1)n , (4.8) gives

(−1)n
(

n + k − 1
n − k

)
= (−1)k Fn−k+1 +

n∑
l=k+1

(−1)l Fn−l+1
(l2

+ 4lk − 4l − k2
− 2k + 2)(l + k − 3)!

(l − k)!(2k − 1)!
.

Setting k = 1, we have

(−1)nn − Fn =

n∑
l=1

(−1)l(l + 1)Fn−l+1.

Many identities can be obtained by choosing different Ωn . For example, we can let Ωn =

(
−λ
n

)
or Ωn =

〈1+α+β〉2n
22n〈1+α〉n

,

where −λ is not a non-negative integer and 〈x〉n := x(x +1) · · · (x +n−1) is the rising factorial. More such sequences
can be found in [13, pp. 68 and 69].

Additionally, we can also derive some identities from Eqs. (2.3) and (2.5). These are left to the interested readers.

5. Generalized Fibonacci numbers

In this section, we will discuss a generalization of the Fibonacci numbers. Let a, b be integers satisfying
a2

+ 4b > 0, then one can define the generalized Fibonacci numbers by G0 = 0, G1 = 1 and Gn = aGn−1 + bGn−2
for n ≥ 2. It is evident that when a = b = 1, Gn reduce to the classical Fibonacci numbers. Moreover, from [16] we
know that if a = 2, b = 1, then Gn are the Pell numbers, and if a = 1, b = 2, then Gn are the Jacobsthal numbers.

The properties of the generalized Fibonacci numbers Gn are similar to those of the classical Fibonacci numbers
Fn . For instance, from the recurrence relation, we can obtain the generating function of Gn , that is,

G(t) =

∞∑
n=0

Gn tn
=

t

1 − at − bt2 .
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Let α, β be the roots of x2
−ax −b = 0, then Gn =

αn
−βn

α−β
. In addition to these, if we define an n ×n lower triangular

matrix Tn by

Tn =



1 0 · · · · · · · · · 0
−a 1 0 · · · · · · 0
−b −a 1 0 · · · 0

0 −b −a 1
. . .

...
. . .

. . .
. . .

. . .

0 · · · 0 −b −a 1


,

then the inverse of Tn is

Gn =



1 0 · · · · · · · · · 0
G2 1 0 · · · · · · 0
G3 G2 1 0 · · · 0

G4 G3 G2 1
. . .

. . .
. . .

. . .
. . .

Gn · · · G4 G3 G2 1


.

Therefore, we can obtain the following theorem.

Theorem 5.1. The Bell matrix Bn can be factorized as

Bn = GnVn = UnGn,

where the n × n matrices Vn and Un are defined by

(Vn)i, j = Bi, j − aBi−1, j − bBi−2, j , (Un)i, j = Bi, j − aBi, j+1 − bBi, j+2,

respectively, for i, j = 1, 2, . . . , n. From the factorizations, we have for 1 ≤ k ≤ n that

Bn,k =

n∑
l=k

Gn−l+1(Bl,k − aBl−1,k − bBl−2,k) (5.1)

=

n∑
l=k

(Bn,l − aBn,l+1 − bBn,l+2)Gl−k+1. (5.2)

By setting k = 1 in (5.1), we can establish the next theorem.

Theorem 5.2. For sequence {xn} = {x1, x2, . . . , xn, . . .}, the following identity holds:

xn = Gn x1 + Gn−1(x2 − ax1) +

n∑
l=3

Gn−l+1(xl − axl−1 − bxl−2). (5.3)

Just as what we have done for Theorem 3.1, by choosing different sequences, many combinatorial identities can be
obtained.

If xn = 1, identity (5.3) yields

n−2∑
k=1

Gk =
Gn + (1 − a)Gn−1 − 1

a + b − 1
. (5.4)

By substituting Gn =
αn

−βn

α−β
into the identity above, we can derive an expression of

∑n−2
k=1 Gk , which is only depend

on a and b.
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If xn = Gr
n , where r is a non-negative integer, then (5.3) gives

Gr
n = Gn + Gn−1(a

r
− a) +

n∑
l=3

Gn−l+1(G
r
l − aGr

l−1 − bGr
l−2), n ≥ 3.

If xn = nr , where r is a non-negative integer, then

kr
= bGk−2 + 2r Gk−1 +

k∑
l=3

Gk−l+1(l
r
− a(l − 1)r

− b(l − 2)r ), k ≥ 3.

By appealing to (5.4), we have

n∑
k=1

kr
= 1 + 2r Gn−1 + (b + 2r )

Gn + (1 − a)Gn−1 − 1
a + b − 1

+
1

a + b − 1

n∑
l=3

(Gn−l+3 + (1 − a)Gn−l+2 − 1)(lr
− a(l − 1)r

− b(l − 2)r ).

Analogous to Section 4, we can also study the iteration matrix and the Bell polynomials with respect to Ωn , and
give more identities on the generalized Fibonacci numbers. However, we chose not to present them. The readers may
do it themselves.
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