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1 Introduction
The classical Bernoulli polynomials Bn(x) and Euler polynomials En(x) are usually defined
by means of the following generating functions
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In particular, the rational numbers Bn = Bn() and integers En = nEn(/) are called the
classical Bernoulli numbers andEuler numbers, respectively. These polynomials andnum-
bers play important roles in various branches of mathematics including number theory,
combinatorics, special functions and analysis, and there exist numerous interesting prop-
erties for them, see, for example, [–].
In , Agoh and Dilcher [] made use of some connections between the classical

Bernoulli numbers and the Stirling numbers of the second kind to establish a quadratic re-
currence formula on the classical Bernoulli numbers, which was generalized to the classi-
cal Bernoulli polynomials by He and Zhang []. More recently, He andWang [] extended
the Agoh and Dilcher’s quadratic recurrence formula on the classical Bernoulli numbers
to the Apostol-Bernoulli and Apostol-Euler polynomials. As further applications, they de-
rived some corresponding results related to some formulae of products of the classical
Bernoulli and Euler polynomials and numbers stated in Nielsen’s book [].
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We begin by recalling now the Apostol-Bernoulli polynomials B(α)
n (x;λ) and Apostol-

Euler polynomials E (α)
n (x;λ) of (real or complex) higher order α, which were introduced

by Luo and Srivastava [, ]
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Especially, the case α =  in (.) and (.) is called the Apostol-Bernoulli polynomials
Bn(x;λ) and Apostol-Euler polynomials En(x;λ), respectively. Moreover, we call Bn(λ) =
Bn(;λ) the Apostol-Bernoulli numbers and En(λ) = nEn(/;λ) the Apostol-Euler num-
bers. It is worth ofmentioning that the Apostol-Bernoulli polynomials were introduced by
Apostol [] (see also Srivastava [] for a systematic study) in order to evaluate the value
of the Hurwitz-Lerch zeta function. For more results on these polynomials and numbers,
one is referred to [–].
In this paper, we only consider the Apostol-Bernoulli polynomials Bn(x;λ) and Apostol-

Euler polynomials En(x;λ). By applying the generating functionmethods and some combi-
natorial techniques, developed in [, ], we establish some new recurrence formulae for
the Apostol-Bernoulli and Apostol-Euler polynomials, by virtue of which, some known
results including the ones presented in [], are obtained as special cases.

2 Recurrence formulae for Apostol-Bernoulli polynomials
In what follows, we shall always denote by δ,λ the Kronecker symbol given by δ,λ =  or ,
according to λ �=  or λ = , and we also denote by βn(x;λ) = Bn+(x;λ)/(n + ) for any non-
negative integer n. We first state the following.

Theorem . Let k,m, n be any non-negative integers. Then
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by exv+y(u+v) yields
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It follows from (.)-(.) that
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So from (.), (.), (.) and the symmetric distributions for theApostol-Bernoulli poly-
nomials λBn( – x;λ) = (–)nBn(x; λ ), n ≥  (see, e.g., []), we get

M = –δ,λμ

∞∑
k=

∞∑
n=k+

(–)k
βn(x; λ )

n!

(
n

k + 

)
(u + v)kvn–(k+). (.)

Since (u + v)k =
∑k

m=
( k
m
)
umvk–m for non-negative integer k, then the identity above can

be rewritten as

M = –δ,λμ

∞∑
m=

∞∑
k=m

∞∑
n=k+

(–)k
βn(x; λ )

n!

(
n

k + 

)(
k
m

)
umvn–m–. (.)

It follows from (.) that

M = –δ,λμ

∞∑
m=

∞∑
n=m+

(–)m
βn(x; λ )

n!
umvn–m–

= –δ,λμ

∞∑
m=

∞∑
n=

(–)m
m!n!βm+n+(x; λ )

(m + n + )!
um

m!
vn

n!
. (.)

Thus, combining (.) and (.), and then making k-times derivative with respect to v,
we get

k∑
j=

(
k
j

)( ∞∑
n=

βn+j(x;μ)
vn

n!

)( ∞∑
m=

∞∑
n=

βm+n+k–j(y,λμ)
um

m!
vn

n!

)

=
( ∞∑

m=
(–)mβm

(
x; 

λ

)
um

m!

)( ∞∑
m=

∞∑
n=

βk+m+n(x + y;λμ)
um

m!
vn

n!

)

+
∞∑
m=

∞∑
n=

{
βm(y,λ)βk+n(x + y;μ) – δ,μβk+m+n+(y,λμ)

k + n + 

–
δ,λβk+m+n+(x + y,λμ)

m + 
– δ,λμ(–)m

m!(k + n)!βk+m+n+(x; λ )
(k +m + n + )!

}
um

m!
vn

n!
, (.)

which together with the Cauchy product arises the desired result after comparing the co-
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It follows that we show a special case of Theorem .. We have the following formula of
products of the Apostol-Bernoulli polynomial due to He and Wang [].
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Proof Setting k =  in Theorem ., we get
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Thus, replacing x by y – x and y by x in (.) gives the desired result. �

We now use Theorem . to give another new recurrence formula for the Apostol-
Bernoulli polynomials.
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Proof We firstly prove that for any non-negative integers k,m, n,
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Note that for non-negative integers i, k,m, n,
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gives (.). Thus, by setting x + y + z =  in (.), and using the symmetric distributions
of the Apostol-Bernoulli polynomials, we complete the proof of Theorem . by replacing
n by k, k bym andm by n. �

We now give a special case of Theorem .. We have the following quadratic recurrence
formula for the Apostol-Bernoulli polynomials, presented in [].
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where δ(k,m) = – when k = m = , δ(k,m) =  when k = , m ≥  or m = , k ≥ , and
δ(k,m) = , otherwise.

Proof Since the Apostol-Bernoulli polynomials Bn(x;λ) satisfy the difference equation
∂/∂x(Bn(x;λ)) = nBn–(x;λ) for any positive integer n (see, e.g., []), so by substituting n
for k, k form andm for n and making the derivative operation ∂/∂x · ∂/∂y in both sides of
Theorem ., and then using the symmetric distributions of the Apostol-Bernoulli poly-
nomials, the desired result follows immediately. �

Remark . In fact, we can also use Theorem . to obtain the above formula of products
of the Apostol-Bernoulli polynomials. For example, setting m =  and substituting y – x
for x, x for y, n for k andm for n in Theorem ., with the help of the symmetric distribu-
tions of the Apostol-Bernoulli polynomials, Corollary . follows immediately. For some
applications of Corollaries . and ., the interested readers may consult [, , ].

3 Recurrence formulae for mixed Apostol-Bernoulli and Apostol-Euler
polynomials

We next give a similar formula to Theorem ., which is involving the mixed Apostol-
Bernoulli andApostol-Euler polynomials. As in the proof of Theorem ., we need the fol-
lowing formula concerning the mixed Apostol-Bernoulli and Apostol-Euler polynomials.

Theorem . Let k,m, n be any non-negative integers. Then

k∑
j=

(
k
j

) n∑
i=

(
n
i

)
Ei+j(x;μ)βk+m+n–i–j(y;λμ)

=
m∑
i=

(
m
i

)
(–)m–iEm–i

(
x; 

λ

)
βk+n+i(x + y;λμ) –



Em(y;λ)Ek+n(x + y;μ)

– δ,λμ

(–)mm!(k + n)!
(k +m + n + )!

Ek+m+n+

(
x;


λ

)
. (.)

Proof Multiplying both sides of the identity


λeu + 


μev + 

=
(

λeu

λeu + 
–


μev + 

)


λμeu+v – 
(.)

by exv+y(u+v) yields

exv

μev + 
ey(u+v)

λμeu+v – 
= λ

e(–x)u

λeu + 
e(x+y)(u+v)

λμeu+v – 
–



eyu

λeu + 
e(x+y)v

μev + 
, (.)

which means

exv

μev + 

(
ey(u+v)

λμeu+v – 
–

δ,λμ

u + v

)

= λ
e(–x)u

λeu + 

(
e(x+y)(u+v)

λμeu+v – 
–

δ,λμ

u + v

)
–



eyu

λeu + 
e(x+y)v

μev + 

+
δ,λμ

u + v

(
λ
e(–x)u

λeu + 
–

exv

μeu + 

)
. (.)
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In a similar consideration to (.), we have

λ

(
e(–x)u

λeu + 

)
= λ

∞∑
k=

∞∑
n=k

En( – x;λ)
n!

(
n
k

)
(u + v)k(–v)n–k

= λ

∞∑
k=

∞∑
n=k+

En( – x;λ)
n!

(
n

k + 

)
(u + v)k+(–v)n–(k+)

+ λ

∞∑
n=

En( – x;λ)
(–v)n

n!
. (.)

So from the symmetric distributions for the Apostol-Euler polynomials λEn( – x;λ) =
(–)nEn(x; λ ), n≥  (see, e.g., []), we get

δ,λμ

u + v

(
λ
e(–x)u

λeu + 
–

exv

μeu + 

)

= δ,λμ

∞∑
k=

∞∑
n=k+

(–)k+
En(x; λ )

n!

(
n

k + 

)
(u + v)kvn–(k+)

= δ,λμ

∞∑
m=

∞∑
k=m

∞∑
n=k+

(–)k+
En(x; λ )

n!

(
n

k + 

)(
k
m

)
umvn–m–

= δ,λμ

∞∑
m=

∞∑
n=m+

(–)m+ En(x; λ )
n!

umvn–m–

= δ,λμ

∞∑
m=

∞∑
n=

(–)m+m!n!Em+n+(x; λ )
(m + n + )!

um

m!
vn

n!
. (.)

Applying (.) and (.) to (.), and then making k-times derivative with respect to v, we
obtain

k∑
j=

(
k
j

)( ∞∑
n=

En+j(x;μ)v
n

n!

)( ∞∑
m=

∞∑
n=

βm+n+k–j(y,λμ)
um

m!
vn

n!

)

=
( ∞∑

m=
(–)mEm

(
x; 

λ

)
um

m!

)( ∞∑
m=

∞∑
n=

βk+m+n(x + y;λμ)
um

m!
vn

n!

)

–



( ∞∑
m=

Em(y;λ)u
m

m!

)( ∞∑
n=

Ek+n(x + y;μ)
vn

n!

)

– δ,λμ

∞∑
m=

∞∑
n=

(–)m
m!(k + n)!Ek+m+n+(x; λ )

(k +m + n + )!
um

m!
vn

n!
, (.)

which together with the Cauchy product gives the desired result by comparing the coeffi-
cients of umvn/m!n!. �

It follows that we show a special of Theorem .. We have the following formulae of
products of the Apostol-Euler polynomials due to He and Wang [].
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Corollary . Let m, n be any non-negative integers. Then

Em(x;λ)En(y;μ) = 
m∑
i=

(
m
i

)
(–)m–iEm–i

(
y – x; 

λ

)Bn++i(y;λμ)
n +  + i

– 
n∑
i=

(
n
i

)
En–i(y – x;μ)Bm++i(x;λμ)

m +  + i

– δ,λμ

(–)mm!n!
(m + n + )!

Em+n+

(
y – x; 

λ

)
. (.)

Proof Setting k =  in Theorem ., we get

n∑
i=

(
n
i

)
En–i(x;μ)Bm++i(y;λμ)

m +  + i

=
m∑
i=

(
m
i

)
(–)m–iEm–i

(
x; 

λ

)Bn++i(x + y;λμ)
n +  + i

–


Em(y;λ)En(x + y;μ)

– δ,λμ

(–)mm!n!
(m + n + )!

Em+n+

(
x; 

λ

)
. (.)

Thus, the desired result follows by replacing x by y – x and y by x in (.). �

Now we apply Theorem . to give the following another recurrence formula for the
mixed Apostol-Bernoulli and Apostol-Euler polynomials.

Theorem . Let k,m, n be any non-negative integers. Then for x + y + z = ,

(–)k
k∑
i=

(
k
i

)
Em+i(x;μ)βk+n–i(y;λμ) +

(–)m

μ

m∑
i=

(
m
i

)
En+i(y;λ)Ek+m–i

(
z;


μ

)

+
(–)n

λμ

n∑
i=

(
n
i

)
βk+i

(
z; 

λμ

)
Em+n–i

(
x; 

λ

)

= –δ,λμ

(–)k+nk!n!
(k + n + )!

Ek+m+n+

(
x; 

λ

)
. (.)

Proof We firstly prove that for any non-negative integers k,m, n,

n∑
i=

(
n
i

)
Ek+i(x;μ)βm+n–i(y;λμ)

= –



k∑
i=

(
k
i

)
(–)k–iEn+i(x + y;μ)Ek+m–i(y;λ)

+
m∑
i=

(
m
i

)
(–)m–iβn+i(x + y;λμ)Ek+m–i

(
x; 

λ

)

– δ,λμ

(–)mm!n!
(m + n + )!

Ek+m+n+

(
x; 

λ

)
. (.)
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The proof is similar to that of (.), and, therefore, we leave out some of themore obvious
details. Clearly, the case k =  in (.) is complete. Next, consider the case k ≥  in (.).
Assume that (.) holds for all positive integers being less than k. In light of (.), we have

n∑
i=

(
n
i

)
Ek+i(x;μ)βm+n–i(y;λμ)

=
k+m∑
i=

(
m
i – k

)
(–)k+m–iEk+m–i

(
x; 

λ

)
βn+i(x + y;λμ)

–


Em(y;λ)Ek+n(x + y;μ) – δ,λμ

(–)mm!(k + n)!
(k +m + n + )!

Ek+m+n+

(
x;


λ

)

–
k–∑
j=

(
k
j

) n∑
i=

(
n
i

)
Ei+j(x;μ)βk+m+n–i–j(y;λμ). (.)

It follows from (.) and (.) that

n∑
i=

(
n
i

)
Ek+i(x;μ)βm+n–i(y;λμ)

=
k+m∑
i=

(
m
i – k

)
(–)k+m–iEk+m–i

(
x;


λ

)
βn+i(x + y;λμ)

–


Em(y;λ)Ek+n(x + y;μ) – δ,λμ

(–)mm!(k + n)!
(k +m + n + )!

Ek+m+n+

(
x; 

λ

)

–
k+m∑
i=

(–)k+m–iβn+i(x + y;λμ)Ek+m–i

(
x; 

λ

) k–∑
j=

(–)j
(
k
j

)(
k +m – j

i

)

+



k+m∑
i=

(–)iEn+i(x + y;μ)Ek+m–i(y;λ)
k–∑
j=

(–)j
(
k
j

)(
j
i

)

+ δ,λμ

(–)k+mEk+m+n+(x; λ )
n + 

k–∑
j=

(–)j
(k
j
)

(k+m+n+–j
n+

) . (.)

Hence, applying (.), (.) and (.) to (.), we conclude the induction step. Thus,
by setting x+ y+ z =  in (.), and applying the symmetric distributions of Apostol-Euler
polynomials, we complete the proof of Theorem . by replacing n by k, k by m and m
by n. �

We next give some special cases of Theorem .. We have the following formula
products of the mixed Apostol-Bernoulli and Apostol-Euler polynomials due to He and
Wang [].

Corollary . Let m be any non-negative integer. Then for positive integer n,

Em(x;λ)Bn(y;μ) =
n


m∑
i=

(
m
i

)
(–)m–iEm–i

(
y – x; 

λ

)
En+i–(y;λμ)

+
n∑
i=

(
n
i

)
Bn–i(y – x;μ)Em+i(x;λμ). (.)
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Proof Setting k = , and substituting  – y for y, y – x for z, λ for μ and 
λμ

for λ in Theo-
rem ., by the symmetric distributions of the Apostol-Bernoulli and Apostol-Euler poly-
nomials, the desired result follows immediately. �

We next apply Theorem . to give the following quadratic recurrence formulae for the
mixed Apostol-Bernoulli and Apostol-Euler polynomials presented in [].

Corollary . Let k,m, n be any non-negative integers. Then

n∑
i=

(
n
i

)
Ek+i(x;μ)Bm+n–i(y;λμ)

=
m∑
i=

(
m
i

)
(–)m–iBn+i(x + y;λμ)Ek+m–i

(
x; 

λ

)

–



k+m∑
i=

(–)k–i
{
n
(
k
i

)
–m

(
k

i – 

)}
En–+i(x + y;μ)Ek+m–i(y;λ). (.)

Proof Substituting n for k, k form andm for n and making the derivative operation ∂/∂y
in both sides of Theorem ., and then using the difference equation and symmetric dis-
tributions of the Apostol-Bernoulli polynomials gives the desired result. �

Corollary . Let k,m, n be any non-negative integers. Then

n∑
i=

(
n
i

)
Ek+i(x;μ)Em+n–i(y;λμ)

= δ,λ
k!m!

(k +m + )!
Ek+m+n+(x + y;λμ)

– 
m∑
i=

(
m
i

)
(–)m–iEn+i(x + y;λμ)

Bk+m+–i(x; λ )
k +m +  – i

– 
k∑
i=

(
k
i

)
(–)k–iEn+i(x + y;μ)Bk+m+–i(y;λ)

k +m +  – i
. (.)

Proof Substituting μ for λ, 
λμ

for μ, x for y and y for z in Theorem ., by applying the
symmetric distributions of the Apostol-Euler polynomials, the desired result follows im-
mediately. �

Remark . We also mention that Theorem . above can also be used to obtain the for-
mulae of products of themixed Apostol-Bernoulli and Apostol-Euler polynomials. For ex-
ample, settingm = , and substituting y–x for x, x for y, n for k andm for n in Theorem.,
with the help of the symmetric distributions of the Apostol-Bernoulli polynomials, Corol-
lary . follows immediately. For some corresponding applications of Corollaries ., .,
. and ., one is referred to [, , ].
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