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Abstract

In this paper, we study the matrices related to the partial exponential Bell polynomials and those related
to the Bell polynomials with respect to �. As a result, the factorizations of these matrices are obtained,
which give unified approaches to the factorizations of many lower triangular matrices. Moreover, some
combinatorial identities are also derived from the corresponding matrix representations.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Recently, the lower triangular matrices have catalyzed many investigations. The Pascal matrix
and several generalized Pascal matrices first received wide concern [2–4,9,14–17], and some other
lower triangular matrices were also studied systematically, for example, the Stirling matrices of
the first kind and of the second kind [5,6], the Lah matrix [11], as well as the matrices related to
the idempotent numbers and the numbers of planted forests [12]. In the papers referred to above,
we can see not only the various properties satisfied by the corresponding matrices, especially the
factorizations of them, but also some combinatorial identities.
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By the impetus of these works, we find it will be instructive and interesting to do some researches
on the matrices related to the Bell polynomials, where the Bell polynomials, or more explicitly,
the exponential partial Bell polynomials, are defined as follows [7, p. 133]:

Definition 1.1. The exponential partial Bell polynomials are the polynomials

Bn,k = Bn,k(x1, x2, . . . , xn−k+1)

in an infinite number of variables x1, x2, . . . , defined by the formal double series expansion

� = �(t, u) := exp

⎛⎝u
∑
m�1

xm

tm

m!

⎞⎠ =
∑

n,k�0

Bn,k

tn

n!u
k

= 1 +
∑
n�1

tn

n!

{
n∑

k=1

ukBn,k(x1, x2, . . .)

}
,

or by the series expansion

�k(t) := 1

k!

⎛⎝∑
m�1

xm

tm

m!

⎞⎠k

=
∑
n�k

Bn,k

tn

n! , k = 0, 1, 2, . . . . (1.1)

It is well known that many combinatorial sequences, for instance, the Stirling numbers and the
Lah numbers, are special cases of the Bell polynomials (see, e.g., [7, p. 135]). Thus, by means
of the study of the matrices related to the Bell polynomials, we will have a unified approach to
various lower triangular matrices. In addition to these, if we generalize the partial exponential
Bell polynomials to the Bell polynomials with respect to � [7, p. 137, 145], we will get a more
powerful tool this time: even the Pascal matrix is included as a specialization of the corresponding
matrix of these Bell polynomials.

The main contribution of this article is giving the factorizations of the matrices related to
the two kinds of Bell polynomials, the partial exponential Bell polynomials as well as the Bell
polynomials with respect to �. Some interesting combinatorial identities are also obtained.

This article is organized as follows. In Section 2, we will consider the factorization of the
matrix related to the partial exponential Bell polynomials. As applications, the factorizations of
some special matrices will also be demonstrated there. Section 3 is devoted to the matrix related
to the Bell polynomials with respect to �. Some generalizations of the matrices can be found at
the end of these two sections, respectively.

2. Matrix related to the partial exponential Bell polynomials

Lemma 2.1. The partial exponential Bell polynomials Bn,k satisfy the vertical recurrence rela-
tion:

Bn,k =
n−1∑

l=k−1

(
n − 1

l

)
xn−lBl,k−1 =

n∑
l=k

(
n − 1
l − 1

)
xn−l+1Bl−1,k−1. (2.1)

Proof. Differentiate (1.1) with respect to t and identify the coefficients of tn−1/(n − 1)! in the
first and last member of
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∑
n�k

Bn,k

tn−1

(n − 1)! = d�k

dt
= �k−1

∑
j�1

xj

tj−1

(j − 1)! =
∑

n�k−1

n∑
l=k−1

(
n

l

)
Bl,k−1xn−l+1

tn

n! ,

and we will get the result finally. �

Now, defining Bn and Pn to be the n × n matrices by

(Bn)i,j = Bi,j , (Pn)i,j = xi−j+1

(
i − 1
j − 1

)
for i, j = 1, 2, . . . , n,

and using the notation ⊕ for the direct sum of two matrices, we can obtain the factorization of
the matrix Bn from Lemma 2.1.

Theorem 2.2. The matrix Bn related to the partial exponential Bell polynomials can be factorized
as

Bn = Pn([1] ⊕ Bn−1). (2.2)

For example, if n = 4, we have

B4 =

⎛⎜⎜⎝
x1 0 0 0
x2 x2

1 0 0
x3 3x1x2 x3

1 0

x4 4x1x3 + 3x2
2 6x2

1x2 x4
1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
x1 0 0 0
x2 x1 0 0
x3 2x2 x1 0
x4 3x3 3x2 x1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 x1 0 0
0 x2 x2

1 0
0 x3 3x1x2 x3

1

⎞⎟⎟⎠ .

Analogous to [3,5,14,15], for any k × k matrix Pk, if we define the n × n matrix P k by

P k =
(

In−k O

O Pk

)
,

we can further factorize the matrix Bn. It is obvious that P n = Pn.

Theorem 2.3. The matrix Bn can be factorized by the matrices P k’s:
Bn = P nP n−1 · · · P 2P 1. (2.3)

By virtue of Theorems 2.2 and 2.3, the factorizations of some special lower triangular matrices
can be obtained directly.

Example 2.1. The Stirling number of the second kind S(n, k) and the unsigned Stirling number
of the first kind s(n, k) satisfy the following equations, respectively [7, p. 135, Eqs. (3g) and (3i)]:

Bn,k(1, 1, 1, . . .) = S(n, k), Bn,k(0!, 1!, 2!, . . .) = s(n, k).

If we define the n × n Stirling matrices of the first kind and of the second kind by

(sn)i,j = s(i, j), (Sn)i,j = S(i, j) for i, j = 1, 2, . . . , n,

we can get the factorizations of them from (2.2) and (2.3). In fact,

Sn = Pn([1] ⊕ Sn−1) = P nP n−1 · · · P 2P 1, (2.4)

sn = Qn([1] ⊕ sn−1) = QnQn−1 · · · Q2Q1, (2.5)

where the matrices Pn and Qn are defined by
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(Pn)i,j =
(

i − 1
j − 1

)
, (Qn)i,j =

(
i − 1
j − 1

)
(i − j)! = (i − 1)!

(j − 1)! for i, j = 1, 2, . . . , n.

For instance, we demonstrate the matrix factorization for s4:

s4 =

⎛⎜⎜⎝
1 0 0 0
1 1 0 0
2 3 1 0
6 11 6 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
1 1 0 0
2 2 1 0
6 6 3 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 1 1 0
0 2 3 1

⎞⎟⎟⎠ .

Note that (2.4) has already been given in [5, Lemma 2.1, Theorem 2.2], while (2.5) has not
been presented before. Instead of the factorization (2.5), the following one was obtained [5, Eq.
(3.2)]:

sn = ([1] ⊕ sn−1)Pn = P 1P 2 · · · P n−1P n, (2.6)

where Pn is the same as that appeared in (2.4), which, in fact, is the famous Pascal matrix. Then,
by combining (2.5) and (2.6), we obtain an identity related to s(n, k), that is,

n−1∑
l=k−1

(n − 1)!
l! s(l, k − 1) =

n−1∑
l=k−1

(
l

k − 1

)
s(n − 1, l). (2.7)

On the other hand, it follows from (2.5) that

s−1
n = ([1] ⊕ sn−1)

−1Q−1
n . (2.8)

With a simple computation, we can derive the values of (Q−1
n )i,j , i.e.,

(Q−1
n )i,j =

⎧⎨⎩
1, if i = j,

−j, if i = j + 1,

0, else.

Thus, by noticing the relationship between the Stirling numbers of both kinds, we can translate
(2.8) to the well known recurrence:

S(i, j) = S(i − 1, j − 1) + jS(i − 1, j).

Remark. In the referee’s report, the combinatorial proof of (2.7) was presented. In fact, if we
rewrite it in the more natural form

n∑
l=k

(
n

l

)
(n − l)!s(l, k) =

n∑
l=k

(
l

k

)
s(n, l),

then both sides count the number of permutations of {1, 2, . . . , n} with k cycles where all the
numbers are red, and possibly some other cycles where all the numbers are blue.

Example 2.2. In [1, Remark 5], the following equation was obtained:

L(a)(n, k) := Bn,k(1!a0, 2!a1, 3!a2, . . .) = an−k

(
n − 1
k − 1

)
n!
k! , (2.9)

which, in light of (2.1)–(2.3), leads us at once to the next two equations:

L(a)(n, k) =
n∑

l=k

(
n − 1
l − 1

)
(n − l + 1)!an−lL(a)(l − 1, k − 1), (2.10)

L(a)
n = Pn([1] ⊕ L

(a)
n−1) = P nP n−1 · · · P 2P 1, (2.11)
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where (L
(a)
n )i,j = L(a)(i, j) and (Pn)i,j =

(
i − 1
j − 1

)
(i − j + 1)!ai−j for i, j = 1, 2, . . . , n. For

example, if n = 4, we have

L
(a)
4 =

⎛⎜⎜⎝
1 0 0 0

2a 1 0 0
6a2 6a 1 0
24a3 36a2 12a 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0

2a 1 0 0
6a2 4a 1 0
24a3 18a2 6a 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 2a 1 0
0 6a2 6a 1

⎞⎟⎟⎠ .

Particularly, by setting a = 1 in (2.10) and (2.11), we achieve the corresponding recurrence
relation and matrix factorization of the Lah numbers L(i, j). Moreover, we get (see [7, p. 156]
and [11])

Ln = snSn = Pn([1] ⊕ Ln−1),

whereLn is the Lah matrix with (Ln)i,j = L(1)(i, j) = L(i, j), and (Pn)i,j =
(

i − 1
j − 1

)
(i − j + 1)!,

from which we have

i∑
l=j

s(i, l)S(l, j) =
i∑

l=j

(
i − 1
l − 1

)
(i − l + 1)!L(l − 1, j − 1)

=
(

i − 1
j − 1

) i∑
l=j

(
i − j

l − j

)
(i − l + 1)!(l − 2)!

(j − 2)! .

Example 2.3. Making use of the equation [13, Eq. (22)]

I (a)(n, k) := Bn,k(1, 2a, 3a2, . . .) =
(

n

k

)
(ka)n−k,

we find that

I (a)(n, k) =
n∑

l=k

(
n − 1
l − 1

)
(n − l + 1)an−lI (a)(l − 1, k − 1), (2.12)

IP(a)
n = Pn([1] ⊕ IP(a)

n−1) = P nP n−1 · · · P 2P 1, (2.13)

where (IP(a)
n )i,j = I (a)(i, j) and (Pn)i,j =

(
i − 1
j − 1

)
(i − j + 1)ai−j for i, j = 1, 2, . . . , n. For exam-

ple, if n = 4, we have

IP(a)
4 =

⎛⎜⎜⎝
1 0 0 0

2a 1 0 0
3a2 6a 1 0
4a3 24a2 12a 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0

2a 1 0 0
3a2 4a 1 0
4a3 9a2 6a 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 2a 1 0
0 3a2 6a 1

⎞⎟⎟⎠ .

Again, by setting a = 1 in (2.12) and (2.13), we obtain the recurrence relation and matrix

factorization associated with the idempotent numbers I (i, j) = I (1)(i, j) =
(

i

j

)
j i−j , which was

studied in [12].

Example 2.4. Let us consider the following equation [13, Eq. (17)]:

Bn,k(B0(x), 2B1(x), 3B2(x), . . .) =
(

n

k

)
Bn−k(kx),



144 W. Wang, T. Wang / Linear Algebra and its Applications 422 (2007) 139–154

where Bn(x) := ∑n
j=0 S(n, j)xj is the single variable Bell polynomial. It should be noticed that

Bn(1) = ∑n
j=0 S(n, j) is the Bell number [7, p. 210].

From (2.1)–(2.3), we get(
n

k

)
Bn−k(kx) =

n∑
l=k

(
n − 1
l − 1

)
(n − l + 1)Bn−l (x)

(
l − 1
k − 1

)
Bl−k((k − 1)x), (2.14)

Bn = Pn([1] ⊕ Bn−1) = P nP n−1 · · · P 2P 1, (2.15)

where (Bn)i,j =
(

i

j

)
Bi−j (jx) and (Pn)i,j =

(
i − 1
j − 1

)
(i − j + 1)Bi−j (x) for i, j = 1, 2, . . . , n.

For example, if n = 4, we have

B4 =

⎛⎜⎜⎝
1 0 0 0

2x 1 0 0
3(x + x2) 6x 1 0

4(x + 3x2 + x3) 12(x + 2x2) 12x 1

⎞⎟⎟⎠

=

⎛⎜⎜⎝
1 0 0 0

2x 1 0 0
3(x + x2) 4x 1 0

4(x + 3x2 + x3) 9(x + x2) 6x 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 2x 1 0
0 3(x + x2) 6x 1

⎞⎟⎟⎠ .

After some computation, we derive from (2.14) the identity below:

k + m

k
Bm(kx) =

m∑
j=0

(
m

j

)
(m − j + 1)Bm−j (x)Bj ((k − 1)x).

Hence, in view of the definition of Bn(x), we have

k + m

k

m∑
n=0

S(m, n)(kx)n =
m∑

j=0

m−j∑
i=0

j∑
l=0

(
m

j

)
(m − j + 1)(k − 1)lS(m − j, i)S(j, l)xi+l .

By equating the coefficients of xn, we obtain an identity associated with the Stirling numbers of
the second kind:

(k + m)S(m, n)kn−1

=
m∑

j=0

n∑
l=0

(
m

j

)
(m − j + 1)(k − 1)lS(m − j, n − l)S(j, l). (2.16)

Remark. As pointed by the referee, (2.16) is a linear combination of the two simpler identities

S(m, n)kn =
m∑

j=0

n∑
l=0

(
m

j

)
(k − 1)lS(m − j, n − l)S(j, l), (2.17)

S(m, n)kn−1 =
m∑

j=0

n∑
l=0

(
m − 1

j

)
(k − 1)lS(m − j, n − l)S(j, l), (2.18)
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which may be proved by coloring set partitions. In (2.17) we are putting {1, 2, . . . , m} into n

blocks and then coloring each block with one of k colors; in (2.18) we are doing the same thing
except that the block containing the largest element m (or some specific element) must be colored
red. On the right sides of (2.17) and (2.18), l is the number of blocks that are not red, and j is the
number of elements in those blocks. If we multiply (2.18) by m and then add it to (2.17) we get
(2.16).

In [1], the authors proposed two methods for the determination of new identities for Bell
polynomials, and Yang [13] generalized one of the methods recently. We can see, with the help
of their works, various lower triangular matrices can be factorized, just as the examples above.

And at the end of this section, we will consider some generalizations of the Bell matrix. For
any nonzero real numbers y and z, let us define the n × n matrices Bn[y], Bn[y], Bn[y, z] by

(Bn[y])i,j = yi−jBi,j , (Bn[y])i,j = yi+j−2Bi,j ,

(Bn[y, z])i,j = yi−j zi+j−2Bi,j . (2.19)

Correspondingly, the n × n matrices Pn[y], Qn[y], Rn[y, z] are defined by

(Pn[y])i,j = yi−j

(
i − 1
j − 1

)
xi−j+1, (Qn[y])i,j = yi+j−2

(
i − 1
j − 1

)
xi−j+1,

(Rn[y, z])i,j = yi−j zi+j−2
(

i − 1
j − 1

)
xi−j+1. (2.20)

Then, analogous to [5,11,14,15], we give the following theorem.

Theorem 2.4. For any nonzero real numbers y and z, we have

Bn[y] = Pn[y]([1] ⊕ Bn−1[y]) = P n[y]P n−1[y] · · · P 2[y]P 1[y],
Bn[y] = Qn[y]

(
[1] ⊕ Bn−1

[
1

y

])
= Qn[y]P n−1

[
1

y

]
· · · P 2

[
1

y

]
P 1

[
1

y

]
,

Bn[y, z] = Rn[y, z]
(

[1] ⊕ Bn−1

[
y

z

])
= Rn[y, z]P n−1

[
y

z

]
· · · P 2

[
y

z

]
P 1

[
y

z

]
.

Example 2.5. If the sequence {xn} in Bn,k = Bn,k(x1, x2, . . . , xn−k+1) is defined by xn = (n −
1)! then we will get the following factorizations for the generalized Stirling matrices of the first
kind, which have not been presented before (see [5]).

sn[y] = Pn[y]([1] ⊕ sn−1[y]) = P n[y]P n−1[y] · · · P 2[y]P 1[y],
s̄n[y] = Qn[y]

(
[1] ⊕ sn−1

[
1

y

])
= Qn[y]P n−1

[
1

y

]
· · · P 2

[
1

y

]
P 1

[
1

y

]
,

sn[y, z] = Rn[y, z]
(

[1] ⊕ sn−1

[
y

z

])
= Rn[y, z]P n−1

[
y

z

]
· · · P 2

[
y

z

]
P 1

[
y

z

]
,

where the definitions of the matrices referred to above can be obtained from (2.19) and (2.20)
immediately. And alternately, if we define {xn} by xn = n! we will derive some new factorizations
of the generalized Lah matrices (see [11]).
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3. Matrix related to the Bell polynomials with respect to �

In this section every formal series f is supposed to be of the form:

f =
∑
n�1

�nfnt
n, (3.1)

where �1, �2, . . . is a reference sequence, �1 = 1 and �n /= 0. In this way we treat at the same
time the case of ordinary coefficients of f (⇔ �n = 1), and the case of Taylor coefficients
(⇔ �n = 1/n!).

With every series f we associate the infinite lower iteration matrix with respect to �:

B = B(f ) :=

⎛⎜⎜⎜⎝
B1,1 0 0 · · ·
B2,1 B2,2 0 · · ·
B3,1 B3,2 B3,3 · · ·

...
...

...
. . .

⎞⎟⎟⎟⎠ ,

where Bn,k = B�
n,k(f1, f2, . . .) is the Bell polynomial with respect to � [7, p. 137, 145], defined

as follows:

�kf
k =

∑
n�k

Bn,k�nt
n. (3.2)

Now, we shall study how to factorize the n × n matrix Bn = Bn(f ). In fact, similarly to what
we have done in the preceding section, we have the following lemma.

Lemma 3.1. The Bell polynomials Bn,k with respect to � satisfy the vertical recurrence relation:

Bn,k =
n−1∑

i=k−1

�i�n−i

�n

n − i

n
fn−i

k�k

�k−1
Bi,k−1

=
n∑

l=k

�l−1�n−l+1

�n

n − l + 1

n
fn−l+1

k�k

�k−1
Bl−1,k−1. (3.3)

Proof. Differentiate (3.2) with respect to t ,∑
n�k

Bn,k�nntn−1 = �k · kf k−1f ′ = k�k

�k−1

∑
i�k−1

Bi,k−1�i t
i ·
∑
j�1

�j jfj t
j−1

= k�k

�k−1

∑
n�k−1

⎛⎝ n∑
i=k−1

�i�n−i+1

�n

(n − i + 1)fn−i+1Bi,k−1

⎞⎠�nt
n,

and identify the coefficients of �n−1t
n−1 in the equation above, then we get

n�nBn,k

�n−1
= k�k

�k−1

n−1∑
i=k−1

�i�n−i

�n−1
(n − i)fn−iBi,k−1,

which, after some transformations, leads us to (3.3) at once. �

It should be noticed that, if �n = 1/n! (3.3) gives us
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Bn,k =
n−1∑

i=k−1

(
n

i

)
n − i

n
fn−iBi,k−1 =

n−1∑
i=k−1

(
n − 1

i

)
fn−iBi,k−1,

which is just the assertion (2.1) of Lemma 2.1; while by setting �n = 1, we have

Bn,k =
n−1∑

i=k−1

n − i

n
fn−ikBi,k−1 =

n∑
l=k

n − l + 1

n
fn−l+1kBl−1,k−1. (3.4)

Once we get the recurrence, we can derive the matrix factorization immediately. Let us define
the n × n matrices Bn, Pn and Dn by

(Bn)i,j = Bi,j , (Pn)i,j = �j−1�i−j+1

�i

i − j + 1

i
fi−j+1 := Pi,j ,

Dn = diag

{
1�1

�0
,

2�2

�1
, . . . ,

n�n

�n−1

}
, (3.5)

for i, j = 1, 2, . . . , n, where �0 = 1. Then the following theorem holds.

Theorem 3.2. The matrix Bn related to the Bell polynomials with respect to � can be factorized
as

Bn = Pn([1] ⊕ Bn−1)Dn = P nP n−1 · · · P 1D1 · · · Dn−1Dn. (3.6)

Example 3.1. For f = t (1 − t)−1 and �n = 1, we have f = ∑
n�1 tn = ∑

n�1 fnt
n, then fn =

1. Moreover, according to (3.2),∑
n�k

Bn,kt
n = tk(1 − t)−k = tk

∑
m�0

(−k

m

)
(−1)mtm =

∑
n�k

(
n − 1
k − 1

)
tn,

which implies that Bn,k =
(

n − 1
k − 1

)
and the iteration matrix Bn(f ) is the Pascal matrix. Hence,

Lemma 3.1, or equivalently, (3.4) shows us the following recurrence for binomial coefficients:(
n − 1
k − 1

)
=

n∑
l=k

n − l + 1

n
k

(
l − 2
k − 2

)
, (3.7)

and Theorem 3.2 gives us new factorizations for the Pascal matrix:

Pn = P ′
n([1] ⊕ Pn−1)Dn = P

′
nP

′
n−1 · · · P ′

1D1 · · · Dn−1Dn,

where (Pn)i,j =
(

i − 1
j − 1

)
, (P ′

n)i,j = (i − j + 1)/i and Dn = diag{1, 2, . . . , n}. We would like to

illustrate how to factorize the corresponding matrix when n = 3.

P3 =
⎛⎝1 0 0

1 1 0
1 2 1

⎞⎠ =
⎛⎜⎝1 0 0

1 1
2 0

1 2
3

1
3

⎞⎟⎠
⎛⎝1 0 0

0 1 0
0 1 1

⎞⎠⎛⎝1 0 0
0 2 0
0 0 3

⎞⎠

=
⎛⎜⎝1 0 0

1 1
2 0

1 2
3

1
3

⎞⎟⎠
⎛⎝1 0 0

0 1 0
0 1 1

2

⎞⎠⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠⎛⎝1 0 0
0 1 0
0 0 2

⎞⎠⎛⎝1 0 0
0 2 0
0 0 3

⎞⎠ .
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Example 3.2. The generating function for the harmonic numbers Hn is

f =
∑
n�1

Hnt
n = 1

1 − t
log

1

1 − t
,

from which we have

f k =
(

1

1 − t
log

1

1 − t

)k

= k!
∑
i�0

(−k

i

)
(−1)i t i

∑
j�k

s(j, k)
tj

j !

=
∑
n�k

(
n−k∑
i=0

(
k + i − 1

i

)
k!

(n − i)! s(n − i, k)

)
tn.

Thus, the iteration matrix B(f ) is defined by

(B(f ))n,k =
n−k∑
i=0

(
k + i − 1

i

)
k!

(n − i)! s(n − i, k) =
n∑

i=k

(
n − i + k − 1

n − i

)
k!
i! s(i, k),

and (3.4) implies the following identity:

n∑
i=k

(
n − i + k − 1

n − i

)
k!
i! s(i, k)

=
n∑

i=k

k!
(i − 1)! s(i − 1, k − 1)

n∑
l=i

(
l + k − i − 2

l − i

)
n − l + 1

n
Hn−l+1.

More generally, if we start with the generating function [8, p. 351, Eq. (7.43)]

g =
∑
n�1

(Hm+n − Hm)

(
m + n

m

)
tn = 1

(1 − t)m+1
log

1

1 − t
,

we get

(B(g))n,k =
n∑

i=k

(−1)n−i

(−k(m + 1)

n − i

)
k!
i! s(i, k),

n∑
i=k

(−1)n−i

(−k(m + 1)

n − i

)
k!
i! s(i, k)

=
n∑

i=k

k!
(i − 1)! s(i − 1, k − 1)

n∑
l=i

(−1)l−i

(−(k − 1)(m + 1)

l − i

)(
m + n − l + 1

m

)
×n − l + 1

n
(Hm+n−l+1 − Hm).

The factorizations of the matrices referred to above can be obtained immediately from Theorem
3.2. However, the matrix defined below may be more interesting.

(B̃)n,k = n!
k! (B(f ))n,k =

n∑
i=k

(
n − i + k − 1

n − i

)
n!
i! s(i, k).
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For instance,

B̃7 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
3 1 0 0 0 0 0
11 9 1 0 0 0 0
50 71 18 1 0 0 0
274 580 245 30 1 0 0
1764 5104 3135 625 45 1 0
13068 48860 40369 11515 1330 63 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We notice that the sequences in the first four columns can be found in [10, A000254, A001706,
A001713, A001719]. Therefore, an identity can be derived by means of the formulae on the web.
That is

n∑
i=k

(
n − i + k − 1

n − i

)
n!
i! s(i, k) =

n∑
i=k

(
i

k

)
ki−ks(n, i),

which can also be verified by the computation of the generating functions. In fact, for the left
side, we have∑

k�0

∑
n�k

n!
k! (B(f ))n,k

tn

n!u
k =

∑
k�0

(
1

1 − t
log

1

1 − t

)k
uk

k! = exp

(
u

1 − t
log

1

1 − t

)
;

while the right side gives

∑
k�0

∑
n�k

n∑
i=k

(
i

k

)
ki−ks(n, i)

tn

n!u
k =

∑
k�0

∑
i�k

⎛⎝∑
n�i

s(n, i)
tn

n!

⎞⎠(i

k

)
ki−kuk

=
∑
k�0

∑
i�k

1

i! logi 1

1 − t

(
i

k

)
ki−kuk

=
∑
k�0

∑
i�k

(
i

k

)
ki−k 1

i! logi 1

1 − t
uk

= exp

(
u

1 − t
log

1

1 − t

)
,

where we make use of the generating function for the idempotent numbers [7,12] in the last step.
Furthermore, by appealing to (3.4), we have

(B̃)n,k = n!
k! (B(f ))n,k = n!

k!
n∑

l=k

n − l + 1

n
Hn−l+1kBl−1,k−1

=
n∑

l=k

(n − l + 1)Hn−l+1
(n − 1)!
(l − 1)!

(l − 1)!
(k − 1)! (B(f ))l−1,k−1,

which leads us to the factorization of the matrix B̃n:

B̃n = P̃n([1] ⊕ B̃n−1),

where (P̃n)i,j = (i − j + 1)
(i−1)!
(j−1)!Hi−j+1 for i, j = 1, 2, . . . , n. For instance,
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B̃4 =

⎛⎜⎜⎝
1 0 0 0
3 1 0 0
11 9 1 0
50 71 18 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
3 1 0 0
11 6 1 0
50 33 9 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 3 1 0
0 11 9 1

⎞⎟⎟⎠ .

Actually, we can do more than these. Let us introduce a lemma [7, p. 145, Theorem A]:

Lemma 3.3. For three sequences f, g, h (written as in (3.1)), h = f ◦ g is equivalent to the
matrix equality:

B(h) = B(g) · B(f ). (3.8)

Then, Theorem 3.2 and Lemma 3.3 lead us to the result below.

Corollary 3.4. For three formal seriesg0, g1, g2 written as in (3.1), ifg0 = g2 ◦ g1,and the matri-
ces associated with gi can be factorized as Bn(gi) = G

(i)
n ([1] ⊕ Bn−1(gi))Dn, for i = 1, 2, 3,

then

Bn(g0) = G(0)
n ([1] ⊕ Bn−1(g0))Dn

= G(1)
n ([1] ⊕ Bn−1(g1))DnG

(2)
n ([1] ⊕ Bn−1(g2))Dn. (3.9)

More generally, if we have k + 1 series g0, g1, g2, . . . , gk with g0 = gk ◦ · · · ◦ g2 ◦ g1, then
(3.8) gives the matrix equality B(g0) = B(g1)B(g2) · · · B(gk). And, Corollary 3.4 indicates how
to factorize Bn(g0) in two different ways.

Example 3.3. We have already shown that the iteration matrix of the series f = t (1 − t)−1 is
the Pascal matrix P (see Example 3.1). And in this example, we will go on to study this series.

We have

f 〈2〉 = f ◦ f = t

1 − 2t
=
∑
n�1

2n−1tn,

then f
〈2〉
n = 2n−1. In view of (3.2),∑
n�k

Bn,kt
n = tk(1 − 2t)−k =

∑
n�k

(
n − 1
k − 1

)
2n−ktn,

from which we get Bn,k =
(

n − 1
k − 1

)
2n−k . Hence, Corollary 3.4 indicates that Bn(f

〈2〉) can be

factorized in the following ways:

Bn(f
〈2〉) = P 2

n = P
′′
n ([1] ⊕ Bn−1(f

〈2〉))Dn = P ′
n([1] ⊕ Pn−1)DnP

′
n([1] ⊕ Pn−1)Dn,

where (Bn(f
〈2〉))i,j =

(
i − 1
j − 1

)
2i−j , (P

′′
n )i,j = (i − j + 1)2i−j /i, and, as in Example 3.1, (Pn)i,j =(

i − 1
j − 1

)
, (P ′

n)i,j = (i − j + 1)/i, Dn = diag{1, 2, . . . , n}. For instance,

B3(f
〈2〉) =

⎛⎝1 0 0
2 1 0
4 4 1

⎞⎠ =
⎛⎜⎝1 0 0

2 1
2 0

4 4
3

1
3

⎞⎟⎠
⎛⎝1 0 0

0 1 0
0 2 1

⎞⎠⎛⎝1 0 0
0 2 0
0 0 3

⎞⎠
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=
⎛⎜⎝1 0 0

1 1
2 0

1 2
3

1
3

⎞⎟⎠
⎛⎝1 0 0

0 1 0
0 1 1

⎞⎠⎛⎝1 0 0
0 2 0
0 0 3

⎞⎠
⎛⎜⎝1 0 0

1 1
2 0

1 2
3

1
3

⎞⎟⎠
×
⎛⎝1 0 0

0 1 0
0 1 1

⎞⎠⎛⎝1 0 0
0 2 0
0 0 3

⎞⎠ .

In addition to these, according to the definition given in [7, p. 147], for each complex number
x, we can get the xth order fractionary iterate f 〈x〉 and the corresponding iteration matrix P x .
Let us define B := P − I , where I is the identity matrix. By induction, we have (Bj )n,k =(

n − 1
k − 1

)
j !S(n − k, j). Thus, (Bj )n,1 = j !S(n − 1, j). By [7, p. 174, Eq. (7j)],

f 〈x〉
n =

n−1∑
j=1

(
x

j

)
j !S(n − 1, j) =

n−1∑
j=1

S(n − 1, j)(x)j = xn−1, n � 2, f
〈x〉
1 = 1,

and we get

f 〈x〉 =
∑
n�1

f 〈x〉
n tn = t

1 − xt
,

∑
n�k

Bn,kt
n = tk(1 − xt)−k =

∑
n�k

(
n − 1
k − 1

)
xn−ktn.

Therefore, (P x
n )i,j =

(
i − 1
j − 1

)
xi−j , which means that the iteration matrix P x

n is the generalized

Pascal matrix studied in [14], and we denote it by Pn[x]. Additionally, Theorem 3.2 gives the
following factorizations:

Pn[x] = P ′
n[x]([1] ⊕ Pn−1[x])Dn = P

′
n[x]P ′

n−1[x] · · · P ′
1[x]D1 · · · Dn−1Dn,

where (P ′
n[x])i,j = (i − j + 1)xi−j /i, Dn = diag{1, 2, . . . , n}. For instance,

P4[x] =

⎛⎜⎜⎝
1 0 0 0
x 1 0 0
x2 2x 1 0
x3 3x2 3x 1

⎞⎟⎟⎠

=

⎛⎜⎜⎜⎝
1 0 0 0
x 1

2 0 0

x2 2
3x 1

3 0

x3 3
4x2 1

2x 1
4

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 x 1 0
0 x2 2x 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎞⎟⎟⎠ .

Now, we consider the inverse of the Bell matrix with respect to �.

Theorem 3.5. For two formal series f, g written as in (3.1), if h = f ◦ g = g ◦ f = t, then

B(h) = B(g)B(f ) = I, (3.10)

where I is the infinite identity matrix.
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Proof. Since �kh
k = �kt

k = ∑
n�k Bn,k�nt

n, we have Bk,k = 1 and Bn,k = 0 for n > k, which
implies that B(h) = I , and then the relationship (3.10) holds. �

By virtue of Theorem 3.5, we can get another factorization of the inverse of the Bell matrix
besides the one indicated in Theorem 3.2. In fact, if f ◦ g = g ◦ f = t , and, by Theorem 3.2,
Bn(f ) = Fn([1] ⊕ Bn−1(f ))Dn, then, making use of Theorem 3.5, we find that

Bn(g) = B−1
n (f ) = D−1

n ([1] ⊕ B−1
n−1(f ))F−1

n = D−1
n ([1] ⊕ Bn−1(g))F−1

n . (3.11)

Example 3.4. If f = et − 1, g = log(1 + t), and �n = 1/n! then from the fact that

1

k! (e
t − 1)k =

∑
n�k

S(n, k)
tn

n! ,

1

k! logk(1 + t) =
∑
n�k

(−1)n−ks(n, k)
tn

n! ,

we get (Bn(f ))i,j = S(i, j), (Bn(g))i,j = (−1)i−j s(i, j). And Theorem 3.2 gives us the factor-
izations of Bn(f ) and Bn(g), i.e.,

Bn(f ) = Fn([1] ⊕ Bn−1(f )), Bn(g) = Gn([1] ⊕ Bn−1(g)),

where according to (3.5), (Fn)i,j =
(

i − 1
j − 1

)
, (Gn)i,j = (−1)i−j (i−1)!

(j−1)! for i, j = 1, 2, . . . , n. Since

(F−1
n )i,j = (−1)i−j

(
i − 1
j − 1

)
, (3.11) tells us the matrix Bn(g) can also be factorized as follows:

Bn(g) = ([1] ⊕ Bn−1(g))F−1
n . (3.12)

For example, if n = 4, we have

B4(g) =

⎛⎜⎜⎝
1 0 0 0

−1 1 0 0
2 −3 1 0

−6 11 −6 1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 −1 1 0
0 2 −3 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1 0 0 0
−1 1 0 0
1 −2 1 0

−1 3 −3 1

⎞⎟⎟⎠ .

By multiplying (3.12) with In = diag{1, −1, . . . , (−1)n−1},
InBn(g)In = In([1] ⊕ Bn−1(g))F−1

n In = In([1] ⊕ Bn−1(g))InInF
−1
n In,

we get sn = ([1] ⊕ sn−1)Pn, the factorization of the Stirling matrix of the first kind (see Eq. (2.6)
and [5, Eq. (3.2)]).

Finally, we will present some generalizations of the matrix related to the Bell polynomi-
als with respect to �. For any nonzero real numbers y and z, we define the n × n matrices
Bn[y], Bn[y], Bn[y, z] by

(Bn[y])i,j = yi−jBi,j , (Bn[y])i,j = yi+j−2Bi,j ,

(Bn[y, z])i,j = yi−j zi+j−2Bi,j , (3.13)

which have the same forms as those defined at the end of Section 2, but, of course, with different
meanings. Correspondingly, the n × n matrices Pn[y], Qn[y], Rn[y, z] are defined by
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(Pn[y])i,j = yi−jPi,j , (Qn[y])i,j = yi+j−2Pi,j ,

(Rn[y, z])i,j = yi−j zi+j−2Pi,j , (3.14)

where Pi,j has already been defined in Eq. (3.5).
Then the following theorems hold.

Theorem 3.6. For any nonzero real numbers y and z, if f ◦ g = g ◦ f = t, we have

Bn(f )[y]Bn(g)[y] = In, Bn(f )[y]Bn(g)

[
1

y

]
= In, Bn(f )[y, z]Bn(g)

[
y,

1

z

]
= In,

where In is the n × n identity matrix.

Theorem 3.7. For any nonzero real numbers y and z, we have

Bn[y] = Pn[y]([1] ⊕ Bn−1[y])Dn = P n[y]P n−1[y] · · · P 2[y]P 1[y]D1D2 · · · Dn−1Dn,

Bn[y] = Qn[y]
(

[1] ⊕ Bn−1

[
1

y

])
Dn

= Qn[y]P n−1

[
1

y

]
· · · P 2

[
1

y

]
P 1

[
1

y

]
D1D2 · · · Dn−1Dn,

Bn[y, z] = Rn[y, z]
(

[1] ⊕ Bn−1

[
y

z

])
Dn

= Rn[y, z]P n−1

[
y

z

]
· · · P 2

[
y

z

]
P 1

[
y

z

]
D1D2 · · · Dn−1Dn.
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