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Abstract 

The theory of modular binomial lattices enables the simultaneous combinatorial analysis of 
finite sets, vector spaces, and chains. Within this theory three generalizations of Stifling 
numbers of the second kind, and of Lah numbers, are developed. 

1. Stirling numbers and their formal generalizations 

The nota t ional  convent ions of this paper  are as follows: N = {0,1,2 . . . .  }, 

P = {1,2,. . .  }, [0] = 0 ,  and I-n] = {1 . . . . .  n} for n~  P. Empty  sums take the value 

0 and empty  products  the value 1. Also, x ° = x -° = x ° = 1 for all x (including x = 0), 
and f o r n ~ P , x  ~ - = x ( x -  1 ) . . . ( x - n +  1) a n d x  n = x ( x +  1 ) . - - ( x + n - 1 ) .  

As enumera to r  of part i t ions of I-n] with k blocks, the Stirling number  of the second 

kind S(n, k) plays a central role in elementary combinatorics .  No t  surprisingly, apar t  
from the boundary  values S(n,O) = J,.o and S(n,k) = 0 for 0 ~< n < k, there are many  

representations of these numbers.  F r o m  the s tandpoint  of generalizations pursued in 

this paper  these representations fall natural ly into three classes: 

Class I 

1 ~+ n! 
= m  m S(n, k) k! 

n~+ .-- n k = n n l  ! nk!  

S(n,k) = ~  . ~  S(n - j , k -  1), 

(1.1) 

(1.2) 

x" (eX-- 1)k (1.3) 
E S(n'k) n! -- k! ' 

n > ~ O  
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and, with B~:= Y~=oS(n ,k ) ,  

X n 
2 B,~ = e ex-1 
n>~O 

Class II 

(1.4) 

S(n, k) = ~ 1 d' 2 d2 ... k dk, (1.5) 
dl+ "'" + d k = n - k  

d ~ N  

~, S(n,k)x" =xk/ I~ (1--jx) ,  (1.6) 
n>~O l ~ j ~ k  

S(n, k) = S(n  - 1, k - 1) + kS(n  - 1, k), (1.7) 

x" = ~ S(n,k)x k, (1.8) 
k=O 

AkO ~ Akx~l~= o 
S ( n , k ) -  k ~ -  k----~-. (1.9) 

Class III 

k 

S(n,k) = ~ _ ( - 1 ) ~ - ~ ( } ) j  ° ,  ( 1 . 1 0 )  

j = O  

and, with Bn as above, 

1 ~ ,  k n (1.12) 
B~ = ek~>~0kT" 

This paper develops three generalizations of S(n, k) within the theory of modular 
binomial lattices, an important class of structures first identified by Doubilet et al. [9] 
as the ideal setting for the simultaneous combinatorial analysis of finite sets, vector 
spaces and chains. These generalizations encompass in particular the Bender-Gold- 
man [2] and Carlitz-Milne [11] analogues of S(n ,k )  for finite vector spaces. The 
generalizations of S(n, k) in Sections 4 and 5 (and of the Lah numbers in Section 6) are 
combinatorial. In two instances, however, they are themselves special cases of the 
formal generalizations of S(n, k) described below, a fact which greatly facilitates their 
analysis. 
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Theorem 1.1. Given any sequence ( f . ) .  >1 o of  nonzero complex numbers with fo = 1, the 
following are equivalent characterizations o f  an array ( . f  (n, k) ).,k >1 o: 

1 
2 f" , for  all n ~ N and k ~ P, (1.13) 

~ ( n ,  k) = k~ " f .  . . .  f ,k  
n l  + . . .  -t- nk = n 

tli E ~ 

with ~ (n ,O)  = 6,,o for  all n e N, 

1~.~ f ,  ~ ( n - j , k - 1 )  f o r a l l n ,  k e P ,  (1.14) f f (n ,k )  = ; . =  

with ~ (n,O) = ~,,o and f f  (O,k) = 6o,k for  all n, k e N, and 

Z j ,  ,,: x" 1 ( ~ x " )  k ~.  
J ( n , k ) T =  i5 , for  all k e N .  (1.15) 

n > ~ O  " \ n > ~ 1 3 n /  

Proof. The  proof  is a s traightforward algebraic exercise. [ ]  

Judging from Ward 's  formal generalization of Bernoulli numbers  [17], in which he 
mentions a similar generalization of Stifling numbers,  it is likely that he had in mind 
numbers  of the type ~ ( n ,  k). Thus  it seems appropr ia te  to call such numbers  the Ward 

numbers associated with (f .) ,  >~ o. I f f .  = n !, the o~ (n, k) = S(n, k) and (1.13)(1.15) reduce 
to (1.1)-(1.3). Another  example of Ward  numbers,  the Bender-Goldman Stifling num- 

bers of  a modular binomial lattice, will be developed in Section 4. 

Theorem 1.2. Given any sequence (u.). >1 o of  complex numbers, the following are equival- 

ent characterizations o f  an array (~ll (n, k) ).,k >1 o: 

~l(n, k) = ~ Uoa°-l"'d . . . .  U dk for  all n, k ~ N, 
d o + d  I + . . .  + d k = n - - k  

d ~ e  N 

xk 
,>~o ~ll(n'k)x" = (1 -- UoX)(1 -- ul x) "'" (1 -- UkX)' for  all k E N, 

~)~/(n, k) = ~//(n - 1, k - 1) + Uk°ll(n -- 1, k), for  all n, k e P, 

with °g(n,O) = u~ and °ll(O,k) = 6o.kfor all n, k e N, and 

x" = ~ ~lg(n, k)pk(x), for  all n e N, 
k = O  

with po(x):= 1 and pk(X):= (X -- UO) "'" (X -- UR-O, for  all k e  P. 

(1.16) 

(1.17) 

(1.18) 

(1.19) 

Proof.  The proof  is a s traightforward algebraic exercise. [ ]  

Since Comte t  [6] observed that  (1.19) implies (1.16)-(1.18), it seems appropr ia te  to 
call the numbers  ql(n, k) the Comtet  numbers associated with (u.), >~o. If u, = n, then 



202 C.G. Wagner~Discrete Mathematics 160 (1996) 199-218 

ql(n,k) = S(n,k) and (1.16)-(1.19) reduce to (1.5)-(1.8). Another example of Comtet 
numbers, one of two varieties of the Carli tz-Milne Stirlin9 numbers of  a modular 
binomial lattice, will be developed in Section 5. The class of Comtet numbers en- 
compasses not just Stirling numbers, but also binomial and q-binomial coefficients. 
For if u, -= 1, then q/(n, k) = if,), and if u, = q", then J//(n, k) = ff,)q, as one easily sees 
from the recurrence (1.18) in these cases. In the latter case it follows from (1.16) that 

( n )  = 2 qOdo+ ld,+ ... +kdk = ~ p(k,n - k, t)q t, (1.20) 
k q d o + d l + , . . + d k = n _ k  t>~O 

di~N 

where p(k, n - k, t) denotes the number of partitions of the integer t with at most n - k 
parts, each no larger than k. 

2. Vector space analogues of Stirling numbers 

The first q-Stifling numbers originated in Carlitz's beautiful paper [5] on q- 
Bernoulli numbers. Carlitz defined the former numbers, now denoted by Sq(n, k), by 
means of the relations 

.L k (Xq) n=  ~_~ q(z)Sq(n,k)xq(x - 1)q ... (x k + 1)q, (2.1) 
k = 0  

with Xq := (qX _ 1)/(q - 1). He established the recurrence 

g q ( n , k )  = gq(n  - 1 , k  - 1) + k~g~(n  - 1 ,k) ,  (2.2) 

as well as the explicit formula 

k 

j=o J q[(k-j)q]n/q(k2)kq(k- 1)q - - .  l q ,  (2.3) 

employing in the proof of (2.3) a sequence of q-difference operators Aq, k defined 
recursively by 

Aq, if(x) = ~If(x) = f ( x  + 1) - f ( x ) ,  

,4q,k+ l f ( x )  = dq, kf(X + 1) -- qk ,4q, kf(x).  (2.4) 

Carlitz construed q here as "an arbitrary parameter", noting that (1.8) is the limiting 
case of (2.1) as q ~ 1 and, similarly, that (2.2) and (2.3) become, respectively, (1.7) and 
(1.10) when q = 1. In an earlier paper [4], however, he had proved that for odd primes 
p the quantity (p - -  1 )  n - k  Sp(n, k) enumerates a certain class of abelian fields. So the 
origins of Carlitz's q-Stirling numbers are indirectly combinatorial. 

Since the q-binomial coefficient (~)q counts the k-dimensional subspaces of the 
n-dimensional GF(q)-vector space Vq,,, the appearance of these coefficients in (2.3) 
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suggests the possibility of a vector space interpretation of Sq(n, k). The natural vector 
space analogues of set par t i t ions-  unordered direct sum decompositions of Vq,, with 
k summands - are, however, not enumerated by Sq(n, k). As Bender and Goldman [2] 
showed, the number, Sq(n, k), of such decompositions satisfies 

2 Sq(n'k)(q._ l ) . . . ( q . _ q . - ~ ) = k ~  " (q~_ l ) . . . ~ q . _ q .  ~) " (2.5) 
n ) k  

• A n 1 
In particular, Sq(n, n) -- q(2)nq(n - 1)q ... lq/n., whereas Sq~n, n) = 1. 

Vector space interpretation of Sq(n, k), and Sq(n, k) = q(2)gq(n, k), were ultimately 
discovered by Milne [11], who began by formulating an inspired new interpretation of 
the classical Stirling numbers. Milne represented each k block partition of In] by 
a canonical ordered partition (El . . . .  , E k )  of [n], with min{i ~ E~} < min{i e Ej+ 1}, 
j = 1 . . . .  , k -  1, and associated with each such ordered partition a function 
f :  In] ~ I-k-I, with f(i) = j for all i ~ Ej. The resulting restricted growth functions from 
In] to [-k], i.e., surjectionsf: In] ~ [k] such that in a left-to-right scan of (f(1), ..., f(n)) 
the first occurrence o f j  precedes the first occurrence o f j  + 1, fo r j  = 1 . . . . .  k - 1, are 
thus also enumerated by S(n, k). Two q-analogues of restricted growth functions, each 
involving certain sequences (U1 . . . .  , U,) of one-dimensional subspaces of Vq,k, then 
turn out, mirabile dictu, to be enumerated by precisely ~q(n, k) and Sq(n, k). 

In the context of modular binomial lattices a common generalization of S(n, k) and 
S(n, k) will be developed in Section 4, and common generalizations of S(n, k) and 
Sq(n, k), and of S(n, k) and Sq(n, k) in Section 5. Analogous generalizations of the Lab 
numbers will be developed in Section 6. The next section offers a brief review of the 
theory of modular binomial lattices. 

3. Modular binomial lattices (q-lattices) 

The theory of binomial posets is treated in [,14, chapter 3], and various aspects of 
modular binomial lattices in [8,9, 16]. The following is a brief review of pertinent 
results. 

A poset P is called a binomial poset if it satisfies the following three conditions: 
(I) P is locally finite with 0 and contains an infinite chain. 

(II) Every interval [-x, y] of P is graded, i.e., all maximal chains in Ix, y] have the 
same length. If this common length is n, write l(x, y) = n and call [x, y] and an 
n-interval. 

(III) For  all n ~ N, any two n-intervals contain the same number, B(n), of maximal 
chains. 

As a consequence of (II), each n-interval Ix, y] of a binomial poset admits a rank 
function p~.y : Ix, y] ~ {0, 1 . . . . .  n}, written simply as p if no confusion results, defined 
by p(z)=l(x,z).  If x~<u~<v<~y,  then u is covered by v, i.e., ][-u,v]l=2,  iff 
p(v) = p(u) + 1. The only rank 0 element of Ix, y] is x, and the only rank n element is 
y. The atoms of [x ,y]  are all its rank 1 elements, i.e., all elements that cover x. 
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By (II) and (III) any two n-intervals in a binomial poset contain the same number, 
[~,], of elements of rank k, where 

B ( k ) B ( n  - k)' 

whence 

.[i]. 
The quantities [~,] are called the incidence coef f ic ients  of P. 

A binomial  lat t ice is simply a lattice that is a binomial poset. An important class of 
such lattices, the modular  binomial  lat t ices are those for which the rank function p of 
each interval [x, y] satisfies 

p ( w v z )  = p(w)  + p(z)  - p ( w  ^ z ) ,  for all w, z e  [x,y]. (3.3) 

Doubilet et al. [-9] have shown that if L is a modular binomial lattice and one defines 
the character is t ic  q of L by 

q:= [211 - 1, (3.4) 

then the number of atoms [7] in any n-interval of L is given by 

I ~ l = n 4 : = l + q + - . .  + q ' - l ,  wi th0  4:=0, (3.5) 

and so, by (3.2), the number of maximal chains B(n) in any n-interval of L is given by 

B(n) = n~ := n4(n - 1) 4 .-. 14, with 0q := 1. (3.6) 

By (3.1) and (3.6) the incidence coefficient [7,] of a modular binomial lattice of 
characteristic q is given by 

n nq 
= k k~(n ~-k)~' 0~<k~<n. (3.7) 

The theory of modular binomial lattices provides the setting for a simultaneous 
combinatorial analysis of 

(1) the lattice of finite subsets of an infinite set, with px, y(z) = [z \x]  and q = 1, 
(2) the lattice of finite subspaces of an infinite vector space over the finite field of 

order pal, with px, r(z) = d im(z /x )  and q = pal, 

(3) the chain (N, ~<), with p~,,y(z) = z - x and q = 0. 
Indeed, by l-9, Theorem 8.2] and [3, IV.13, par. 4], these are the only modular 
binomial lattices. Henceforth, a modular binomial lattice of characteristic q will 
simply be called a q-lattice. The following theorem introduces a q-lattice generaliza- 
tion of n! that is an important variant of nq. 
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Theorem 3.1. Let  Ix, y] be any n-interval of  a q-lattice, and let ~¢ = { (el, . . . ,  ct,): each c~i 
is an atom of [x, y] and al V ... v c~, = y}. Then 

I~'1 ". q("2)n"q, = n~.= with o. 0~ .= 1. (3.9) 

Proof.  Let  M = {(flo,fll, . . . , f l , ) :x  = flo < fll < " ' "  < f in  = Y}, the set of maximal  
chains in Ix, y]. Equivalently,  ( f l o , . . . , f l , ) e ~  iff flo ~< fll ~< "" -%< ft, and p(fl~)= i, 
0 ~< i ~< n, where p is the rank function of [x, y]. The  modular  identity (3.3) implies 
that  for every f l e  [x, y] and every a tom ~ • [x, y], p(fl v ~) ~ p(fl) + 1, with equali ty iff 

~ fl (al though only semi-modular i ty  appears  to be used here, semi-modulari ty  
implies modular i ty  in binomial  lattices I-9, L emma  8.2]). 

Thus  if ( cq , . . . , c t , ) e s¢ ,  then p ( ~ l v  . . - v ~ ) = i  for all i~1-n], since P(al 
v ... v ~,) = p(y) = n and joining an a tom to an element of [x, y] raises its rank by at 

most  1. So (~l . . . . .  ct,) w-~ (x ,~l ,cq  v~z,  ... ,cq v --. r e , )  is a map  from ~¢ into M. 
N o w  the preimages of a given (flo . . . .  , ft,) e M under  this map  are precisely those 

sequences (cq . . . . .  ~,) of a toms of Ix, y] such that, for each i e [n], cq is an element of 
the i-interval [x, fl~], but  not  of the ( i -  1)-interval 1-x, fl~_x]. By (3.5) there are 

= q~ a = q(~) such preimages. Hence by iq - -  (i - 1)q q i -  1 such c~i, and thus 171 ~< i ~< n 

(3.6), Isel = q(7)l~l = q(~) n~ = nq. [ ]  

No te  that  one may also write nq = nq(nq - lq).. .  (nq - (n - 1 ) q ) ,  which explains the 
nota t ion  chosen for this quanti ty.  

4. The Bender-Goldman Stirling numbers of a q-lattice 

The following theorem provides the foundat ion  for a c o m m o n  generalization of set 
part i t ions and direct sum decomposi t ions  of a vector  space. 

Theorem 4.1. Let  [x ,y]  be an interval in a q-lattice, with rank function p, and let 
(Zl, . . . ,  Zk) be a sequence in the half-open interval (x, y] such that 

Z 1 V  ' ' "  V Z k = y .  (4.1) 

The following conditions are then equivalent: 

( V z i l  A zj = x for all j ~ [k], (4.2) 
i~ j  / 

(zl v ... v z j )  Az j+l  = x for a l l j e [ k - 1 ] ,  (4.3) 

p(zl)  + ... + p(Zk) = p(y), (4.4) 

p ( V Z l  t = ~ p(zi) for all nonempty I = [k]. (4.5) 
\ i e l  / iel 
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Proof. Obviously (4.2) implies (4.3), and (4.5) implies (4.4). Repeated application of 
(3.3) yields 

k k - 1  

p(z, v ... VZk) = ~ p(zj) - ~ p((z, v ... vz~)AZj+l), (4.6) 
j=l j=l 

and so by (4.1), it is clear that (4.3) implies (4.4). 
By straightforward induction on [II, (4.2) implies (4.5). In showing, finally, that (4.4) 

implies (4.2), there is no loss in generality in assuming that j = k, for relabeling the z~ 
does not change (4.4). Combining (4.4) with (4.6) yields in particular that 
p((zl v ... v Zk- i) ̂  Zk) = 0, and so (za v ... v Zk- I) A Zk = X, as desired. [] 

A sequence (zl, ..., Zk) in (x, y] satisfying (4.1) and any (hence all) of the conditions 
(4.2)-(4.5) will be called an ordered direct k-sum decomposition of y in (x, y]. A set 
S c (x,y] such that IS[ = k, vS = y, and ( v S \ z ) ^ z  = x for all z e S will be called 
a direct k-sum decomposition of y in (x,y]. The number of such decompositions 
depends only on the length of Ix, y], which will first be proved for modular binomial 
lattices of positive characteristic. 

Theorem 4.2. I f  Ix, y] is an n-interval in a q-lattice, where q > 0, then the number of 
direct k-sum decomposition of y in (x,y] is given by Sq(n, k), where 

1 2 n~_ for all n ~ N and k ~ 0 z, (4.7) Sq(n ,  k)  = k~ .1 .k 
n, + .-. +n~ = n n l q  " ' "  n k q  - 

n i E P  

with 5;q(n,O) = 6,.o for all n ~ N, 

1 " n~ A 
Sq(n,k) = -~ ~=lj~( n 2-2~)(,;,,Sq(n - j , k  - 1) for all n, k e fl z, (4.8) 

with Sq(n,O) = 3,,o and Sq(O,k) = 3o.k,for all n,k e N, and 

2 Sq(n,k)~ = ~. for all k ~ N. (4.9) 
n>~O 

Proof. Since the supremum of the empty subset of I-x,y] is x, the number of direct 
0-sum decompositions is clearly 6,.o. 

Ifk 6 P, the summands zl of an ordered decomposition are distinct by (4.2). This fact, 
along with (4.4), reduces the proof of (4.7) to showing that for positive integers 
n 1 q- "'" d-nk = n, if ~ is the family of all ordered direct k-sum decompositions 
(Zx .. . .  ,z,) of y in (x,y], with p ( Z i )  = h i ,  then 

191 = n~ n~" (4.10) 
n v ~  " "  nk  y 
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Let s J  = { ( ~ 1 ,  - - . ,  an ) :  each ei is an a tom of I x , y ]  and el v ... vct,  = y}. Each member  
o f s g  satisfies (4.1) and (4.4), and thus (4.5), for k = n. So (cq . . . .  ,~ , )  ~ ( zb  ... ,Zk), with 

Zl = el v ..- v c%, z2 = c% + ~ v ... v e, : ,  etc., is a map  from ~ '  into ~ .  By Theorem 
3.1, ] sJ[ = nq and, moreover ,  each element of ~ has n~ ~q ... nkq~ preimages in ,~. This 

establishes (4.10), and thus (4.7). 

But now it is clear that  for q > 0, So(n,k) is a Ward  number  associated wi thf ,  = n~. 

So (4.8) and (4.9) follow immediately from (4.7) and Theorem 1.1. [ ]  

If  one defines/~q,, by 

& , .  := ~ ~,(n, k), 
k = O  

then (4.9) implies that  

(zx.) 
Bq, n ~_~ = e x p  ~ , 

n ) 0 n ~  \ n  ) 1 q ~  

(4.11) 

(4.12) 

(1.4) when q = 1. Thus  for q > 0, Sq(n, k) is a generalization of S(n, k) which reduces to 
for which generalizations of  all the Class I properties of the latter exist. 

n ~ n i 
Since n~ q(2) nq, (4.7) m a y  be rewritten as 

t 

1 K-' ~- ' n j) nq 
Sq(n, k) = ~ / ~ qZj=~ nj(, -na - ' nlq"'~nk, (4.13) 

n 1 + . . .  + n k ~ n  
n i~  P 

and (4.8) as 

l ~ q j ( " - J ) ( ~ )  (4.14) 
~ ( n ,  k) = k j= l  

The advantage  of such a rewriting is that  (4.13) and (4.14) hold for all q, including 

q = 0. Fo r  it is easy to check that  if [-x, y]  is an n-interval in the 0-lattice N, then the 
number  of  direct k-sum decomposi t ions  of  y in (x, y] is equal to one when n = k = 0 

and when n ~> k = 1, and zero otherwise. 

It is perhaps  wor th  not ing that  (4.13) and (4.14) can each be established by 

arguments  that  hold for all q, rather than by separate arguments  for q > 0 and q = 0. 

One  uses in each case the fact [8, Theorem 4.1] that  in any q-lattice, if z is an element 

of  rank j in an n-interval [x, y], then z has qJ~"-J) complements  in [x, y], i.e., elements 
w such that  z/x w = x and z v w  = y. 

5. The  C a r l i t z - M i l n e  Stirl ing numbers  of  a q- latt ice  

Let [x, y]  be a k-interval in an arbi t rary q-lattice, with n ~ N, and define the families 

,9 ~, ~ ' ,  and ~ as follows: 

5 :  = {(al . . . .  ,a,): each ai is an a t o m  of  [x, y] and  al  v ... v a , = y } ,  (5.1) 

,~  = {(~>- . . ,  ~k): each c 0 is an a tom of Ix, y]  and ~1 v ... v ~k = Y}, (5.3) 

= {(~o . . . .  ,/~k): x =/~o < ~1 < ... </~k = y}. (5.3) 
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By (3.6), 1:~1 = k~ and by Theorem 3.1, I~1 = q(k) k~ = k k. Based on the theory of 
covering algebras, it was shown in [16] that, in any binomial  lattice, I~1 depends only 
on n and k, indeed that  

k [k]ik 1 - J "  lSe[ = M ( j )  
j=o j 1 ' 

(5.4) 

where M ( j )  is the value of the MSbius function of that  lattice on any j-interval.  In 
particular,  if the lattice in quest ion is a q-lattice, one has 

k 

j = O  q 

(5.5) 

While parts  of the following analysis could be based on (5.5) and other  results from 
[16], we have opted instead for a more  elementary,  self-contained treatment.  The  fact 
that  15°1 depends only on n and k in the case of q-lattices will be a corol lary of this 
analysis. The  q-Stifling numbers  Sq(n, k) and Sq(n, k) will arise from certain natural  
mappings from 5 e to ~¢ and from 5 e to ~ .  

Given a k-interval [x, y] of a q-lattice, with rank function p, the modular  identity (3.3) 
implies that for every (a l , . . . ,  a , ) e  6e, {p(al  v ... v ai): i e [n-] } = [k]. (For  if not, let 
l = m a x [ k ] \ { p ( a x  v ... vai):  i e [n]} and t = min{i: p(al  v ... v a i )  = 

l + 1}. Then p(al  v ... v at-  1) ~< l - 1 and so p(al  v ... v at) ~< l, a contradiction.) In 
particular, this statement is vacuously true if n < k, for since p(ax v ... va , )~< 
n, 5e = 0 in this case. 

In light of the above observations,  the function 

(aa, . . . ,  a,) ~ (ail, ai2 . . . . .  a J ,  (5.6) 

wi th / / :=  min {i ~ [n] :p(a l  v ... v ai) = j} ,  j ~ [k], is well defined for all (aa . . . .  , a,) e 5 e. 

Theorem 5.1. T h e  funct ion  (as, . . . ,a , )w-~(ai  . . . . .  ,ai~) defined by (5.6) maps 5:  into 

d and every e lement  o f  d has Sq(n, k) preimages  in 5:  with respect  to this funct ion,  

where  

Sq(n, k):= ~ (lq) dl (2q) d . . . .  (k~) d~. (5.7) 
dl+ "-- +d~=n k 

di e r~ 

Proof.  Since y is the only rank k element of [x, y], to show that  (5.6) defines a map  into 
~¢, it suffices to show that  for every (al . . . .  , a , )~S# ,  % v . . . v a i ~ =  

a l v a 2 v  . . .  v a i k .  

One proves this by showing by induct ion on j that  

a l l y  ... v aij = al v a2 v ... v alj for a l l j e [ k ] .  (5.8) 
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Since il = 1, (5.8) holds for j = 1. Given  (5.8) for some j e [k - 1], one has, by 
modula r i ty  and the definition of ij+ 1 that  al  v a2 v --. v aij = 

a l  v a 2 v  " ' "  v a i j . t - 1 .  Hence,  ail v ... v aij~ = al ~ / 6 1 2  V " ' "  v aij+~. 
N o w  all of the pre images  (a~ . . . . .  a,) of a given (cq . . . . .  ~k) ~ ~¢ under  the m a p  (5.6) 

m a y  be const ructed by 

(1) choosing a sequence (iz , . . . , ik)  with 1 = i I <~ i2 < ' "  < ik <<, n, and setting 
a~j -- ~j for all j e [k], and 

(2) for all j ~ [ k - 1 ] ,  choosing for the d j : = i j + ~ - i j - 1  elements a~, where 

ij < i <  i j+l ,  a rb i t ra ry  a toms  of the j - interval  Ix, ~ v  ... v ~ j ] ,  and for the 
dk:= n - - i k  elements ag, where ik < i ~  n, arb i t ra ry  a toms  of the k-interval 

I x ,  ~ v . .-  v c~k~ = I-x, y ] .  

By (3.5), this cons t ruc t ion  m a y  be effected in Sq(n,k) ways. [ ]  

By (5.7), Sq(n, k) is a Comte t  n u m b e r  with u, = n~. Hence  by Theo rem 1.2, 

X k 

Sq(n,k)x" = (1 - 0qx)(1 - lqx) ... (1 - kqx)' for all k e N, (5.9) 
n ~ > 0  

Sq(n,k) = gq(n - 1,k - 1) + k~gq(n - 1,k), for all n, k e  P, (5.10) 

with Sq(n,O) = 6,,o and Sq(O,k) = 6O,k for all n, k e N, and 

x " =  ~ gq(n,k)q~k(X), f o r a l l  n e N ,  (5.11) 
k = O  

with q~o(X) := 1 and q~k(X) := X(X -- lq) . . .  (X -- (k -- 1)q) for all k s P. 
If, following Davis  [7], one defines the q-difference Aq : C Ix]  --, C Ix ]  by 

p(qx + 1) - p ( x )  
Aqp(X)= ( q - - 1 ) x +  1 ' (5.12) 

then 

Aqq~k(X) = kq~pk-l(x) for all k ~  N. (5.13) 

F r o m  (5.11) and (5.13) it follows that  

k n 
gq(n,k)  - Aqx  Ix=o 

, , ( 5 . 1 4 )  
kq 

where Aq k is the k-fold compos i t ion  of Aq (cf. (2.4)). So Sq(n, k) is a general izat ion of 

S(n, k) for which general izat ions of all of the Class I I  proper t ies  of  the lat ter  exist. 
The  case q = 0 of  the above  is somewha t  intriguing. By (5.9) or  (5.10) So(n, 0) = 6,, o 

and So(0,k) = 6O,k for all n, k, E N, and  So(n,k) = (~2~) for all n, k e P. Of  course, if 
Ix, y] is a k-interval in the 0-lattice (N, ~<), the set 5* defined by (5.1) is n o n e m p t y  (and 
then of cardinal i ty  1) iffn = k = 0 or  n ~> k ~> 1. Similarly, the set ~ defined by (5.2) is 
n o n e m p t y  (and of cardinal i ty  1) iff k = 0 or  k = 1. In part icular ,  if k ~> 2 the m a p  
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defined by (5.6) is the empty function from 0 to 0. In this case, the claim that each 
element of ~¢ has (~- ~) preimages is true, as claimed in Theorem 5.1, but vacuously so. 

The q-Stirling numbers Sq(n, k) arise in connection with the function 

(a, . . . . .  a.) ~ (x, (al v a2 v -.. v aij), ~j <~ k) (5.15) 

with it:= min{i e In]: p(al v ... v ai) =j}. 

Theorem 5.2. The function defined by (5.15) maps 6~ into ~ ,  and every element of  ~ has 

Sq(n, k):= q(k) S~(n, k) (5.16) 

preimages in 5P with respect to this function. 

Proof. By (5.8), the function given by (5.15) is identical with that given by 
(al . . . . .  a,) ~ (x, (ail v ai2 v ... v al)m ~j ~ k). Thus it is just the composition of the map 
from 6 e to d given by (5.6) with the map from d to ~ given by 
(cq . . . .  , ~k) ~ (X, (~1 V Ct2 V .-. V Ctj)m ~<j ~ k). By the proof of Theorem 3.1 each element 

k 
of M has q(2) prelmages in d with respect to the latter map. Combined with Theorem 
5.1, this yields (5.16). [] 

Of course, multiplying (5.9) and (5.10) by q(k) yields variants of those formulas for 
Sq(n, k). In particular, 

Sq(n,k) = qk- l  Sq(n -- 1,k -- 1) + kqSq(n - 1,k) for all n ,k ,~  P. (5.17) 

Of more interest, however, are the following distinctive properties of Sq(n, k). 

Theorem 5.3. For every q-lattice, 

Sq(n,k) =-~qV. j~o ( -  1)k-j q(k2 "i) (jq)". 
q 

(5.18) 

Proof. One can show [14,Theorem 3.6] by induction that if q > 0 and p(x) ~ C[x], 
then 

Akp(x) = y k= O( - 1 )  k _jq(k 2 J) (k)~p(qJ x + jq) (5.19) 

q(2k) [-(q -- 1)X + 1] k 

With (5.14) this implies that for q > 0, 

Sq(n, k) = ~k=o( -- 1)k-jq(k2J) (k)q(qi). 
k , (5.20) 

q(2) k~ 

and multiplying (5.20) by q(k) then yields (5.18) for q > 0. But one may check that 
(5.18) also holds for q = 0, for So(n,k) is nonzero (and equal to 1) iff n = k = 0 or 
n >~ k = 1, which agrees with the right-hand side of (5.18). [] 
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Theorem 5.4. For every q-lattice, 

Sq(n + 1,k) = qJSq(j,k - 1), for all n ~ N and k e P. (5.21) 
j=O J 

Proof. Using the values of So(n, k) noted in the preceding paragraph, one may check 
that (5.21) holds for q --- 0. The method of linear functionals [1, pp. 89-90], originated 
by Rota, will be used to treat the case q > 0. 

By (5.11) and (5.16), 

Xn= ~ Sq(n,j)~j(x), (5.22) 
j=0  

where ~,j(x) = (oj(x)/q(~2). Note that 

~ j + l  (X) = X~lj(~@ql) " (5.23) 

For all k ~ N, define Lk:C[x]  ~ C by setting LkOj(x) = 6k,j and extending Lk to 
C Ix] by linearity. By (5.22), Lk(X") = Sq(n, k). By the definition of Lk and by (5.23), one 
has, for all j ~ N, 

Lk_ l(l~j(X)) = Lk(~j+ l(X)) ~- Lk(XOj(~@q l )  ) ,  (5.24) 

and thus, for all p(x) e C Ix], 

Lk-l(p(x))= Lk(Xp(~-q l ) ) .  (5.25) 

Setting p(x) = (qx + 1)" in (5.25) yields (5.21). [] 

From (5.21) it follows that the q-Bell numbers 

Bq,, := ~ Sq(n, k) (5.26) 
k-O 

satisfy the recurrence 

Bq,n+ 1 = qJBq, j, (5.27) 
j=O 

which was proved by Milne [11] for the case q = pa, based on (2.1). Our proof of(5.21) 
is very much in the spirit of Milne's proof, but being based on (5.22), has the advantage 
of holding for q = 1 as well as for q = pa. The same remarks apply to the following 
Dobinski formula for Bq,n, established by Milne for the case q = pal. 
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T h e o r e m  5.5. For every q-lattice with q > 0, 

Bq,  = , , (5.28) 
' ~ kq 

where 

xk 
eq(x) := ~-. (5.29) 

kq 

Proof. Define L : C [ x ]  ~ C  by L(Oj(x))= 1 for all j e  N, extending L to C[x]  by 
linearity. By (5.22) and (5.26), L(x") = Bq.n. 

For all n e N, 

lk~>_o~ q lk~>~ " 1 L(O,(x)) = 1 - - , 
e ~ ( 1 )  eq(1) (k n)q 

-eq(1)  k~>_. O"(kq)-  1 ~'~ O.(kq) (5.30) 
. ~-~ eq(1)k>/--" 0 k; " 

Hence for all p(x) e C I-x], 

1 •p!k ,q)  
L(p(x)) = ~ k~>~ ° kq " 

Setting p(x) = x" in (5.31) yields (5.28). []  

(5.31) 

So Sq(n, k) is a generalization of S(n, k) for which generalizations of all of the Class 
III properties of the latter exist. 

Milne [12] showed that Sq(n, k), regarded as a polynomial in the indeterminate q, is 
the generating function for a simple statistic on RGF(n, k), the set of restricted growth 
functions from [n] to [hi. Specifically, f o r f ~  RGF(n, k), let 

I " ( f ) : =  ~ Ira(f), (5.32) 
i~>l 

where Ira(f) is the number of distinct integers among f(1) . . . . .  f ( i  - 1) that are strictly 
less than f(i). Milne proved that 

q 1ram = Sq(n, k) (5.33) 
f ~ RGF(n,k) 

by showing that the left-hand side of (5.33) satisfies the recurrence (5.17). 
Wachs and White [15], on the other hand, showed by a rook placement model 

that 

I ( f )  := ~ f(i) = Ira(f) + n, (5.34) 
i = 1  
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which, with (5.33), implies 

2 ql(f) = q,, Sq(n, k). (5.35) 
f ~RGF(n,k) 

It turns out  that  (5.33) and (5.35) are simple corollaries of a different sort of q-counting 
of RGF(n, k), one which invokes the combinator ia l  interpretat ion of Sq(n, k) estab- 
lished in this paper. 

Theorem 5.6. For f ~ RGF(n,k),  let 

k 

I ( f )  = ~ ( j -  1 ) ( v j ( f ) -  1), (5.36) 
j = l  

where 

v j ( f )  = [ f - l ( { j } ) l  for a l l j 6  [k]. 

Then 

(5.37) 

~, qSS) = Sq(n, k). (5.38) 
f ~RGF(n,k) 

Proof.  It suffices to prove (5.38) when q is the characteristic of an arbi t rary modular  
binomial  lattice L. Let  [x, y] be a k-interval in the q-lattice L. Fix ~ --- (~1 . . . . .  ak) ~ ,~, 
as defined by (5.2), and let 5~  be the subset of 5 P, as defined by (5.1), consisting of all 
preimages of a under  the map (5.6). 

By Theorem 5.1, LSP, I = Sq(n, k). We prove (5.38) by exhibiting a function from , ~  
to RGF(n, k) such that  e a c h f ~  RGF(n, k) has qr(y) preimages under  this function. Let 
(al . . . . .  a , )eSP~,  with ij:= min{i: p(al v ... v ai = j }  for all j ~  [k]. Consider  the 
function 

(al . . . . .  a,) ~ (z(al) . . . . .  z(a,)), 

where 

(5.39) 

z(ai) = min{j: ai ~ al v ... v aij}. (5.40) 

Clearly, (5.39) maps 5~, into RGF(n,k),  with r(a  0 = j  for all j e [k]. All of the 
preimages (al . . . .  , a , )  of a given f e  RGF(n,k)  under  the function (5.39) may  be 
constructed by 

(1) setting ai = c~1 for every i such that f( i)  = 1, 
(2) for 2 ~< j ~< k, if i is the smallest element of In] wi thf( i )  = j, setting ai = e~; and if 

i is any other  element of I-n] with f ( i ) = j ,  setting a~ equal to any of the 
jq - -  ( j  - -  1)q = qJ-1 atoms that  belong to the j- interval [x ,~l  v -.. v ~j] but  not  to 
the ( j  - 1)-interval [x, cq v .-. v ~ j  1]. 
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This construction may be effected in 

k 

1--[ qtJ- 1)tvjty)- 1) = qr¢y) (5.41) 
j = l  

ways, which proves (5.38). []  

Clearly, Ira(f) = ~ = 1  (J - 1)vj(f) = I ( f )  + (~) and I ( f )  = I ( f )  + (~) + n, and so 
(5.38), along with (5.16), implies both (5.33) and (5.35). 

It should be noted that our conceptualizations of Sq(n, k) and Sq(n, k) are deeply 
indebted to Milne's conception of restricted growth functions and their vector space 
analogues. But our analyses of these numbers are quite different. Milne first develops 
Sq(n, k), offering a combinatorial proof of (2.1), which then plays a central role in his 
analysis. His approach requires that one exhibit for the vector space case of the map 
(5.15) a bijection between the sets of preimages associated with any two chains in ~.  

We first develop Sq(n, k), constructing the explicit formula (5.7) for the number of 
preimages of any element of d under the map (5.6). With Theorem 5.2, this entails 
that every element of :~ has the same number of preimages under (5.15). More 
importantly, (5.7) reveals that Sq(n,k) is a Comtet number, with the immediate 
consequences (5.9), (5.10), and (5.11). Formula (2.1) is just (5.11) with x = Xq. 

In the next section we describe q-generalizations of the Lah numbers analogous to 
Sq(n,k), Sq(n,k), and Sq(n,k). 

6. The Lah numbers of a q-lattice 

The (signless) Lah numbers L(n, k) originated [10] as connection constants: 

x~= ~ L(n,k)x k, (6.1) 
k = 0  

Clearly, L(n, 0) = 6,, o and L(0, k) = 60,k for all n, k ~ ~. One can also derive from (6.1) 
in straightforward, if tedious, fashion the recurrence 

L(n + 1, k) = L(n, k - 1) + (n + k)L(n, k) for all n ~ N, k ~ P, (6.2) 

the formula 

L(n, k) = ~. for all n, k e P, (6.3) 

and the generating function 

~"~ L(n, k) = for all k e N. (6.4) 
n ~ O  
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Since (~5 I) counts all sequences of k positive integers summing to n, formula (6.3) 
suggests a simple combinatorial interpretation of the Lah numbers. Just as the Stirling 
number S(n, k) enumerates the distributions of n labeled balls among k unlabeled urns, 
with no urn left empty, L(n, k) enumerates such distributions with the added proviso 
that the balls in each urn are to be linearly ordered [13], [1,pp. 86-87]. Indeed, the 
best approach to the Lah numbers would be to define them in this way, and derive 
(6.1) and (6.2) by (easy) combinatorial arguments. 

There is an obvious q-lattice generalization of the above. If [x, y] is an n-interval in 
such a lattice one selects, in all possible ways, from the nq atoms of Ix, y] a subset A of 
n atoms such that vA = y, and then distributes these atoms among k unlabeled urns, 
with no urn left empty, and with the atoms in each urn linearly ordered. By Theorem 
3.1 and the combinatorial interpretation of (7, 5 I) noted above, there are 

Lq(n, k):= k! \k  (6.5) 

such distributions for n, k e P. 
The numbers f_,q(n,k) do not generalize L(n,k) in a very profound way, but are 

included for completeness as obvious analogues of the q-Stifling numbers Sq(n,k). 
A deeper generalization of the Lah numbers requires their reconceptualization along 
the lines of Milne's restricted growth functions, as described below. 

Given n balls, labeled 1 . . . .  , n, and k urns, labelled 1, . . . ,  k, consider the distributions 
of these balls among these urns, with no urn left empty, and with the balls in each urn 
linearly ordered. By earlier remarks, there are 

2(n,k):= k!L(n,k)  -- n[ (6.6) 

such distributions. 
Associate with each such distribution a sequence 

((u l, Pl) . . . . .  (u,, p.)), (6.7) 

where ui denotes the number of the urn in which ball i is placed, and Pi its position in 
that urn. The sequences arising in this way are characterized by the following two 
properties: 

(i) {ul . . . .  ,u.} = [k], and 
(ii) for a l l j ~  [k], with Ij = {i~ [n] :u ,  =j} ,  {p , : i~  Ij} = [l l j l] .  

If S* denotes the set of sequences satisfying (i) and (ii), then l S*] = 2(n, k). 
In each sequence ((ul, pl) . . . . .  (u,, p,)) the pair (j, 1) occurs exactly once for every 

j e [k]. If ((u, ,  1) . . . . .  (ut~, 1)) is the subsequence comprised of all such pairs, then, 
clearly, 

((ul ,pl) ,  ... ,(u, ,p,)) ~ (u, . . . . . .  u,,) (6.8) 

is a map from S* to the set of all permutations of [k]. 
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Moreover ,  each permuta t ion  of [k] has L(n, k) preimages in S* with respect to the 
map  (6.8). Take,  for example, the permuta t ion  (1, 2 . . . .  , k). Its preimages (which might  
be called Lah restricted growth functions) are precisely those sequences ((ui, Pi))~ < ~ ,  
in which (j, 1) precedes (j + 1, 1),j ~ [k - 1], in a left to right scan. 

Such sequences correspond to distributions for which the number  on the initial ball in 
u r n j  is less than the number  on the initial ball in u r n j  + 1, for a l l j  ~ [k - 1]. But such 
distributions to labeled urns provide obvious canonical representations of the distribu- 
tions to unlabeled urns enumerated by L(n, k). A variant of this argument shows that 
every permutat ion of [k] has L(n, k) preimages in S* with respect to the map (6.8). 

The q-Lah numbers  /~q(n, k) and Lq(n, k), to be developed in what  follows, arise 
within the same conceptual  f ramework as the q-Stirling numbers  S~(n, k) and Sq(n, k). 
We have a k-interval Ix, y] of a q-lattice, with rank function p, and families 5 ~, d ,  and 

defined, as in Section 5, by 

---- { ( a  I . . . .  , a,): each ai is an a tom of Ix, y] and a I v . . .  V a, = y}, (6.9) 

~ '  = {(el . . . .  ,ek): each c 9 is an a tom of Ix, y] and cq v ... VC~k = y}, (6.10) 

and 

= {(flo . . . .  ,ilk): X = flo < r ,  < "'" < flk = Y}. (6.11) 

Also as in Section 5 we associate with each (al . . . .  , a , ) e S :  the sequence 
1 =  il <i2  < ".. < i~ <~ n, where 

ij := min{ i :p (a l  v ... v ai) = j } .  (6.12) 

Recall that  for all j e [k], p(flj) = j ,  where flj = all v ... v ai~. Thus if fl e [flj_ 1, flj], 
then either fl = r j_ l  or fl = flj. In particular,  if e is an a tom of [x, flj] then by 
modular i ty ,  r j_ 1 v e = flj iff a ~ r j_ 1. 

N o w  given (al . . . . .  a,) e 5:  and ij, as defined by (6.12), we define an ordered 
part i t ion (11 . . . .  , Ik) of In], where 

Ij:= {i e [n]: ai <~ al, v ... v aij, but ai ~ % v ... v % ,}. (6.13) 

No te  that  ij ~ I j  for all j e [k]. 
Next,  generalizing (6.7), let 5:* be the set of sequences ((al ,  Pl), . . . ,  (a,, p,)) satisfying 

(i) (a~ . . . .  , a . ) e  5 ~, and (ii) for all j ~ [k], {p , : i e  Ij} = [ [ I j l ] .  
Fo r  every ( (a j ,p l )  . . . . .  ( a , , p , ) ) ~ 5  p*, let ((at,,1) . . . . .  (%,1) ) ,  with 1 <~tl < t z  

< ... < tk <~ n, be the subsequence comprised of the k pairs with second coordinate  
equal to 1, and consider the map 

((al, Pl), ... , (a , ,p , ) )  ~ (at, . . . . .  a,k). (6.14) 

Theorem 6.1. The function defined by (6.14) maps 5 p* into d ,  and every element of  
d has Lq(n, k) preimages in 5¢* with respect to this function, where 

~ n! n -  
Lq(n,k):=~..( k i )q ,  f o r a l l n ,  k ~ P ,  (6.15) 

and F,q(n,O) = 6.,o and Lq(O,k) = riO,k for all n ,k  e N. 
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Proof.  While it need not  be the case that  t t ~ I t, there is some pe rmuta t ion  a of  [k] 
such that  t~ t  ) ~ I t. So to show that  (6.14) m a p s  St* into d ,  it suffices to show that  

a,, v --. v at~ = y for every sequence (t~,  . . . ,  tk) with t t ~ I t. In fact, it is the case that  

a ,  v . . .  v a t j = a i ,  v . . .  v a  6 f o r a l l j ~ [ k ] ,  (6.16) 

for all such sequences, by induct ion o n j .  The  c a s e j  = 1 of (6.16) holds, since for all 

i E I 1 ,  ai  = a l .  Given  (6.16), and t t+l  ~ It+~, we have 

ai ,  v . . .  v a i j  <~ atx v . . .  v a t j . ,  <. a i ,  v . . .  v aij+~, (6.17) 

and hence a ,  v -.. v atj+, = a~, v ... v ao+~, since atj., ~ a~, v ... v a~j. 
All of  the pre images  ((al ,  pa), . . . ,  (a,, p,))  of a given (aa, . . . ,  ~k) ~ ~¢ under  the m a p  

(6.14) m a y  be const ructed by 
(1) choosing a sequence 1 ~< tl < t2 < .-. < tk <~ n and setting ( a t j , p t j )  = (a t, 1) for 

all j E [k],  

(2) choosing a sequence of nonnegat ive  integers 6~ + . . .  + 6k = n - -  k ,  

(3) for e a c h j  ~ [k], pair ing each of the numbers  2, . . . ,  fit + 1 with an arb i t ra ry  a t o m  
of Ix, a1 v .-. v ~t] for which ~ ~ ~a v ... vc~ t_~ and 
(4) assigning these n - k pairs  as the values of (a i ,P i )  for i ( i { t x  . . . .  , t k } .  

Hence  there are 

n' Z qO6t+162+'"+(k-1)6kYl!(~ - 1  ) 
k !  k~ 1 q ~ + ... +63,=n k 

such preimages,  by (1.20) [ ]  

(6.18) 

I f  o n e  c o m p o s e s  (6.14) w i t h  t h e  m a p  (~l . . . .  ,0~k) b-~ (X, ~1 ,  ~1 V 0~ 2 . . . .  ,0~ 1 V -. .  V (Xk) 

f rom ~¢ to N, then, under  the resulting map,  each element of ~ has 

L q ( n ,  k ) : =  q(2 k) L q ( n ,  k)  (6.19) 

pre images  in 9 °*, thus comple t ing  the ana logy with the three types of q-Stirling 
numbers  developed in Sections 4 and 5. 

Ironically,  in view of the origins of the Lah  numbers ,  none  of our  q-general izat ions 
of L ( n ,  k)  seem to function in any interesting way as connect ion constants  between 
po lynomia l  sequences. N o r  does the recurrence (6.2) generalize in an interesting way. 

On  the other  hand,  by (6.18) and (1.17) the generat ing function (6.4) generalizes 
nicely f o r  ff, q(n, k) t o  

x" 1 x k 
Z L ~ ( n , k ) ~  = for all kE  ~.  (6.20) 

k~ Ho~<j~<k- 1(1 q J x )  
n>~O 
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