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Abstract

The main object of this paper is to investigate the Apostol–Bernoulli polynomials and the Apostol–Euler polynomials. We first
establish two relationships between the generalized Apostol–Bernoulli and Apostol–Euler polynomials. It can be found that many
results obtained before are special cases of these two relationships. Moreover, we have a study on the sums of products of the
Apostol–Bernoulli polynomials and of the Apostol–Euler polynomials.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Apostol–Bernoulli polynomials; Apostol–Euler polynomials; Generalized Apostol–Bernoulli polynomials; Generalized Apostol–Euler
polynomials; Combinatorial identities

1. Introduction

For a real or complex parameter α, the generalized Bernoulli polynomials B(α)
n (x) and the generalized Euler

polynomials E (α)
n (x), each of degree n in x as well as in α, are defined by the following generating functions (for

details, see [1, Section 2.8] and [2, Section 1.6]):(
t

et − 1

)α

ext
=

∞∑
n=0

B(α)
n (x)

tn

n!
, (|t | < 2π), (1.1)

(
2

et + 1

)α

ext
=

∞∑
n=0

E (α)
n (x)

tn

n!
, (|t | < π). (1.2)

Clearly, the classical Bernoulli polynomials Bn(x) and the classical Euler polynomials En(x) are given by

Bn(x) := B(1)
n (x) and En(x) := E (1)

n (x), (n ∈ N0), (1.3)

respectively, where N0 := N ∪ {0} and N := {1, 2, 3, . . .}. Moreover, the classical Bernoulli numbers Bn and the
classical Euler numbers En are given by
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Bn := Bn(0) and En := 2n En

(
1
2

)
, (n ∈ N0), (1.4)

respectively.
These polynomials and numbers have numerous important applications in combinatorics, number theory and

numerical analysis. They have therefore been studied extensively over the last two centuries.
It is the purpose of this paper to consider the so called generalized Apostol–Bernoulli and Apostol–Euler

polynomials, which are natural generalizations of B(α)
n (x) and E (α)

n (x), respectively. These polynomials are defined
as follows [3–5].

Definition 1.1. For arbitrary real or complex parameters α and λ, the generalized Apostol–Bernoulli polynomials
B

(α)
n (x; λ) and the generalized Apostol–Euler polynomials E

(α)
n (x; λ) are defined by the following generating

functions:(
t

λet − 1

)α

ext
=

∞∑
n=0

B(α)
n (x; λ)

tn

n!
, (|t + log λ| < 2π), (1.5)

(
2

λet + 1

)α

ext
=

∞∑
n=0

E(α)
n (x; λ)

tn

n!
, (|t + log λ| < π). (1.6)

The so called Apostol–Bernoulli polynomials Bn(x; λ) and the so called Apostol–Euler polynomials En(x; λ) are
given by

Bn(x; λ) := B(1)
n (x; λ) and En(x; λ) := E(1)

n (x; λ), (n ∈ N0), (1.7)

respectively. Furthermore, the Apostol–Bernoulli numbers Bn(λ) and the Apostol–Euler numbers En(λ) are given by

Bn(λ) := Bn(0; λ) and En(λ) := 2nEn

(
1
2
; λ

)
, (n ∈ N0), (1.8)

respectively. Obviously, when λ = 1 in (1.5)–(1.8), we obtain the corresponding well known forms given by (1.1)–
(1.4).

The Apostol–Bernoulli polynomials Bn(x; λ) and the Apostol–Bernoulli numbers Bn(λ) were first defined by
Apostol [6] when he studied the Lipschitz–Lerch Zeta functions. Recently, Luo and Srivastava introduced the
generalized Apostol–Bernoulli and Apostol–Euler polynomials. They also studied these polynomials systematically
(see [3–5,7,8]).

From the works referred to above, we can see that the (generalized) Apostol–Bernoulli polynomials and the
(generalized) Apostol–Euler polynomials have many interesting and useful properties, and they deserve further study.

This paper is organized as follows. Some basic properties for B
(α)
n (x; λ) and E

(α)
n (x; λ) will be listed below.

Section 2 is devoted to the general relationships involving these polynomials. It can be found that many results
established before (see [5,9–11]) are special cases of these relationships. Finally, in Section 3, we will present some
identities and give the explicit expressions for the sums of the products of the Apostol–Bernoulli polynomials and of
the Apostol–Euler polynomials.

Now, let us give a brief review of the properties satisfied by B
(α)
n (x; λ) and E

(α)
n (x; λ).

It is easily observed from the generating functions (1.5) and (1.6) that

B(α+β)
n (x + y; λ) =

n∑
k=0

(n

k

)
B

(α)
k (x; λ)B

(β)
n−k(y; λ), (1.9)

E(α+β)
n (x + y; λ) =

n∑
k=0

(n

k

)
E

(α)
k (x; λ)E

(β)
n−k(y; λ). (1.10)

From (1.5) and (1.6), it follows also that

λB(α)
n (x + 1; λ) − B(α)

n (x; λ) = nB
(α−1)
n−1 (x; λ), (1.11)
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λE(α)
n (x + 1; λ) + E(α)

n (x; λ) = 2E(α−1)
n (x; λ). (1.12)

Moreover, since

B(0)
n (x; λ) = E(0)

n (x; λ) = xn,

upon setting β = 0 in (1.9) and (1.10), and interchanging x and y, we get

B(α)
n (x + y; λ) =

n∑
k=0

(n

k

)
B

(α)
k (y; λ)xn−k, (1.13)

E(α)
n (x + y; λ) =

n∑
k=0

(n

k

)
E

(α)
k (y; λ)xn−k . (1.14)

The properties (1.9)–(1.14) and some other ones can be found in [3–5]. Here, we will only present two more
theorems for B

(α)
n (x; λ) and E

(α)
n (x; λ) which have not appeared before.

Theorem 1.2. The generalized Apostol–Bernoulli polynomials satisfy

B(α+1)
n (x; λ) =

(
1 −

n

α

)
B(α)

n (x; λ) + (x − α)
n

α
B

(α)
n−1(x; λ). (1.15)

Theorem 1.3. The generalized Apostol–Euler polynomials satisfy

αλ

2
E(α+1)

n (x + 1; λ) = xE(α)
n (x; λ) − E

(α)
n+1(x; λ), (1.16)

E(α+1)
n (x; λ) =

2
α

E
(α)
n+1(x; λ) − (x − α)

2
α

E(α)
n (x; λ). (1.17)

These two theorems can be readily obtained by computing the generating functions; hence we chose not to prove
them here. It is worth noticing that all the properties given above could reduce to the corresponding ones for the
generalized Bernoulli and Euler polynomials by setting λ = 1.

2. Relations between B
(α)
n (x; λ) and E

(α)
n (x; λ)

In 2003, Cheon [9] rederived several known properties and relations involving the classical Bernoulli polynomials
Bn(x) and the classical Euler polynomials En(x) by making use of some standard techniques based upon series
rearrangement as well as matrix representation.

Srivastava and Pintér [10] followed Cheon’s work [9] and established two relations involving the generalized
Bernoulli polynomials B(α)

n (x) and the generalized Euler polynomials E (α)
n (x). More recently, Luo and Srivastava [5]

extended the results in [10] to the generalized Apostol–Bernoulli polynomials B
(α)
n (x; λ) and the generalized

Apostol–Euler polynomials E
(α)
n (x; λ).

We also presented two relations between B(α)
n (x) and E (α)

n (x) with matrix representation [11]. In this section,
we will study further the relations between B

(α)
n (x; λ) and E

(α)
n (x; λ) with the methods of generating function and

series rearrangement. As a consequence, it can be found that the relationships demonstrated here are in fact common
generalizations of the works [5,9–11].

Theorem 2.1. For α, β, λ ∈ C and n ∈ N0, we have the relationship

B(α)
n (x + y; λ) =

1
2β

n∑
k=0

(n

k

)(∑
m≥0

(
β

m

)
λmB

(α)
n−k(y + m; λ)

)
E

(β)
k (x; λ) (2.1)

between the generalized Apostol–Bernoulli and Apostol–Euler polynomials.
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Proof. Let us compute the generating functions for both sides of (2.1). By Definition 1.1, the right side gives∑
n≥0

1
2β

n∑
k=0

(n

k

)(∑
m≥0

(
β

m

)
λmB

(α)
n−k(y + m; λ)

)
E

(β)
k (x; λ)

tn

n!

=

∑
m≥0

1
2β

(
β

m

)
λm
∑
k≥0

E
(β)
k (x; λ)

tk

k!

∑
n≥k

B
(α)
n−k(y + m; λ)

tn−k

(n − k)!

=

(
2

λet + 1

)β

ext
(

t

λet − 1

)α

eyt 1
2β

∑
m≥0

(
β

m

)
λmetm

=

(
t

λet − 1

)α

e(x+y)t ,

which coincides with the generating function of the left side. �

Corollary 2.2. For α, β, λ ∈ C and n ∈ N0, we have the relationships:

B(α)
n (x + y; λ) =

n∑
k=0

(n

k

)(
B

(α)
k (y; λ) +

k

2
B

(α−1)
k−1 (y; λ)

)
En−k(x; λ), (2.2)

B(α)
n (x + y) =

1
2β

n∑
k=0

(n

k

)(∑
m≥0

(
β

m

)
B(α)

n−k(y + m)

)
E (β)

k (x). (2.3)

Proof. By setting β = 1 in Theorem 2.1, we have

B(α)
n (x + y; λ) =

1
2

n∑
k=0

(n

k

) (
B

(α)
n−k(y; λ) + λB

(α)
n−k(y + 1; λ)

)
Ek(x; λ),

which, in light of the recurrence relation (1.11), leads us at once to (2.2). Next, by setting λ = 1 in Theorem 2.1, the
relationship (2.3) can also be obtained. �

Remark. (2.2) and (2.3) are main results of [5,11], respectively (see [5, Section 3, Theorem 1] and [11, Section 3,
Theorem 1]). A common special case of these two identities is

B(α)
n (x + y) =

n∑
k=0

(n

k

)(
B(α)

k (y) +
k

2
B(α−1)

k−1 (y)

)
En−k(x),

which is one of the main results of [10] (see [10, Section 3, Theorem 1]).
It should be noticed that the identity demonstrated in [11, Section 3, Theorem 1] is not in the simplest form: one of

the inner sums can be computed.

Corollary 2.3. For β, λ ∈ C and n, j ∈ N0, we have the relationships:

xn
=

1
2β

∑
m≥0

(
β

m

)
λmE(β)

n (x + m; λ), (2.4)

(n) j xn− j
=

∑
m≥0

(−1) j−m
(

j

m

)
λmB

( j)
n (x + m; λ), (2.5)

where (n) j = n(n − 1) · · · (n − j + 1).

Proof. The special case of Theorem 2.1 when α = 0 is

(x + y)n
=

1
2β

n∑
k=0

(n

k

)(∑
m≥0

(
β

m

)
λm(y + m)n−k

)
E

(β)
k (x; λ)

=
1

2β

∑
m≥0

(
β

m

)
λm

n∑
k=0

(n

k

)
E

(β)
k (x; λ)(y + m)n−k
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=
1

2β

∑
m≥0

(
β

m

)
λmE(β)

n (x + y + m; λ),

which, by setting y = 0, yields (2.4). Eq. (2.5) is an analogue of (2.4). To prove it, let us compute the generating
function again:∑

n≥0

∑
m≥0

(−1) j−m
(

j

m

)
λmB

( j)
n (x + m; λ)

tn

n!
=

(
t

λet − 1

) j

ext
∑
m≥0

(
j

m

)
(−1) j−mλmetm

= t j ext .

Now, it suffices to identify the coefficients of tn/n! in the first and last members of the equation above. �

When λ = 1, Corollary 2.3 gives two identities for the generalized Bernoulli polynomials and the generalized
Euler polynomials:

xn
=

1
2β

∑
m≥0

(
β

m

)
E (β)

n (x + m),

(n) j xn− j
=

∑
m≥0

(−1) j−m
(

j

m

)
B( j)

n (x + m).

Next, we will show that the generalized Apostol–Euler polynomials can be expressed by the generalized
Apostol–Bernoulli polynomials. For convenience, we introduce a lemma.

Lemma 2.4. Define the numbers S(k, j; λ) by

S(k, j; λ) =
1
j !

j∑
m=0

(−1) j−m
(

j

m

)
λmmk, (λ ∈ C, k, j ∈ N0).

Then the S(k, j; λ) have the generating function∑
k≥0

S(k, j; λ)
tk

k!
=

1
j !

(λet
− 1) j . (2.6)

Proof. We have∑
k≥0

S(k, j; λ)
tk

k!
=

1
j !

∑
k≥0

j∑
m=0

(−1) j−m
(

j

m

)
λmmk tk

k!
=

1
j !

j∑
m=0

(−1) j−m
(

j

m

)
λm
∑
k≥0

mk tk

k!

=
1
j !

j∑
m=0

(−1) j−m
(

j

m

)
λmetm

=
1
j !

(λet
− 1) j .

This completes the proof. �

According to the definition of the numbers S(k, j; λ), we can readily see that S(k, j; 1) = S(k, j), where S(k, j)
are the famous Stirling numbers of the second kind (see, e.g., [12, p. 204]). Moreover, in view of the generating
function (2.6), we have

∑
l≥0

j !S(l + j, j; λ)
t l+ j

(l + j)!
=

∑
k≥ j

j !S(k, j; λ)
tk

k!
= (λet

− 1) j
−

−1∑
l=− j

j !S(l + j, j; λ)
t l+ j

(l + j)!
, (2.7)

which will be used in the proof of the theorem below.

Theorem 2.5. For α, λ ∈ C and n, j ∈ N0, we have the relationship

E(α)
n (x + y; λ) =

n∑
l=− j

n−l∑
k=0

n! j !

k!(l + j)!(n − k − l)!
S(l + j, j; λ)E

(α)
n−k−l(y; λ)B

( j)
k (x; λ) (2.8)

between the generalized Apostol–Euler and Apostol–Bernoulli polynomials.
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Proof. Let F(n, k, l) be the summand in relation (2.8); then the double sum of (2.8) can be rewritten as

n∑
l=− j

n−l∑
k=0

F(n, k, l) =

{
n∑

l=0

n−l∑
k=0

+

−1∑
l=− j

n∑
k=0

+

−1∑
l=− j

n−l∑
k=n+1

}
F(n, k, l). (2.9)

Let us further define

A :=

(
1

λet − 1

) j ( 2
λet + 1

)α

e(x+y)t
−1∑

l=− j

j !S(l + j, j; λ)
t l+ j

(l + j)!
,

B :=

(
t

λet − 1

) j

ext
−1∑

l=− j

−l−1∑
i=0

j !

(l + j)!
S(l + j, j; λ)E

(α)
i (y; λ)

t i+l

i !
.

With this notation, we now give the proof.
We first consider the case when j ∈ N and λ ∈ C \ {1}. In this case, by Definition 1.1 and Eq. (2.7), the first part

of (2.9) gives∑
n≥0

n∑
l=0

n−l∑
k=0

F(n, k, l)
tn

n!
=

∑
k≥0

∑
n≥k

n−k∑
l=0

F(n, k, l)
tn

n!
=

∑
k≥0

∑
l≥0

∑
i≥l

F(k + i, k, l)
tk+i

(k + i)!

=

∑
l≥0

j !S(l + j, j; λ)
t l

(l + j)!

∑
k≥0

B
( j)
k (x; λ)

tk

k!

∑
i≥l

E
(α)
i−l(y; λ)

t i−l

(i − l)!

=

(
t

λet − 1

) j

ext
(

2
λet + 1

)α

eyt 1
t j

(
(λet

− 1) j
−

−1∑
l=− j

j !S(l + j, j; λ)
t l+ j

(l + j)!

)

=

(
2

λet + 1

)α

e(x+y)t
− A . (2.10)

The generating function for the second part of (2.9) is∑
n≥0

−1∑
l=− j

n∑
k=0

F(n, k, l)
tn

n!
=

−1∑
l=− j

∑
k≥0

∑
n≥k

F(n, k, l)
tn

n!
=

−1∑
l=− j

∑
k≥0

∑
i≥0

F(k + i, k, l)
tk+i

(k + i)!

=

−1∑
l=− j

j !S(l + j, j; λ)
t l

(l + j)!

∑
k≥0

B
( j)
k (x; λ)

tk

k!

∑
i≥0

E
(α)
i−l(y; λ)

t i−l

(i − l)!

=

(
t

λet − 1

) j

ext
−1∑

l=− j

j !S(l + j, j; λ)
t l

(l + j)!

((
2

λet + 1

)α

eyt
−

−l−1∑
i=0

E
(α)
i (y; λ)

t i

i !

)
= A − B.

The generating function for the third part of (2.9) is∑
n≥0

−1∑
l=− j

n−l∑
k=n+1

F(n, k, l)
tn

n!
=

−1∑
l=− j

∑
k≥1

k−1∑
n=max{k+l,0}

F(n, k, l)
tn

n!

=

−1∑
l=− j

−l−1∑
k=1

k−1∑
n=0

F(n, k, l)
tn

n!
+

−1∑
l=− j

∑
k≥−l

k−1∑
n=k+l

F(n, k, l)
tn

n!
. (2.11)

According to (1.5), when j ∈ N and λ 6= 1, B
( j)
k (x; λ) = 0 for 0 ≤ k ≤ j − 1. Then the first term of (2.11) vanishes,

and this generating function reduces to

−1∑
l=− j

∑
k≥−l

−l−1∑
i=0

F(k + l + i, k, l)
tk+l+i

(k + l + i)!
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=

−1∑
l=− j

j !

(l + j)!
S(l + j, j; λ)

∑
k≥−l

B
( j)
k (x; λ)

tk

k!

−l−1∑
i=0

E
(α)
i (y; λ)

t i+l

i !

=

−1∑
l=− j

−l−1∑
i=0

j !

(l + j)!
S(l + j, j; λ)E

(α)
i (y; λ)

t i+l

i !

∑
k≥0

B
( j)
k (x; λ)

tk

k!
= B.

Combined with the computation above, we have

∑
n≥0

n∑
l=− j

n−l∑
k=0

F(n, k, l)
tn

n!
=

(
2

λet + 1

)α

e(x+y)t , (2.12)

as desired.
When j ∈ N and λ = 1, the numbers S(k, j; 1) turn out to be S(k, j), where S(k, j) are the Stirling numbers of

the second kind. Moreover, S(k, j) = 0 for 0 ≤ k ≤ j − 1. Then the second and third parts of formula (2.9) vanish,
and

n∑
l=− j

n−l∑
k=0

F(n, k, l) =

n∑
l=0

n−l∑
k=0

F(n, k, l).

In addition to these, A also equals zero. Therefore, Eq. (2.12) holds.
When j = 0, (2.9) reduces to

∑n
l=0

∑n−l
k=0 F(n, k, l). Since A still vanishes here, Eq. (2.10) indicates that (2.12)

still holds. This completes the proof. �

Corollary 2.6. For α, λ ∈ C and n, j ∈ N0, we have the relationships:

E(α)
n (x + y; λ) =

n∑
k=0

2
k + 1

(n

k

) (
E

(α−1)
k+1 (y; λ) − E

(α)
k+1(y; λ)

)
Bn−k(x; λ)

+
λ − 1
n + 1

E
(α)
0 (y; λ)Bn+1(x; λ), (2.13)

E (α)
n (x + y) =

n∑
k=0

(n

k

)(n−k∑
l=0

(
n − k

l

)(
l + j

j

)−1

S(l + j, j)E (α)
n−k−l(y)

)
B( j)

k (x). (2.14)

Proof. (2.14) is an immediate consequence of Theorem 2.5 by setting λ = 1. To get (2.13), set j = 1 in (2.9). Then
those three parts equal

n∑
k=0

λ

n − k + 1

(n

k

)
Bk(x; λ)

(
E

(α)
n−k+1(y + 1; λ) − E

(α)
n−k+1(y; λ)

)
,

n∑
k=0

λ − 1
n − k + 1

(n

k

)
Bk(x; λ)E

(α)
n−k+1(y; λ),

λ − 1
n + 1

E
(α)
0 (y; λ)Bn+1(x; λ),

respectively. Therefore,

E(α)
n (x + y; λ) =

n∑
k=0

1
n − k + 1

(n

k

) (
λE

(α)
n−k+1(y + 1; λ) − E

(α)
n−k+1(y; λ)

)
Bk(x; λ)

+
λ − 1
n + 1

E
(α)
0 (y; λ)Bn+1(x; λ).

In view of the recurrence relation (1.12), assertion (2.13) holds. �

Remark. Similar to Corollary 2.2, the two relationships given by Corollary 2.6 are the main results of [5] and [11],
respectively (see [5, Section 3, Theorem 2] and [11, Section 3, Theorem 2]). However, the representations there both
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have problems. One is lacking a term (i.e., the second term λ−1
n+1E

(α)
0 (y; λ)Bn+1(x; λ) on the right side of (2.13)), and

the other is not in the neatest form. The common special case of (2.13) and (2.14) is

E (α)
n (x + y) =

n∑
k=0

2
k + 1

(n

k

) (
E (α−1)

k+1 (y) − E (α)
k+1(y)

)
Bn−k(x),

which has already been obtained in [10, Section 3, Theorem 2].

Corollary 2.7. For λ ∈ C and n, j ∈ N0, we have the relationships:

xn
=

n∑
l=− j

n! j !

(l + j)!(n − l)!
S(l + j, j; λ)B

( j)
n−l(x; λ), (2.15)

xn
=

n∑
l=0

(n

l

)( l + j

j

)−1

S(l + j, j)B( j)
n−l(x). (2.16)

Proof. The special case of Theorem 2.5 when α = 0 is

(x + y)n
=

n∑
l=− j

n−l∑
k=0

n! j !

k!(l + j)!(n − k − l)!
S(l + j, j; λ)yn−k−lB

( j)
k (x; λ).

With the substitution y = 0 in the last equation, we get (2.15). Eq. (2.16) is a further special case of (2.15) when
λ = 1. �

Many other identities can be obtained from Theorems 2.1 and 2.5. For example, when β = 0 and j = 0,
Theorems 2.1 and 2.5 will reduce to (1.13) and (1.14) respectively. Other special cases can be found in the references
[5,9–11].

3. Explicit expressions for sums of products

One of the most remarkable identities for the Bernoulli numbers is the convolution identity

n∑
j=0

(
n

j

)
B j Bn− j = −nBn−1 − (n − 1)Bn, (n ≥ 1),

which is equivalent to the form

n−1∑
j=1

(
2n

2 j

)
B2 j B2n−2 j = −(2n + 1)B2n, (n ≥ 2).

These two identities have been generalized in many works (see [13] or [14] for a review on this subject). Particularly,
in [13], explicit expressions are obtained for sums of products of arbitrarily many Bernoulli numbers. Corresponding
results are also derived for Bernoulli polynomials, and for Euler numbers and polynomials.

In this section, we first derive several identities for the generalized Apostol–Bernoulli and Apostol–Euler
polynomials. Based on these identities, we further investigate the sums of products of the Apostol–Bernoulli
polynomials and of the Apostol–Euler polynomials.

Before stating the results, we introduce a lemma ([15, p. 147, Eqs. (85) and (86)]; see also [16, pp. 96 and 99]).

Lemma 3.1. The generalized Bernoulli polynomials satisfy

B(m+1)
m (x) = (x − 1)(x − 2) · · · (x − m) = (x − 1)m,

m!

(m − k)!
B(m+1)

m−k (x) = Dk
x [(x − 1)(x − 2) · · · (x − m)] = Dk

x (x − 1)m,

where Dx is the differential operator defined by Dx f (x) :=
d

dx f (x).

Then the following theorem holds.
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Theorem 3.2. For n ≥ m + 1, we have

B(m+1)
n (x; λ) = (m + 1)

(
n

m + 1

) m∑
k=0

(−1)k

k!

Bn−m+k(x; λ)

n − m + k
Dk

x (x − 1)m (3.1)

= (m + 1)

(
n

m + 1

) m∑
k=0

(−1)m−k
(m

k

) Bn−k(x; λ)

n − k
B(m+1)

k (x). (3.2)

Proof. We prove (3.1) by induction. It is clearly true for m = 1 in view of the recurrence relation (1.15). Suppose that
it is true for m − 1; then by making use of (1.15) again, we have

B(m+1)
n (x; λ) =

(
1 −

n

m

)
B(m)

n (x; λ) + (x − m)
n

m
B

(m)
n−1(x; λ)

= (m + 1)

(
n

m + 1

) m∑
k=1

(−1)k

k!

Bn−m+k(x; λ)

n − m + k
k Dk−1

x (x − 1)m−1

+ (m + 1)

(
n

m + 1

) m∑
k=0

(−1)k

k!

Bn−m+k(x; λ)

n − m + k
(x − m)Dk

x (x − 1)m−1.

According to the Leibniz’s rule,

Dk
x (x − 1)m =

k∑
j=0

(
k

j

)
D j

x (x − 1)m−1 Dk− j
x (x − m)

= (x − m)Dk
x (x − 1)m−1 + k Dk−1

x (x − 1)m−1.

Therefore, Eq. (3.1) holds. Moreover, based on Lemma 3.1, (3.2) also holds. This completes the proof. �

By appealing to the recurrence relation (1.17), we can establish the corresponding results for the generalized
Apostol–Euler polynomials.

Theorem 3.3. For n ≥ m + 1, we have

E(m+1)
n (x; λ) =

2m

m!

m∑
k=0

(−1)m−k

k!
En+k(x; λ)Dk

x (x − 1)m (3.3)

=
2m

m!

m∑
k=0

(−1)m−k
(m

k

)
En+k(x; λ)B(m+1)

m−k (x). (3.4)

When λ = 1, Theorems 3.2 and 3.3 will reduce to the corresponding identities for the generalized Bernoulli and
Euler polynomials (see [15, p. 148, Eqs. (87) and (88)]).

Now, we consider the sums of products of the Apostol–Bernoulli polynomials and of the Apostol–Euler
polynomials.

In analogy with [13], we denote for m ≥ 2,

Sm(n; x1, . . . , xm) =

∑(
n

j1, . . . , jm

)
B j1(x1; λ) · · · B jm (xm; λ),

where the sum is taken over all nonnegative integers j1, . . . , jm such that j1 + · · · + jm = n. Then the next theorem
holds.

Theorem 3.4. Let y := x1 + · · · + xm . Then for n ≥ m, we have

Sm(n; x1, . . . , xm)

= (−1)m−1m
( n

m

) m−1∑
k=0

(−1)k
(

m − 1
k

)
B(m)

k (y)
Bn−k(y; λ)

n − k
(3.5)
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= (−1)m−1m
( n

m

) m−1∑
k=0

(−1)k

{
k∑

j=0

(
m − k − 1 + j

j

)
s(m, m − k + j)y j

}
Bn−k(y; λ)

n − k
, (3.6)

where s(n, k) are the Stirling numbers of the first kind (see, e.g., [12, p. 212]).

Proof. This is in fact the same as the proofs due to Dilcher [13, Section 3, Lemma 4 and Theorem 3]. From the
generating function of the Apostol–Bernoulli polynomials, we have

Sm(n; x1, . . . , xm) = B(m)
n (x1 + · · · + xm; λ) = B(m)

n (y; λ).

Thus, by (3.2) and the identity(
m − 1

k

)
B(m)

k (y) =

k∑
j=0

(
m − k − 1 + j

j

)
s(m, m − k + j)y j

(see [13, p. 32, Eq. (3.7)]), the desired results can be obtained. �

For example, when m = 2, (3.6) gives

n∑
k=0

(n

k

)
Bk(x; λ)Bn−k(y; λ) = n(x + y − 1)Bn−1(x + y; λ) − (n − 1)Bn(x + y; λ).

Corollary 3.5. If x1 + · · · + xm = 0, then for n ≥ m, we have

Sm(n; x1, . . . , xm) = (−1)m−1m
( n

m

) m−1∑
k=0

(−1)ks(m, m − k)
Bn−k(λ)

n − k
. (3.7)

This follows from (3.6) with the substitution y = 0 and the fact that Bn(0; λ) = Bn(λ). In particular, by setting
x1 = · · · = xm = 0, the right side of (3.7) leads us at once to an expression for∑(

n

j1, . . . , jm

)
B j1(λ) · · · B jm (λ).

We can deal with the sums of the products of the Apostol–Euler polynomials in an analogous way. Let us denote

Tm(n; x1, . . . , xm) =

∑(
n

j1, . . . , jm

)
E j1(x1; λ) · · · E jm (xm; λ),

where the sum is again taken over all nonnegative integers j1, . . . , jm such that j1 + · · · + jm = n. In light of the
assertion (3.4) of Theorem 3.3, the next theorem can be obtained.

Theorem 3.6. Let y := x1 + · · · + xm . Then for n ≥ m, we have

Tm(n; x1, . . . , xm)

=
2m−1

(m − 1)!

m−1∑
k=0

(−1)k
(

m − 1
k

)
B(m)

k (y)En+m−1−k(y; λ) (3.8)

=
2m−1

(m − 1)!

m−1∑
k=0

(−1)k

{
k∑

j=0

(
m − k − 1 + j

j

)
s(m, m − k + j)y j

}
En+m−1−k(y; λ). (3.9)

For example, when m = 2, (3.9) gives

n∑
k=0

(n

k

)
Ek(x; λ)En−k(y; λ) = 2(1 − x − y)En(x + y; λ) + 2En+1(x + y; λ).

Moreover, Theorem 3.6 has the following special case.
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Corollary 3.7. If x1 + · · · + xm = 0, then for n ≥ m, we have

Tm(n; x1, . . . , xm) =
(−2)m−1

(m − 1)!

m−1∑
k=0

(−1)ks(m, k + 1)En+k(0; λ).

In addition to these, since En(λ) = 2nEn

(
1
2 ; λ

)
, we have an explicit expression for the sums of products of the

Apostol–Euler numbers.

Corollary 3.8. For n ≥ m, we have∑(
n

j1, . . . , jm

)
E j1(λ) · · · E jm (λ)

=
1

(m − 1)!

m−1∑
k=0

(−2)k

{
k∑

j=0

(
m − k − 1 + j

j

)
s(m, m − k + j)

(m

2

) j
}

En+m−1−k(λ).
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