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To Leonard Carlitz in his eighty-ninth year

Abstract

The theory of modular binomial lattices enables the simultaneous combinatorial analysis of
finite sets, vector spaces, and chains. Within this theory three generalizations of Stirling
numbers of the second kind, and of Lah numbers, are developed.

1. Stirling numbers and their formal generalizations

The notational conventions of this paper are as follows: N ={0,1,2,...},
P={1,2,...}, [0] =90, and [n] ={1,...,n} for ne P. Empty sums take the value
0 and empty products the value 1. Also, x° = x? = x® = 1 for all x (including x = 0),
and forneP, x"=x(x—1) - (x—n+ Dand x"=x(x + 1) - (x + n— 1).

As enumerator of partitions of [n] with k blocks, the Stirling number of the second
kind S(n, k) plays a central role in elementary combinatorics. Not surprisingly, apart
from the boundary values S(n,0) = 4, ¢ and S(n,k) = 0 for 0 < n < k, there are many
representations of these numbers. From the standpoint of generalizations pursued in
this paper these representations fall naturally into three classes:

Class I
S(nk) =~ Y n! (1.1)
’ —k!n|+‘-+nk=nn1! nk!’ ‘
meP

1 n

Stnky=- (’?)sm —jk—1), (1.2)
kal j
X" (eF — 1)

> S k= = (1.3)

= n! k!
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and, with B,:= Y ;_,S(nk),

n

Y B =e (14)
n!
n=z0
Class 11
S(n, k) = y 19242 ... e, (1.5)
di+ - +dy=n—k
d;eN
Y Stmkx"=x* ] (1 —jx), (1.6)
nz0 1<j<k
S(nk) = S(n — 1,k — 1) + kS(n — 1, k), (1.7)
=Y S(nk)x¥, (1.8)
k=0
k n Ak n _
S(n, k) = 0 _ A0 (1.9)
k!
Class 111
1 k
St =1 Z (— 1Fifyp, (1.10)

Stn+ 1,k) = Z( )su, ) (L11)

and, with B, as above,

kn
B, = (1.12)
k>0k'

This paper develops three generalizations of S(n, k) within the theory of modular
binomial lattices, an important class of structures first identified by Doubilet et al. [9]
as the ideal setting for the simultaneous combinatorial analysis of finite sets, vector
spaces and chains. These generalizations encompass in particular the Bender-Gold-
man [2] and Carlitz-Milne [11] analogues of S(n,k) for finite vector spaces. The
generalizations of S(n, k) in Sections 4 and 5 (and of the Lah numbers in Section 6) are
combinatorial. In two instances, however, they are themselves special cases of the
formal generalizations of S(n, k} described below, a fact which greatly facilitates their
analysis.
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Theorem 1.1. Given any sequence (f,), s o of nonzero complex numbers with fo = 1, the
Jfollowing are equivalent characterizations of an array (F (n,k)), . »o:

7 Ja
/(n,k):En +Z+ e for all neN and ke P, (1.13)
! n,ePk_
with #(n,0) = 0, ¢ for allneN,
1 n
F(n,k) = Z Jn ———Fm—jk—1) forall nkeP, (1.14)
) lff;' J
with #(n,0) = 0, o and F (0,k) = d¢., for all n, ke N, and
. 1 x" k
;0#(n,k)17" F(; ) for all ke N. (1.15)

Proof. The proof is a straightforward algebraic exercise. [

Judging from Ward’s formal generalization of Bernoulli numbers [17], in which he
mentions a similar generalization of Stirling numbers, it is likely that he had in mind
numbers of the type # (n, k). Thus it seems appropriate to call such numbers the Ward
numbers associated with (f,), s o- If f, = n!, the # (n, k) = S(n, k) and (1.13}1.15) reduce
to (1.1)H1.3). Another example of Ward numbers, the Bender—Goldman Stirling num-
bers of a modular binomial lattice, will be developed in Section 4.

Theorem 1.2. Given any sequence (u,), - o of complex numbers, the following are equival-
ent characterizations of an array (U (0, k), i > o'

U(n, k) = Y uboud oud forallnkeN, (1.16)
do+dy + - +dy=n—k
d;ieN
ok
Un, k lkeN, 1.17
;0 X = o — ) (L — ) 07 @l ke (.17

Unk)y=Umn— Lk—1)+uUn—1,k), foralnkepP, (1.18)
with % (n,0) = up and %(0,k) = o for all n,ke N, and

z (n,k)p(x), forallneN, (1.19)
with po(x):=1 and p(x)=(x —ugy) -+ (X —ue—y), forallkelP,
Proof. The proof is a straightforward algebraic exercise. []

Since Comtet [6] observed that (1.19) implies (1.16)«1.18), it seems appropriate to
call the numbers % (n, k) the Comtet numbers associated with (u,), - If u, = n, then
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W (n, k) = S(n,k) and (1.16)1.19) reduce to (1.5)«1.8). Another example of Comtet
numbers, one of two varieties of the Carlitz—Milne Stirling numbers of a modular
binomial lattice, will be developed in Section 5. The class of Comtet numbers en-
compasses not just Stirling numbers, but also binomial and g-binomial coefficients.
For if u, = 1, then %(n, k) = (}), and if u, = ¢", then % (n, k) = (;),, as one easily sees
from the recurrence (1.18) in these cases. In the latter case it follows from (1.16) that

(,’Z) = ) e Y pln— k04, (1.20)
q do +dy +

e+ dy=n—k t=0
d;eN

where p(k,n — k,t) denotes the number of partitions of the integer t with at mostn — k
parts, each no larger than k.

2. Vector space analogues of Stirling numbers

The first g-Stirling numbers originated in Carlitz’s beautiful paper [5] on g-
Bernoulli numbers. Carlitz defined the former numbers, now denoted by S, (n, k), by
means of the relations

(x,) = Z q® S (k) xg(x — 1), -+ (x — k + 1), (2.1)
k=0

with x,:= (¢* — 1)/(q — 1). He established the recurrence
Synk) =8, (n— 1,k — 1) + k,S;(n — 1,k), 2.2)

as well as the explicit formula
- ik k
~ c N an
Simby =Y (- 1g® (J) [(k — DJ/aD ky(k — 1), -+ 1, (2.3)
j=0 4
employing in the proof of (2.3} a sequence of g-difference operators 4, defined
recursively by

Ag 1 f(x) = 4f(x) = f(x + 1) — f(x),
Agrr1 f(X) = dgf(x + 1) — ¢ 4g 1 f(x). (2.4)

Carlitz construed g here as “an arbitrary parameter”, noting that (1.8) is the limiting
case of (2.1) as ¢ — 1 and, similarly, that (2.2) and (2.3) become, respectively, (1.7) and
(1.10) when g = 1. In an earlier paper [4], however, he had proved that for odd primes
p the quantity (p — 1)"7* §I,(n, k) enumerates a certain class of abelian fields. So the
origins of Carlitz’s ¢g-Stirling numbers are indirectly combinatorial.

Since the g-binomial coefficient (§), counts the k-dimensional subspaces of the
n-dimensional GF(g)-vector space V, ,, the appearance of these coefficients in (2.3)



C.G. Wagner | Discrete Mathematics 160 (1996) 199-218 203

suggests the possibility of a vector space interpretation of §,(n, k). The natural vector
space analogues of set partitions — unordered direct sum decompositions of V, , with
k summands — are, however, not enumerated by S, (n, k). As Bender and Goldman [2]
showed, the number, §q(n, k), of such decompositions satisfies

N xn 1 X" k
Sy(nk — = —— . 2.5
n; o )(q"—l)---(q"—q" D) kl{;l(q"—l)---(q"—q" 1)} 23

In particular, §q(n, n) = q(g) n(n — 1), --- 1,/n!, whereas §q n,n) = 1.

Vector space interpretation of S,(n, k), and S,(n, k) = ¢(2)S,(n, k), were ultimately
discovered by Milne [11], who began by formulating an inspired new interpretation of
the classical Stirling numbers. Milne represented each k block partition of [n] by
a canonical ordered partition (Ey, ..., E,) of [n], with min{i€ E;} <min{i€ E;,,},
j=1,...,k—1, and associated with each such ordered partition a function
f:[n] - [k], with f(i) = j for all i € E;. The resulting restricted growth functions from
[n] to [k], i.e., surjections f [n] — [k] such that in a left-to-right scan of (f(1), ..., f(n))
the first occurrence of j precedes the first occurrence of j + 1, forj=1,...,k — 1, are
thus also enumerated by S(n, k). Two g-analogues of restricted growth functions, each
involving certain sequences (U, ..., U,) of one-dimensional subspaces of V', then
turn out, mirabile dictu, to be enumerated by precisely §q(n, k) and S,(n, k).

In the context of modular binomial lattices a common generalization of S(», k) and
S(n, k) will be developed in Section 4, and common generalizations of S(n, k) and
§q(n, k), and of S(n, k) and S,(n, k) in Section 5. Analogous generalizations of the Lah
numbers will be developed in Section 6. The next section offers a brief review of the
theory of modular binomial lattices.

3. Modular binomial lattices (g-lattices)

The theory of binomial posets is treated in [14, chapter 3], and various aspects of
modular binomial lattices in 8,9, 16]. The following is a brief review of pertinent
results.

A poset P is called a binomial poset if it satisfies the following three conditions:

(I) P is locally finite with 0 and contains an infinite chain.

(II) Every interval [x, y] of P is graded, i.e., all maximal chains in [x, y] have the
same length. If this common length is n, write [(x,y) = n and call [x,y] and an
n-interval.

(III) For all n e N, any two n-intervals contain the same number, B(n), of maximal
chains.

As a consequence of (II), each n-interval [x, y] of a binomial poset admits a rank
function p, ,:[x,y] = {0,1,...,n}, written simply as p if no confusion results, defined
by p(z)=1lx,z). If x<u<v<y, then u is covered by v, ie, |[u,v]|=2, iff
p(v) = p(u) + 1. The only rank O element of [x, y] is x, and the only rank » element is
y. The atoms of [x, y] are all its rank 1 elements, i.e., all elements that cover x.
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By (II) and (III) any two n-intervals in a binomial poset contain the same number,
[4], of elements of rank k, where

n| B(n)
[k} " B(k)B(n — k)’ 3.9)

whence

[ )1

The quantities [}/] are called the incidence coefficients of P.

A binomial lattice is simply a lattice that is a binomial poset. An important class of
such lattices, the modular binomial lattices are those for which the rank function p of
each interval [x, y] satisfies

pwvz) = p(w) + p(z) — p(wnaz), forall w,zel[x,y]. (3.3)

Doubilet et al. [9] have shown that if L is a modular binomial lattice and one defines
the characteristic q of L by

q:= [i] -1, (3.4

then the number of atoms [{] in any n-interval of L is given by

[?}:nq;=1+q+ <o +¢" 1, with 0,:=0, (3.5)

and so, by (3.2), the number of maximal chains B(n) in any n-interval of L is given by
B(n) = ny:=ny(n — 1), ---1,, with 0j:= 1. (3.6)

By (3.1) and (3.6) the incidence coeflicient [;] of a modular binomial lattice of
characteristic g is given by

n n n,
[k:lz(k)qi-: m, 0<k<n (37)

The theory of modular binomial lattices provides the setting for a simultaneous
combinatorial analysis of

(1) the lattice of finite subsets of an infinite set, with p, ,(z) = |z\x] and g = 1,

(2) the lattice of finite subspaces of an infinite vector space over the finite field of
order p%, with p, ,(2) = dim(z/x) and g = p’,

(3) the chain (N, <), with p, ,(z) =z — x and g = 0.
Indeed, by [9, Theorem 8.2] and [3, IV.13, par. 4], these are the only modular
binomial lattices. Henceforth, a modular binomial lattice of characteristic ¢ will
simply be called a g-lattice. The following theorem introduces a g-lattice generaliza-
tion of n! that is an important variant of n;.
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Theorem 3.1. Let [x, y] be any n-interval of a g-lattice, and let s/ = {(«y, ..., ,): eacha;
is an atom of [x,y] and ay v -+ v, = y}. Then

|| = nii= gDl irh 00 1. (3.9)

Proof. Let & = {(Bo,B1,.--,Bn):x =PBo < By < - < B, =y}, the set of maximal
chains in [x,y]. Equivalently, (Bo,...,8,)€ % iff fo < B, < --- < B, and p(B) =1,
0 < i < n, where p is the rank function of [x, y]. The modular identity (3.3) implies
that for every f§ € [x, y] and every atom a € [x, y1, p(B v &) < p(B) + 1, with equality iff
o £ f (although only semi-modularity appears to be used here, semi-modularity
implies modularity in binomial lattices [9, Lemma 8.2]).

Thus if (ay,...,a,)e s, then p(oayv - vog)=1i for all ie[n], since p(o,
v .- va,) = p(y) = nand joining an atom to an element of [ x, y] raises its rank by at
most 1. So (oty,...,0,) > (X, 21,00 Vs, ..., 0V - Va,)is a map from & into 4.

Now the preimages of a given (B, ..., ,) € # under this map are precisely those
sequences (a4, ..., %,) of atoms of [x, y] such that, for each i € [n], «; is an element of
the i-interval [x B] but not of the (1 — 1)-interval [x,f;—,]. By (3.5) there are
ig— (i —1); =¢' "' such a;, and thus [], <i<n qg = q(z) such preimages. Hence by
LRI IPTIC R

Note that one may also write n§ = n,(n, — 1,) - (n, — (n — 1),), which explains the
notation chosen for this quantity.

4. The Bender—Goldman Stirling numbers of a g-lattice

The following theorem provides the foundation for a common generalization of set
partitions and direct sum decompositions of a vector space.

Theorem 4.1. Let [x,y] be an interval in a g-lattice, with rank function p, and let
(z1,...,2x) be a sequence in the half-open interval (x, y] such that
IV e VZE = 4.1)

The following conditions are then equivalent:

(\/ zi> Azj=x for all je[k], (4.2)
(zyv - vz)Aazijey=x foralljelk—1], 4.3)
piz) + - + plz) = p(y), (4.4)

p (\/ z,-) =Y p(z) for all nonempty I < [k]. 4.5)

iel iel



206 C.G. Wagner | Discrete Mathematics 160 (1996) 199-218

Proof. Obviously (4.2) implies (4.3), and (4.5) implies (4.4). Repeated application of
(3.3) yields

plerv = va)= Y ) = X plrv o vE) Az @6)

and so by (4.1), it is clear that (4.3) implies (4.4).

By straightforward induction on ||, (4.2) implies (4.5). In showing, finally, that (4.4)
implies (4.2), there is no loss in generality in assuming that j = k, for relabeling the z;
does not change (4.4). Combining (4.4) with (4.6) yields in particular that
p(zyv - vzi_)az)=0,and so (z; v - vVz_ ) Az, = x, as desired. []

A sequence (zy, ...,2;) in (x, y] satisfying (4.1) and any (hence all) of the conditions
(4.2)H4.5) will be called an ordered direct k-sum decomposition of y in (x,y]. A set
S < (x,y] such that |S| =k, vS =y, and (vS\2) Az =x for all ze S will be called
a direct k-sum decomposition of y in (x,y]. The number of such decompositions
depends only on the length of [x, y], which will first be proved for modular binomtal
lattices of positive characteristic.

Theorem 4.2. If [x,y] is an n-interval in a g-lattice, where q > 0, then the number of
direct k-sum decomposition of y in (x,y] is given by Sq(n, k), where

~ 1 1
Sq(n, k) = = Z ——ﬂﬁ—n_k forallneN and ke P, 4.7)
k'n1+~~+nk=nnlq kg
melP

with 8,(n,0) = 6, for all ne N,

~ 1 ni ~
S k = - ————j—— —17 — P ) .
4(n, k) kjgljz,l(n —j)["q_ 3 S4(n k=1 forallnkelP, (4.8)

with §,(n,0) = 6, 0 and §,(0,k) = 3¢ 4, for all n,ke N, and

n

X "o k
Y 8., k)% - E(Z ’;—> for all ke N. 4.9)
q

nz0 Tzl

Proof. Since the supremum of the empty subset of [x, y] is x, the number of direct
0-sum decompositions is clearly 4, ¢.

If k e P, the summands z; of an ordered decomposition are distinct by (4.2). This fact,
along with (4.4), reduces the proof of (4.7) to showing that for positive integers
n+ - +m=n, if @ is the family of all ordered direct k-sum decompositions
(z1,...,2,) of y in (x, y], with p(z;) = n;, then

9] = —t

R *
nl-q_'“nkq

(4.10)
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Let o/ = {(xy, ..., o,): each o; is an atom of [x,y] and «; v --- v a, = y}. Each member
of o/ satisfies (4.1) and (4.4), and thus (4.5), for k = n. So (a4, ..., ;) +— (24, ..., Z;), With
ZI=O0QV o Vi, 2y =0, 41V o0 VO, etc., is a map from &/ into £. By Theorem
3.1,|.«/| = nj and, moreover, each element of & has n; %t --- n, % preimages in .«Z. This
establishes (4.10), and thus (4.7).

But now it is clear that for g > 0, S’q(n, k) is a Ward number associated with f, = n.
So (4.8) and (4.9) follow immediately from (4.7) and Theorem 1.1. []

If one defines B, , by

B,.= Y S,(nk), (4.11)

k=0

then (4.9) implies that

Zéq,nZ{:exp(Zi—:), 4.12)
q q

nz0 nzl1
which reduces to (1.4) when g = 1. Thus for ¢ > 0, §q(n, k) is a generalization of S(n, k)
for which generalizations of all the Class I properties of the latter exist.
Since n2 = ¢(2)n,, (4.7) may be rewritten as

!

. 1 L T 4.1
Suln.k) =7 Y gEnn R (4.13)
n + 4';;€+Pn,,:n
and (4.8) as
~ I~ o /n\ A
Salnl) = Y gl (,) S,n—j.k — 1), (4.14)
j=1 4

The advantage of such a rewriting is that (4.13) and (4.14) hold for all g, including
q = 0. For it is easy to check that if [x, y] is an n-interval in the O-lattice N, then the
number of direct k-sum decompositions of y in (x, y] is equal to one when n =k = 0
and when n = k = 1, and zero otherwise.

It is perhaps worth noting that (4.13) and (4.14) can each be established by
arguments that hold for all ¢, rather than by separate arguments for ¢ > 0 and ¢ = 0.
One uses in each case the fact [8, Theorem 4.1] that in any g-lattice, if z is an element
of rank j in an n-interval [x, y], then z has ¢/ ~9 complements in [x, y], i.e., elements
wsuch that zAw=xand zvw =y.

5. The Carlitz—Milne Stirling numbers of a g-lattice

Let [x, v] be a k-interval in an arbitrary g-lattice, with n € N, and define the families
&, of, and £ as follows:

& = {(ay,...,a,): each a; is an atom of [x,y] and a; v - va, =y}, (5.1)
o ={(2,...,04) each a; is an atom of [x,y] and o; v - Vo = y}, (5.3)
B={(Bor- B x=Po<Pr < - <Pe=y]}. (5.3)
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By (3.6), || = k, and by Theorem 3.1, |«/| = q(3) k, = k. Based on the theory of
covering algebras, it was shown in [16] that, in any binomial lattice, | & | depends only
on n and k, indeed that

7] = ZM(;’)['T][" ‘J]", (5.4)
i=o J 1

where M(j) is the value of the Mdbius function of that lattice on any j-interval. In
particular, if the lattice in question is a g-lattice, one has

1= (= /gt (f) [(k =T (55)

While parts of the following analysis could be based on (5.5) and other results from
[16], we have opted instead for a more elementary, self-contained treatment. The fact
that |&| depends only on n and k in the case of g-lattices will be a corollary of this
analysis. The g-Stirling numbers S,(n,k) and S,(n,k) will arise from certain natural
mappings from & to & and from & to £.

Given a k-interval [x, y] of a g-lattice, with rank function p, the modular identity (3.3)
implies that for every (ay,...,a,) € &, {p(a; v -+ va;): ie[n]} = [k]. (For if not, let
I=max[k]\{p(a; v - va) ie[n]} and ¢t=min{i pa,v - va)=
I+1}. Then p(ay v -+ va,—1) <I—1andsop(a; v --- va,) <, acontradiction.) In
particular, this statement is vacuously true if n <k, for since p(a;v -+ va,) <
n, & = @ in this case.

In light of the above observations, the function

(al, ,a") — (ail,aiz, ,aik), (56)
with i;:== min{i € [n): p(a; v -+ va;) = j},j € [k], is well defined for all (a;, ..., a,) € &.
Theorem 5.1. The function (ay,...,a,) > (ai,,...,a;) defined by (5.6) maps & into

&/ and every element of o/ has S'q(n, k) preimages in & with respect to this function,
where

Synk):= ) (1" (2% -+ (k)™ (5.7)

dy+ - +dy=n—k

Proof. Since y is the only rank k element of [ x, y], to show that (5.6) defines a map into
&, it suffices to show that for every (ay,...,a)€%, a,Vv - va,=
ALV a;Vv - Va,.

One proves this by showing by induction on j that

a; v - va;=a;vayVv - va, forall je[k]. (5.8)
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Since i; = 1, (5.8) holds for j = 1. Given (5.8) for some je [k — 1], one has, by
modularity and the definition of i;;;, that a;va,v - vag, =
ayvazv .- va;,., -, Hence,a;, v - va;,, =da va,v -~ va,,,.

Now all of the preimages (a, ...,a,) of a given («y, ..., ) € & under the map (5.6)
may be constructed by

(1) choosing a sequence (iy,...,i) with 1 =1i; <i, < -+ <i, < n, and setting
a;, = a; for all j e [k], and

(2) for all je[k — 1], choosing for the d;=1i;,, —i;— 1 elements a;, where
I; <i<i;+, arbitrary atoms of the j-interval [x, o;v -~ va;], and for the
dy:=n — i, elements a;, where i <i<n, arbitrary atoms of the k-interval
[x, 00 v - vog] = [x,y]. ~

By (3.5), this construction may be effected in S,{(n, k) ways. [

By (5.7), §q(n, k) is a Comtet number with u, = n,. Hence by Theorem 1.2,

xk

S.(nkx" = , forallkeN, 5.9
n;qm)x = 0,91 — L) (1 —kpxy cralike (5:9)
S, n k) = S,n — Lk — 1)+ k,S,(n — 1,k), forall nkeP, (5.10)

with §,(n,0) = 6, o and S,(0,k) = 6o, for all n,ke N, and
Z§nm@),mmnmw, (5.11)

with @o(x):= 1 and @i(x):= x(x — 1,)---(x — (k — 1),) for all ke P.
If, following Davis [7], one defines the g-difference 4,:C[x] — C[x] by

plgx + 1) — p(x)

Vil = .
P(X) G—Dxtl (5.12)
then
Agou(x) =k, 1(x) forall ke N. (5.13)
From (5.11) and (5.13) it follows that
k. n
S, (n.k) = ﬂ%}l, (5.14)

q

where A% is the k-fold composition of 4, (cf. (2.4)). So S,(n,k) is a generalization of
S(n, k) for which generalizations of all of the Class 1I properties of the latter exist.
The case g = 0 of the above is somewhat intriguing. By (5.9) or (5.10) S5 (n,0) = 8, o
and S§,(0,k) = 8, for all n,k, e N, and Sy(n, k) = (=1 for all n, k € P. Of course, if
[x, y]is a k-interval in the O-lattice (N, <), the set & defined by (5.1) is nonempty (and
then of cardinality 1) iffn = k = 0 or n = k > 1. Similarly, the set .o defined by (5.2) is
nonempty (and of cardinality 1) iff k = 0 or k = 1. In particular, if k > 2 the map
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defined by (5.6) is the empty function from § to §. In this case, the claim that each
element of .o has (;_ 1) preimages is true, as claimed in Theorem 5.1, but vacuously so.
The g-Stirling numbers S,(n, k) arise in connection with the function

(alr""an)H(x’(alvaZV Tt Vaij)lsjsk) (515)

with i;:=min{ie [n]: p(a, v - va;)=j}.

Theorem 5.2. The function defined by (5.15) maps & into #, and every element of # has
Sy, k)= g3 §,(n, k) (5.16)

preimages in & with respect to this function.

Proof. By (5.8), the function given by (5.15) is identical with that given by
@y, ...,a,) > (X, (a;, va,v - Vv a;)1 < <i)- Thus it is just the composition of the map
from & to &/ given by (5.6) with the map from .« to % given by
(01,5 0) > (6, (2 VA v -+ V) < <i)- By the proof of Theorem 3.1 each element
of # has q(IZ‘) preimages in &/ with respect to the latter map. Combined with Theorem
5.1, this yields (5.16). O

Of course, multiplying (5.9) and (5.10) by q(g) yields variants of those formulas for
S,(n, k). In particular,
S,nk)y=¢""1S;(n— L,k — 1)+ k,Sy(n — 1,k) for all n,k, e P. (5.17)

Of more interest, however, are the following distinctive properties of S,(n, k).

Theorem 5.3. For every g-lattice,

1 X k- k
Sq(n,k)zm y (—l)k_fq(k2)<j> AR (5.18)

Jj=0

Proof. One can show [14, Theorem 3.6] by induction that if g > 0 and p(x)e C[x],
then

Zﬁd—ﬂfﬁ455©wm%+h)

A5p(x) = - (5.19)
d@(g—Dx + 17+
With (5.14) this implies that for g > 0,
- k—j k in
5. mky = Do = VGt (5:20)

eI

and multiplying (5.20) by ¢(3) then yields (5.18) for g > 0. But one may check that
(5.18) also holds for g = 0, for Sy(n,k) is nonzero (and equal to 1) if n=k =0 or
n 2k =1, which agrees with the right-hand side of (5.18). [J
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Theorem 5.4. For every g-lattice,

n

Sn+Lk=Y ("> 47S,(j,k —1), forallneN and keP. (5.21)
j

j=0

Proof. Using the values of Sq(n, k) noted in the preceding paragraph, one may check
that (5.21) holds for g = 0. The method of linear functionals [ 1, pp. 89-90], originated
by Rota, will be used to treat the case g > 0.

By (5.11) and (5.16),

n

x" =
i

M=

Sq(n’j)'//j(x)9 (522)

0

where /;(x) = wj(x)/q(i). Note that

Wiv1(x) = xtﬁ,-(x ; 1>- (5.23)

For all ke N, define L,:C[x] —» C by setting L,¥;(x) = d;,; and extending L, to
C[x] by linearity. By (5.22), Ly(x") = S,(n, k). By the definition of L, and by (5.23), one
has, for all je N,

L, 1(Wj(x)) = Li(Wji1(x)) = Ly <x'//j (x ; 1>>, (5.24)

and thus, for all p(x) e C[x],

1
Lo (p(%) = Ly (xp (X p )) (5.25)

Setting p(x) = (gx + 1)" in (5.25) yields (5.21). O

From (5.21) it follows that the g-Bell numbers
Byn= ), Sy(nk) (5.26)
k=0

satisfy the recurrence

- n .
Bq,n+1 = Z () q]Bq,ja (527)
j=o \J

which was proved by Milne [11] for the case g = p%, based on (2.1). Our proof of (5.21)
is very much in the spirit of Milne’s proof, but being based on (5.22), has the advantage
of holding for g = 1 as well as for g = p®. The same remarks apply to the following
Dobinski formula for B, ,, established by Milne for the case g = p°.
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Theorem 5.5. For every g-lattice with q > 0,

1 (kg)"
n= 1 5.28
'8 eq(l) & kq ( )
where
xk
=) = (5.29)
kgo k‘l

Proof. Define L:C[x] - C by L({;(x)) =1 for all je N, extending L to C[x] by
linearity. By (5.22) and (5.26), L(x") = B,,,..
ForallneN,

1 1 1 1
Lo =1 =05 0 = o 2 G,

k=0 kzn

Valks) _ Ualky)
q(l),;,, Ky ey 1)§0 K (5.30)

Hence for all p(x) e C[x],

p(k,)
oD k;) e (5.31)

Setting p(x) = x" in (5.31) yields (5.28). [J

L(p(x)) =

So S,(n, k) is a generalization of $(n, k) for which generalizations of all of the Class
III properties of the latter exist.

Milne [12] showed that S,(n, k), regarded as a polynomial in the indeterminate g, is
the generating function for a simple statistic on RGF(n, k), the set of restricted growth
functions from [n] to [k]. Specifically, for fe RGF(n, k), let

m(f)= 3 I'(f) (5.32)
izl
where I7'( f) is the number of distinct integers amongf(1), ..., f(i — 1) that are strictly
less than f(i). Milne proved that

g = S,(n, k) (5.33)
feRGF(n,k)
by showing that the left-hand side of (5.33) satisfies the recurrence (5.17).
Wachs and White [15], on the other hand, showed by a rook placement model
that

10f)= Y £) = I"(f) + n (5.34)

i=1
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which, with (5.33), implies
q" = 4" S, (n, k). (5.35)
FeRGF(n, k)

It turns out that (5.33) and (5.35) are simple corollaries of a different sort of g-counting
of RGF(n,k), one which invokes the combinatorial interpretation of §q(n, k) estab-
lished in this paper.

Theorem 5.6. For fe RGF(n,k), let

k
INn=% G=Def)=1, (5.36)
where
vi( /)= 1YY Sfor all je[k]. (5.37)
Then
Y 4 =5,k (5.38)
feRGF (n,k)

Proof. It suffices to prove (5.38) when q is the characteristic of an arbitrary modular
binomial lattice L. Let [x, y] be a k-interval in the g-lattice L. Fix o = (o, ..., 0) € .7,
as defined by (5.2), and let ¥, be the subset of ., as defined by (5.1), consisting of all
preimages of o under the map (5.6).

By Theorem 5.1, |.%,| = §q(n, k). We prove (5.38) by exhibiting a function from ¥,
to RGF(n, k) such that each fe RGF(n, k) has ¢/ preimages under this function. Let
(@i, ...,a,) € S, with iji=min{i: p(a; v --- va; =j} for all je[k]. Consider the
function

(ag, ....a,) > (t(ay), ..., t(a,)), (5.39)
where
t(a;) =min{j:a; <a; v - va,}. (5.40)

Clearly, (5.39) maps &, into RGF(n,k), with t(g;) =j for all je[k]. All of the
preimages (ai,...,a,) of a given fe RGF(n, k) under the function (5.39) may be
constructed by

(1) setting a; = o for every i such that f(i) = 1,

(2) for 2 <j < k, if iis the smallest element of [ n] with f (i) = j, setting a; = o;; and if
i is any other element of [n] with f(i) =j, setting a; equal to any of the
jo—(j— 1), = ¢’~ ! atoms that belong to the j-interval [x,o, v --- v ;] but not to
the (j — )-interval [x,o; v -+ v _,].
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This construction may be effected in
k
[] g¥~ D=1 = gl (5.41)
j=1

ways, which proves (5.38). [

Clearly, I"(f) = ¥5-, (G — Do(f) = I(f) + () and I(f) = I(f) + (§) + n, and so
(5.38), along with (5.16), implies both (5.33) and (5.35).

It should be noted that our conceptualizations of §q(n, k) and S,(n, k) are deeply
indebted to Milne’s conception of restricted growth functions and their vector space
analogues. But our analyses of these numbers are quite different. Milne first develops
S4(n, k), offering a combinatorial proof of (2.1), which then plays a central role in his
analysis. His approach requires that one exhibit for the vector space case of the map
(5.15) a bijection between the sets of preimages associated with any two chains in &.

We first develop §q(n, k), constructing the explicit formula (5.7) for the number of
preimages of any element of .o/ under the map (5.6). With Theorem 5.2, this entails
that every element of # has the same number of preimages under (5.15). More
importantly, (5.7) reveals that S (n,k) is a Comtet number, with the immediate
consequences (5.9), (5.10), and (5.11). Formula (2.1) is just (5.11) with x = x,.

In the next section we describe g-generalizations of the Lah numbers analogous to
S,(n, k), S,(n, k), and S,(n, k).

6. The Lah numbers of a g-lattice

The (signless) Lah numbers L(n, k) originated [107] as connection constants:
x"= Y L(nk)x, (6.1)
k=0

Clearly, L(n,0) = ¢, o and L(0, k) = d, , for all n, k € N. One can also derive from (6.1)
in straightforward, if tedious, fashion the recurrence
Lin+ 1L,k=Lnk—1)+(n+ kL(nk) foralneN,kelP, (6.2)

the formula

! —
Link) = % <z B i) for all mk e P, (6.3)

and the generating function

n 1 k
ZL(n,k)%=F< X ) for all ke N. (6.4)

=6 1—x
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Since (- 1) counts all sequences of k positive integers summing to n, formula (6.3)
suggests a simple combinatorial interpretation of the Lah numbers. Just as the Stirling
number S(n, k) enumerates the distributions of n labeled balls among k unlabeled urns,
with no urn left empty, L(n, k) enumerates such distributions with the added proviso
that the balls in each urn are to be linearly ordered [13], [1, pp. 86-87]. Indeed, the
best approach to the Lah numbers would be to define them in this way, and derive
(6.1) and (6.2) by (easy) combinatorial arguments.

There is an obvious g-lattice generalization of the above. If [x, y] is an n-interval in
such a lattice one selects, in all possible ways, from the n, atoms of [x, y] a subset A4 of
n atoms such that vA4 = y, and then distributes these atoms among k unlabeled urns,
with no urn left empty, and with the atoms in each urn linearly ordered. By Theorem
3.1 and the combinatorial interpretation of (}~1) noted above, there are

) "
L (n k)= -Z—j(z B 1) (6.5)

such distributions for n, k € P.

The numbers I:q(n, k) do not generalize L(n,k) in a very profound way, but are
included for completeness as obvious analogues of the g-Stirling numbers §,I(n, k).
A deeper generalization of the Lah numbers requires their reconceptualization along
the lines of Milne’s restricted growth functions, as described below.

Given n balls, labeled 1, ..., n, and k urns, labelled 1, ..., k, consider the distributions
of these balls among these urns, with no urn left empty, and with the balls in each urn
linearly ordered. By earlier remarks, there are

A(n, k)= k! L(n, k) = n! <z B i) 6.6)

such distributions.
Associate with each such distribution a sequence

((ulnpl)"--’(umpn)), (67)

where u; denotes the number of the urn in which ball i is placed, and p; its position in
that urn. The sequences arising in this way are characterized by the following two
properties:

(i) {uy,...,u,} = [k], and

(i) for all je [k], with I; = {ie[n]:u;, =j}, {piriel;} = [11;|].
If S* denotes the set of sequences satisfying (i) and (ii), then [S*| = A(n, k).

In each sequence ((uy, p1), --.,(un, pa)) the pair (j, 1) occurs exactly once for every
jelk]. If ((u,,1),...,(us, 1)) is the subsequence comprised of all such pairs, then,
clearly,

((ulspl)s""(un:pn)) '—)(utx""sutk) (68)

is a map from S* to the set of all permutations of [k].
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Moreover, each permutation of [k] has L(n, k) preimages in S* with respect to the
map (6.8). Take, for example, the permutation (1,2, ..., k). Its preimages (which might
be called Lah restricted growth functions) are precisely those sequences ((4;, pi)) <i<n
in which (j, 1) precedes (j + 1,1),j e [k — 1], in a left to right scan.

Such sequences correspond to distributions for which the number on the initial ball in
urn j is less than the number on the initial ball in urn j + 1, for all j € [k — 1]. But such
distributions to labeled urns provide obvious canonical representations of the distribu-
tions to unlabeled urns enumerated by L(n, k). A variant of this argument shows that
every permutation of [k] has L(n, k) preimages in S* with respect to the map (6.8).

The g-Lah numbers fq(n, k) and L,(n, k), to be developed in what follows, arise
within the same conceptual framework as the ¢-Stirling numbers gq(n, k) and S,(n, k).
We have a k-interval [x, y] of a g-lattice, with rank function p, and families &, o7, and
4 defined, as in Section 5, by

& = {(ay,...,a,): each q; is an atom of [x,y] and a, v -+ va, =y}, (6.9)
A = {(a,...,0) each «; is an atom of [x,y] and a; v - vy =y},  (6.10)
and

=@={(ﬂ0,,ﬂk)x=ﬂo<ﬂ1< <ﬂk=y} (611)
Also as in Section 5 we associate with each (ay,...,a,) €& the sequence
1 =iy <i, < -+ <iy<n, where
ij=min{i:p(a; v - va) =j}. (6.12)
Recall that for all j e [k], p(B;) =j, where B; = a;, v --- va;,. Thusif Be[f;-1,B;]
then either f = f;,_; or f = ;. In particular, if o is an atom of [x,f;] then by
modularity, f;_, va = f;iff a £ ;.
Now given (a;,...,a,)€.% and i;, as defined by (6.12), we define an ordered
partition (14, ..., 1) of [n], where
I;={ie[n]:a;<a;v - va,buta; £a,v - va, } (6.13)

Note that i; € I; for all j e [k].

Next, generalizing (6.7), let * be the set of sequences ((a;,p;), ..., (a,, p,)) satisfying
() (@1, ...,a,) € &, and (i) for all je [K], {p::ie I;} = [|I;[].

For every ((ay,pi)s.--(anps)) € ¥, let ((a,,1),...,(a,, 1)), with 1<t; <t,
< --- <t < n, be the subsequence comprised of the k pairs with second coordinate
equal to 1, and consider the map

((al, P1), ,(ampn)) = (atp R atk)' (614)

Theorem 6.1. The function defined by (6.14) maps F* into o, and every element of
& has Eq(n, k) preimages in &* with respect to this function, where

_ Ln—1
Lyn, k)= %(: - 1) , foralnkeP, (6.15)
- q

and L£,(n,0) = 8,0 and L(0,k) = 5, 4 for all n,k e N.
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Proof. While it need not be the case that t; e I}, there is some permutation o of [k]
such that t,; € I;. So to show that (6.14) maps &* into .7, it suffices to show that
a, v --- va, =y for every sequence (¢, ...,t;) with ¢; € I;. In fact, it is the case that

a, v ovag =a, v o vag; forall je[k], (6.16)

1

for all such sequences, by induction on j. The case j = 1 of (6.16) holds, since for all
iely, a; =a,. Given (6.16), and ¢;,, € [;,{, we have

Ay, Vo VA KAy Vo VS0,V Vg, (6.17)

and hence a,, v - va,,., =a;,V - va,,,,since a,,, L a, Vv - va,.

All of the preimages ((a;,p1), -.-,(a,, p,)) of a given (a4, ..., %) € &/ under the map
(6.14) may be constructed by

(1) choosing a sequence 1 <t; <t, < --- <t < nand setting (a,,, p,) = (¢, 1) for
all j e [k],

(2) choosing a sequence of nonnegative integers 6; + -+ + o, =n —k,

(3) foreach j e [k], pairing each of the numbers 2, ..., d; + 1 with an arbitrary atom
o of [x,ay v --- vo;] for which e € oty v -+ va;_; and

(4) assigning these n — k pairs as the values of (a;, p)) for i¢{ts, ..., t}.
Hence there are

(Z) _ Z (n— 1) (2, — 1) (kg — (k — 1)))*

e o =n—k
ri,e!il

n! 05, + 16, + - + (k — 1)3, n!(n—l)
3 A = (6.18)
fa 2 kilk—1),

T+ + o =n—k
! 5;6&

such preimages, by (1.20)

If one composes (6.14) with the map (oty, ..., o) > (X, 00,0 V 0y, .o 0V oos V0G)
from & to 4, then, under the resulting map, each element of # has

Ly(n, k)= ¢ L,(n, k) (6.19)

preimages in %*, thus completing the analogy with the three types of g-Stirling
numbers developed in Sections 4 and 5. ‘

Ironically, in view of the origins of the Lah numbers, none of our g-generalizations
of L(n, k) seem to function in any interesting way as connection constants between
polynomial sequences. Nor does the recurrence (6.2) generalize in an interesting way.

On the other hand, by (6.18) and (1.17) the generating function (6.4) generalizes
nicely for L (n, k) to

Y Ly, X =L x* __ forall ke N. (6.20)
n>0 4 n' kY HOSjgk—l(l —qjx)
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