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We introduce the sequence {𝑈(𝑥)𝑛 } given by generating function (1/(𝑒
𝑡
+ 𝑒
−𝑡
− 1))
𝑥
= ∑
∞

𝑛=0 𝑈
(𝑥)
𝑛 (𝑡
𝑛
/𝑛!) (|𝑡| < (1/3)𝜋, 1

𝑥
:= 1) and

establish some explicit formulas for the sequence {𝑈(𝑥)𝑛 }. Several identities involving the sequence {𝑈(𝑥)𝑛 }, Stirling numbers, Euler
polynomials, and the central factorial numbers are also presented.

1. Introduction and Definitions

For a real or complex parameter 𝛼, the generalized Euler
polynomials 𝐸(𝛼)𝑛 (𝑥) are defined by the following generating
function (see [1–4])

(
2

𝑒𝑡 + 1
)
𝛼

𝑒
𝑥𝑡
=

∞

∑
𝑛=0

𝐸
(𝛼)

𝑛 (𝑥)
𝑡
𝑛

𝑛!
(|𝑡| < 𝜋, 1

𝛼
:= 1) . (1)

Obviously, we have

𝐸
(1)

𝑛 (𝑥) = 𝐸𝑛 (𝑥) (𝑛 ∈ N0 := N ∪ {0}) , (2)

in terms of the classical Euler polynomials 𝐸𝑛(𝑥),N being the
set of positive integers. The classical Euler numbers 𝐸𝑛 are
given by the following:

𝐸𝑛 = 2
𝑛
𝐸𝑛 (

1

2
) (𝑛 ∈ N0) . (3)

The so-called the generalized Euler numbers 𝐸
(𝑥)
2𝑛 are

defined by (see [3, 5])

(
2

𝑒𝑡 + 𝑒−𝑡
)
𝑥

=

∞

∑
𝑛=0

𝐸
(𝑥)

2𝑛

𝑡
2𝑛

(2𝑛)!
(|𝑡| <

𝜋

2
, 1
𝑥
:= 1) . (4)

In fact,𝐸(𝑘)2𝑛 (𝑘 ∈ Z) are the Euler numbers of order 𝑘,Z being
the set of integers. The numbers 𝐸(1)2𝑛 = 𝐸2𝑛 are the ordinary
Euler numbers.

Zhi-Hong Sun introduces the sequence {𝑈𝑛} similar to
Euler numbers as follows (see [6, 7]):

𝑈0 = 1, 𝑈𝑛 = −2

[𝑛/2]

∑
𝑘=1

(
𝑛

2𝑘
)𝑈𝑛−2𝑘, (𝑛 ≥ 1) , (5)

where (and in what follows) [𝑥] is the greatest integer not
exceeding 𝑥.

Clearly,𝑈2𝑛−1 = 0 for 𝑛 ≥ 1.The first few values of𝑈2𝑛 are
shown below

𝑈2 = −2, 𝑈4 = 22, 𝑈6 = −602, 𝑈8 = 30742,

𝑈10 = −2523002, 𝑈12 = 303692662.
(6)

The sequence {𝑈𝑛} is related to the classical Bernoulli
polynomials 𝐵𝑛(𝑥) (see [8–11]) and the classical Euler poly-
nomials 𝐸𝑛(𝑥). Zhi-Hong Sun gets the generating function of
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{𝑈𝑛} and deducesmany identities involving {𝑈𝑛}. As example,
(see [6]),

1

𝑒𝑡 + 𝑒−𝑡 − 1
=

∞

∑
𝑛=0

𝑈𝑛
𝑡
𝑛

𝑛!

=

∞

∑
𝑛=0

𝑈2𝑛
𝑡
2𝑛

(2𝑛)!
(|𝑡| <

1

3
𝜋) ,

(7)

1

2 cos 𝑡 − 1
=

∞

∑
𝑛=0

(−1)
𝑛
𝑈2𝑛

𝑡
2𝑛

(2𝑛)!
(|𝑡| <

1

3
𝜋) , (8)

𝑈2𝑛 = 3
2𝑛
𝐸2𝑛 (

1

3
) . (9)

Similarly, we can define the generalized sequence {𝑈(𝑥)𝑛 }.
For a real or complex parameter 𝑥, the generalized sequence
{𝑈
(𝑥)
𝑛 } is defined by the following generating function:

(
1

𝑒𝑡 + 𝑒−𝑡 − 1
)
𝑥

=

∞

∑
𝑛=0

𝑈
(𝑥)

𝑛

𝑡
𝑛

𝑛!
(|𝑡| <

1

3
𝜋, 1
𝑥
:= 1) . (10)

Obviously,

𝑈
(𝑥)

0 = 1, 𝑈
(1)

𝑛 = 𝑈𝑛 (𝑛 ∈ N) . (11)

By using (10), we can obtain

𝑈
(𝑘)

𝑛 = 𝑛!

(V
1
+⋅⋅⋅+V

𝑘
=𝑛)

∑
V
1
,...,V
𝑘
∈N
0

𝑈V
1

⋅ ⋅ ⋅ 𝑈V
𝑘

V1! ⋅ ⋅ ⋅ V𝑘!
(𝑘 ∈ N) . (12)

We now return to the Stirling numbers 𝑠(𝑛, 𝑘) of the first
kind, which are usually defined by (see [2, 5, 8, 11, 12])

𝑥 (𝑥 − 1) (𝑥 − 2) ⋅ ⋅ ⋅ (𝑥 − 𝑛 + 1) =

𝑛

∑
𝑘=0

𝑠 (𝑛, 𝑘) 𝑥
𝑘 (13)

or by the following generating function:

(log (1 + 𝑥))𝑘 = 𝑘!

∞

∑
𝑛=𝑘

𝑠 (𝑛, 𝑘)
𝑥
𝑛

𝑛!
. (14)

It follows from (13) or (14) that

𝑠 (𝑛, 𝑘) = 𝑠 (𝑛 − 1, 𝑘 − 1) − (𝑛 − 1) 𝑠 (𝑛 − 1, 𝑘) (15)

and that

𝑠 (𝑛, 0) = 0 (𝑛 ∈ N) , 𝑠 (𝑛, 𝑛) = 1 (𝑛 ∈ N0) ,

𝑠 (𝑛, 1) = (−1)
𝑛−1

(𝑛 − 1)! (𝑛 ∈ N) ,

𝑠 (𝑛, 𝑘) = 0 (𝑘 > 𝑛 or 𝑘 < 0) .

(16)

The central factorial numbers 𝑇(𝑛, 𝑘) are given by the
following expansion formula (see [3, 5, 13]):

𝑥
𝑛
=

𝑛

∑
𝑘=0

𝑇 (𝑛, 𝑘) 𝑥 (𝑥 − 1
2
)

× (𝑥 − 2
2
) ⋅ ⋅ ⋅ (𝑥 − (𝑘 − 1)

2
)

(17)

or by means of the generating function

(𝑒
𝑥
+ 𝑒
−𝑥
− 2)
𝑘
= (2𝑘)!

∞

∑
𝑛=𝑘

𝑇 (𝑛, 𝑘)
𝑥
2𝑛

(2𝑛)!
. (18)

It follows from (17) or (18) that

𝑇 (𝑛, 𝑘) = 𝑇 (𝑛 − 1, 𝑘 − 1) + 𝑘
2
𝑇 (𝑛 − 1, 𝑘) , (19)

with

𝑇 (0, 0) = 1, 𝑇 (𝑛, 0) = 0 (𝑛 ∈ N) ,

𝑇 (𝑛, 1) = 1 (𝑛 ∈ N) .
(20)

We also find from (18) that

𝑇 (𝑛, 2) =
1

4
(4
𝑛−1

− 1) ,

𝑇 (𝑛, 3) =
9
𝑛

360
−
4
𝑛

60
+

1

24
(𝑛 ∈ N) .

(21)

Themain purpose of this paper is to prove some formulas
for the generalized sequence {𝑈(𝑥)𝑛 } and 𝐸𝑛(𝑥). Some identi-
ties involving the sequence {𝑈(𝑥)𝑛 }, Stirling numbers 𝑠(𝑛, 𝑘),
and the central factorial numbers 𝑇(𝑛, 𝑘) are deduced.

2. Main Results

Theorem 1. Let 𝑛 ≥ 𝑘 (𝑛, 𝑘 ∈ N) and

𝑞 (𝑛, 𝑘) = (−1)
𝑘
𝑛

∑
𝑗=𝑘

(2𝑗)!

𝑗!
𝑇 (𝑛, 𝑗) 𝑠 (𝑗, 𝑘) . (22)

Then,

𝑈
(𝑥)

2𝑛 =

𝑛

∑
𝑘=1

𝑞 (𝑛, 𝑘) 𝑥
𝑘
. (23)

Remark 2. By (15), (19), (20), and Theorem 1, we know that
𝑈
(𝑥)
2𝑛 is a polynomial of 𝑥 with integral coefficients. For

example, by setting 𝑛 = 1, 2, 3, 4 in Theorem 1, we get

𝑈
(𝑥)

2 = −2𝑥, 𝑈
(𝑥)

4 = 10𝑥 + 12𝑥
2
,

𝑈
(𝑥)

6 = −182𝑥 − 300𝑥
2
− 120𝑥

3
,

𝑈
(𝑥)

8 = 6970𝑥 + 13692𝑥
2
+ 8400𝑥

3
+ 1680𝑥

4
.

(24)

Taking 𝑥 = 1 in Theorem 1, we can obtain the following.

Corollary 3. Let 𝑛 ∈ N. Then,

𝑈2𝑛 =

𝑛

∑
𝑗=0

(−1)
𝑗
(2𝑗)!𝑇 (𝑛, 𝑗) . (25)

From Corollary 3, we may immediately deduce the fol-
lowing results.
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Corollary 4. Let 𝑛 ∈ N. Then,

𝑈2𝑛 ≡ −2 (mod 24) ,

𝑈2𝑛 ≡ −2 + 24𝑇 (𝑛, 2) (mod 720) ,

𝑈2𝑛 ≡ −2 + 24𝑇 (𝑛, 2) − 720𝑇 (𝑛, 3) (mod 40320) .

(26)

Theorem 5. Let 𝑛 ≥ 𝑘 (𝑛, 𝑘 ∈ N). Then,

𝑈2𝑛 =

𝑛

∑
𝑘=1

𝑞 (𝑛, 𝑘) ,

𝑈2𝑛 = 2

[𝑛/2]

∑
𝑘=1

𝑞 (𝑛, 2𝑘) − 2

= 2

[(𝑛−1)/2]

∑
𝑘=1

𝑞 (𝑛, 2𝑘 + 1) + 2.

(27)

Theorem 6. Let 𝑛 ≥ 𝑘 (𝑛, 𝑘 ∈ N). Suppose also that 𝑞(𝑛, 𝑘) is
defined by (22). Then,

𝑘!𝑞 (𝑛, 𝑘) = (2𝑛)!3
2𝑛−𝑘

×

(V
1
+⋅⋅⋅+V

𝑘
=𝑛)

∑
V
1
,...,V
𝑘
∈N

(𝐸2V
1
−1 (0) − 𝐸2V

1
−1 (

2

3
))

⋅ ⋅ ⋅ (𝐸2V
𝑘
−1 (0) − 𝐸2V

𝑘
−1 (

2

3
))

× ((2V1)! ⋅ ⋅ ⋅ (2V𝑘)!)
−1
.

(28)

Theorem 7. Let 𝑛 ∈ N. Then,

−2

𝑛−1

∑
𝑘=0

(
2𝑛 − 1

2𝑘
)𝑈2𝑘 = 3

2𝑛−1
(𝐸2𝑛−1 (0) − 𝐸2𝑛−1 (

2

3
)) . (29)

Theorem 8. Let 𝑛 ∈ N. Then,

𝑈𝑛+1 =

𝑛−1

∑
𝑘=0

(
𝑛

𝑘
) ((1 − 2

𝑛−𝑘
)𝑈𝑘+1 − 2

𝑛−𝑘
𝑈𝑘) . (30)

Theorem 9. Let 𝑛 ∈ N0. Then,

∞

∑
𝑛=0

1

(𝑛 + 1)!
𝑈𝑛 =

1

√3
log 2𝑒 − 1 − √3

2 (2 − √3) 𝑒 − 5 + 3√3
. (31)

3. Proofs of Theorems

Proof of Theorem 1. By (10), (13), and (18), we have

∞

∑
𝑛=0

𝑈
(𝑥)

2𝑛

𝑡
2𝑛

(2𝑛)!
= (

1

𝑒𝑡 + 𝑒−𝑡 − 1
)
𝑥

= (
1

1 + (𝑒𝑡 + 𝑒−𝑡 − 2)
)

𝑥

=

∞

∑
𝑗=0

(−1)
𝑗
(
𝑥 + 𝑗 − 1

𝑗
) (𝑒
𝑡
+ 𝑒
−𝑡
− 2)
𝑗

=

∞

∑
𝑗=0

(−1)
𝑗
(
𝑥 + 𝑗 − 1

𝑗
) (2𝑗)!

∞

∑
𝑛=𝑗

𝑇 (𝑛, 𝑗)
𝑡
2𝑛

(2𝑛)!

=

∞

∑
𝑛=0

𝑡
2𝑛

(2𝑛)!

𝑛

∑
𝑗=0

(−1)
𝑗
(2𝑗)! (

𝑥 + 𝑗 − 1

𝑗
)𝑇 (𝑛, 𝑗) ,

(32)

which readily yields

𝑈
(𝑥)

2𝑛 =

𝑛

∑
𝑗=0

(−1)
𝑗
(2𝑗)! (

𝑥 + 𝑗 − 1

𝑗
)𝑇 (𝑛, 𝑗)

=

𝑛

∑
𝑗=0

(−1)
𝑗
(2𝑗)!𝑇 (𝑛, 𝑗)

1

𝑗!
𝑥 (𝑥 + 1) ⋅ ⋅ ⋅ (𝑥 + 𝑗 − 1)

=

𝑛

∑
𝑗=0

(2𝑗)!

𝑗!
𝑇 (𝑛, 𝑗)

𝑗

∑
𝑘=1

(−1)
𝑘
𝑠 (𝑗, 𝑘) 𝑥

𝑘

=

𝑛

∑
𝑘=1

(−1)
𝑘
𝑛

∑
𝑗=𝑘

(2𝑗)!

𝑗!
𝑇 (𝑛, 𝑗) 𝑠 (𝑗, 𝑘) 𝑥

𝑘

=

𝑛

∑
𝑘=1

𝑞 (𝑛, 𝑘) 𝑥
𝑘
.

(33)

This completes the proof of Theorem 1.

Proof of Theorem 5. By (10), we have

∞

∑
𝑛=0

𝑈
(−1)

2𝑛

𝑡
2𝑛

(2𝑛)!
= 𝑒
𝑡
+ 𝑒
−𝑡
− 1 = 2

∞

∑
𝑛=0

𝑡
2𝑛

(2𝑛)!
− 1, (34)

and 𝑈(𝑥)0 = 1, thus

∞

∑
𝑛=1

𝑈
(−1)

2𝑛

𝑡
2𝑛

(2𝑛)!
= 𝑒
𝑡
+ 𝑒
−𝑡
− 1 = 2

∞

∑
𝑛=1

𝑡
2𝑛

(2𝑛)!
. (35)

By Theorem 1 and comparing the coefficient of 𝑡2𝑛/(2𝑛)! on
both sides of (35), we get

𝑛

∑
𝑘=1

𝑞 (𝑛, 𝑘) (−1)
𝑘
= 𝑈
(−1)

2𝑛 = 2. (36)
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Again, by taking 𝑥 = 1 in Theorem 1, we have

𝑛

∑
𝑘=1

𝑞 (𝑛, 𝑘) = 𝑈2𝑛. (37)

By (36) and (37), we immediately obtain (27).This completes
the proof of Theorem 5.

Proof of Theorem 6. By applyingTheorem 1, we have

𝑘!𝑞 (𝑛, 𝑘) =
𝑑
𝑘

𝑑𝑥𝑘
{𝑈
(𝑥)

𝑛 }

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0
. (38)

On the other hand, it follows from (10) that

∞

∑
𝑛=𝑘

𝑑
𝑘

𝑑𝑥𝑘
{𝑈
(𝑥)

𝑛 }

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥=0

𝑡
2𝑛

(2𝑛)!
= (log( 1

𝑒𝑡 + 𝑒−𝑡 − 1
))
𝑘

. (39)

By using (38) and (39), we find that

𝑘!

∞

∑
𝑛=𝑘

𝑞 (𝑛, 𝑘)
𝑡
2𝑛

(2𝑛)!
= (log( 1

𝑒𝑡 + 𝑒−𝑡 − 1
))
𝑘

. (40)

We now note that

𝑑

𝑑𝑡
{log( 1

𝑒𝑡 + 𝑒−𝑡 − 1
)}

=
𝑒
−𝑡
− 𝑒
𝑡

𝑒𝑡 + 𝑒−𝑡 − 1

=
𝑒
−𝑡
− 𝑒
𝑡

2
(

2𝑒
𝑡

𝑒3𝑡 + 1
+

2𝑒
−𝑡

𝑒−3𝑡 + 1
)

=
1

2
((

2

𝑒3𝑡 + 1
−

2

𝑒−3𝑡 + 1
) − (

2𝑒
2𝑡

𝑒3𝑡 + 1
−

2𝑒
−2𝑡

𝑒−3𝑡 + 1
))

=
1

2
(

∞

∑
𝑛=0

𝐸𝑛 (0)
(3𝑡)
𝑛

𝑛!
−

∞

∑
𝑛=0

𝐸𝑛 (0)
(−3𝑡)
𝑛

𝑛!
)

−
1

2
(

∞

∑
𝑛=0

𝐸𝑛 (
2

3
)
(3𝑡)
𝑛

𝑛!
−

∞

∑
𝑛=0

𝐸𝑛 (
2

3
)
(−3𝑡)
𝑛

𝑛!
)

=

∞

∑
𝑛=0

3
2𝑛+1

(𝐸2𝑛+1 (0) − 𝐸2𝑛+1 (
2

3
))

𝑡
2𝑛+1

(2𝑛 + 1)!
.

(41)

Hence,

log 1

𝑒𝑡 + 𝑒−𝑡 − 1
=

∞

∑
𝑛=0

3
2𝑛+1

(𝐸2𝑛+1 (0) − 𝐸2𝑛+1 (
2

3
))

𝑡
2𝑛+2

(2𝑛 + 2)!

=

∞

∑
𝑛=1

3
2𝑛−1

(𝐸2𝑛−1 (0) − 𝐸2𝑛−1 (
2

3
))

𝑡
2𝑛

(2𝑛)!

(42)

yields

𝑘!

∞

∑
𝑛=𝑘

𝑞 (𝑛, 𝑘)
𝑡
2𝑛

(2𝑛)!

= (

∞

∑
𝑛=1

3
2𝑛−1

(𝐸2𝑛−1(0) − 𝐸2𝑛−1 (
2

3
))

𝑡
2𝑛

(2𝑛)!
)

𝑘

=

∞

∑
𝑛=𝑘

𝑡
2𝑛

(2𝑛)!
(2𝑛)!3

2𝑛−𝑘

×

(V
1
+⋅⋅⋅+V

𝑘
=𝑛)

∑
V
1
,...,V
𝑘
∈N

(𝐸2V
1
−1 (0) − 𝐸2V

1
−1 (

2

3
))

⋅ ⋅ ⋅ (𝐸2V
𝑘
−1 (0) − 𝐸2V

𝑘
−1 (

2

3
))

× ((2V1)! ⋅ ⋅ ⋅ (2V𝑘)!)
−1
.

(43)

Comparing the coefficient of 𝑡
2𝑛
/(2𝑛)! on both sides of

(43), we immediately get (28). This completes the proof of
Theorem 6.

Proof of Theorem 7. Consider

𝑑

𝑑𝑡
{log( 1

𝑒𝑡 + 𝑒−𝑡 − 1
)} =

𝑒
−𝑡
− 𝑒
𝑡

𝑒𝑡 + 𝑒−𝑡 − 1

=

∞

∑
𝑛=0

𝑈2𝑛
𝑡
2𝑛

(2𝑛)!
(−2

∞

∑
𝑛=0

𝑡
2𝑛+1

(2𝑛 + 1)!
)

= −2

∞

∑
𝑛=0

𝑛

∑
𝑘=0

(
2𝑛 + 1

2𝑘
)𝑈2𝑘

𝑡
2𝑛+1

(2𝑛 + 1)!
.

(44)

Thus,

log 1

𝑒𝑡 + 𝑒−𝑡 − 1
= −2

∞

∑
𝑛=1

𝑛−1

∑
𝑘=0

(
2𝑛 − 1

2𝑘
)𝑈2𝑘

𝑡
2𝑛

(2𝑛)!
. (45)

By (42) and (45) we obtain (29). This completes the proof of
Theorem 7.

Proof of Theorem 8. By using (7), we have

∞

∑
𝑛=1

𝑈𝑛
𝑡
𝑛−1

(𝑛 − 1)!
=

𝑒
−𝑡
− 𝑒
𝑡

(𝑒𝑡 + 𝑒−𝑡 − 1)
2
. (46)

Thus

(𝑒
2𝑡
− 𝑒
𝑡
+ 1)

∞

∑
𝑛=1

𝑈𝑛
𝑡
𝑛−1

(𝑛 − 1)!
= (1 − 𝑒

2𝑡
)

∞

∑
𝑛=0

𝑈𝑛
𝑡
𝑛

𝑛!
,

∞

∑
𝑛=0

(2
𝑛
− 1)

𝑡
𝑛

𝑛!

∞

∑
𝑛=0

𝑈𝑛+1
𝑡
𝑛

𝑛!
+

∞

∑
𝑛=0

𝑈𝑛+1
𝑡
𝑛

𝑛!

=

∞

∑
𝑛=0

𝑈𝑛
𝑡
𝑛

𝑛!
−

∞

∑
𝑛=0

2
𝑛 𝑡
𝑛

𝑛!

∞

∑
𝑛=0

𝑈𝑛
𝑡
𝑛

𝑛!
.

(47)
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That is,

∞

∑
𝑛=0

𝑛

∑
𝑘=0

(
𝑛

𝑘
) (2
𝑛−𝑘

− 1)𝑈𝑘+1
𝑡
𝑛

𝑛!
+

∞

∑
𝑛=0

𝑈𝑛+1
𝑡
𝑛

𝑛!

=

∞

∑
𝑛=0

𝑈𝑛
𝑡
𝑛

𝑛!
−

∞

∑
𝑛=0

𝑛

∑
𝑘=0

(
𝑛

𝑘
) 2
𝑛−𝑘

𝑈𝑘
𝑡
𝑛

𝑛!
.

(48)

Comparing the coefficient of 𝑡𝑛/𝑛! on both sides of (48), we
get the following:

𝑈𝑛+1 − 𝑈𝑛 =

𝑛

∑
𝑘=0

(
𝑛

𝑘
) ((1 − 2

𝑛−𝑘
)𝑈𝑘+1 − 2

𝑛−𝑘
𝑈𝑘) . (49)

By (49) we immediately obtain (30).This completes the proof
of Theorem 8.

Proof of Theorem 9. By integrating (7) with respect to 𝑡 from
0 to 1, we have

∞

∑
𝑛=0

1

(𝑛 + 1)!
𝑈𝑛 = ∫

1

0

1

𝑒𝑡 + 𝑒−𝑡 − 1
𝑑𝑡

= ∫
1

0

1

𝑒2𝑡 − 𝑒𝑡 + 1
𝑑𝑒
𝑡
= ∫
𝑒

1

1

𝑥2 − 𝑥 + 1
𝑑𝑥.

(50)

By (50) and∫(1/(𝑎𝑥2+𝑏𝑥+𝑐))𝑑𝑥 = (1/√𝑏2 − 4𝑎𝑐) log |(2𝑎𝑥+
𝑏 − √𝑏2 − 4𝑎𝑐)/(2𝑎𝑥 + 𝑏 + √𝑏2 − 4𝑎𝑐)| + 𝑐 (𝑐 is constant), we
have (31). This completes the proof of Theorem 9.
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