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A LIMIT q = −1 FOR THE BIG q-JACOBI POLYNOMIALS

LUC VINET AND ALEXEI ZHEDANOV

Abstract. We study a new family of “classical” orthogonal polynomials, here
called big −1 Jacobi polynomials, which satisfy (apart from a 3-term recur-
rence relation) an eigenvalue problem with differential operators of Dunkl type.
These polynomials can be obtained from the big q-Jacobi polynomials in the
limit q → −1. An explicit expression of these polynomials in terms of Gauss’
hypergeometric functions is found. The big −1 Jacobi polynomials are orthog-
onal on the union of two symmetric intervals of the real axis. We show that the
big −1 Jacobi polynomials can be obtained from the (terminating) Bannai-Ito
polynomials when the orthogonality support is extended to an infinite num-
ber of points. We further indicate that these polynomials provide a nontrivial
realization of the Askey-Wilson algebra for q → −1.

1. Introduction

We constructed in [19] a system of “classical” orthogonal polynomials Pn(x)
containing two real parameters α, β and corresponding to the limit q → −1 of the
little q-Jacobi polynomials. By “classical” we mean that these polynomials satisfy
(apart from a 3-term recurrence relation) a nontrivial eigenvalue equation of the
form

(1.1) LPn(x) = λnPn(x).

The novelty lies in the fact that L is a differential-difference operator of special type.
Namely, L is a linear operator which is of first order in the derivative operator ∂x
and also contains the reflection operator R which acts as Rf(x) = f(−x). Roughly
speaking, one can say that L belongs to the class of Dunkl operators [6] which
contain both the operators ∂x and R. Nevertheless, the operator L differs from the
standard Dunkl operators in a fundamental way. Indeed, L preserves the linear
space of polynomials of any given maximal degree. This basic property allows us to
construct a complete system of polynomials Pn(x), n = 0, 1, 2, . . . as eigenfunctions
of the operator L.

Guided by the q → −1 limit of the little q-Jacobi polynomials, we derived in [19]
an explicit expression of the polynomials Pn(x) in terms of Gauss’ hypergeometric
functions. We also found explicitly the recurrence coefficients and showed that the
polynomials Pn(x) are orthogonal on the interval [−1, 1] with a weight function
related to the weight function of the generalized Jacobi polynomials [5]. We also
proved that they admit the Dunkl classical property [3] and further demonstrated
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that the operator L together with the multiplication operator x forms a special case
of the Askey-Wilson algebra AW(3) [20] corresponding to the parameter q = −1.

In this paper we similarly construct a new family of “classical” orthogonal poly-
nomials which are obtained as a nontrivial limit of the big q-Jacobi polynomials
when q → −1. We will call them “big −1 Jacobi polynomials”.

In contrast to the little −1 Jacobi polynomials, the big −1 Jacobi polynomials
contain 3 real parameters α, β, c. This leads to more complicated formulas for the
recurrence coefficients as well as for the explicit expression in terms of the Gauss
hypergeometric function. Moreover, in contrast to the little −1 Jacobi polynomials
the big −1 Jacobi polynomials are orthogonal on the union of the two intervals
[−1,−c] and [c, 1] (it is assumed that 0 < c < 1). When c = 0 these intervals
connect into one interval [−1, 1]. This corresponds to the degeneration of the big
−1 Jacobi polynomials into the little −1 Jacobi polynomials

The fundamental “classical” property (1.1) holds for the big −1 Jacobi polyno-
mials as well. The operator L is again a first order differential operator of Dunkl
type which preserves the space of polynomials. This means that both little and
big −1 Jacobi polynomials provide two “missing” families of classical orthogonal
polynomials which should be included into the Askey table as special cases.

The first nontrivial example of explicit polynomials corresponding to the limit
q → −1 in the Askey scheme was proposed by Bannai and Ito [2], [18]. The termi-
nating Bannai-Ito polynomials are orthogonal on a finite set of N + 1 points. The
nonterminating Bannai-Ito polynomials (corresponding to the direct limit N → ∞)
are not positive definite. We show nevertheless that the big −1 Jacobi polynomials
are obtained in some special limit N → ∞ from the Bannai-Ito polynomials in a
way that preserves positive definiteness.

We also demonstrate that the big −1 Jacobi polynomials provide a convenient
realization of the AW(3) algebra for q = −1.

2. Big q-Jacobi polynomials in the limit q = −1

The big q-Jacobi polynomials Pn(x; a, b, c) were introduced by Andrews and
Askey [1] as an infinite-dimensional version of the q-Hahn polynomials. Implic-
itly, the big q-Jacobi polynomials are also contained in the Bannai-Ito scheme of
dual systems of orthogonal polynomials as an infinite dimension analogue of the
q-Racah polynomials [2]. These polynomials depend on 3 parameters a, b, c and are
defined by the following 3-term recurrence relation (for brevity, we will sometimes
omit the dependence on the parameters a, b, c):

(2.1) Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x),

where

un = An−1Cn, bn = 1−An − Cn

with

An =
(1− aqn+1)(1− abqn+1)(1− cqn+1)

(1− abq2n+1)(1− abq2n+2)
,(2.2)

Cn = −acqn+1 (1− qn)(1− abc−1qn)(1− bqn)

(1− abq2n+1)(1− abq2n)
.
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In terms of basic hypergeometric functions [10], [11] they are given by

(2.3) Pn(x; a, b, c) = κn3ϕ2

(
q−n, abqn+1, x

aq, cq

∣∣∣q; q) ,

where the coefficient κn ensures that Pn(x) is monic: Pn(x) = xn + O(xn−1). We
shall not need the explicit expression of κn in the following.

The big q-Jacobi polynomials satisfy the eigenvalue equation [10], [11]

(2.4) LPn(x) = λnPn(x), λn = (q−n − 1)(1− abqn+1),

where the operator L is

(2.5) Lf(x) = B(x)(f(xq)− f(x)) +D(x)(f(xq−1)− f(x))

with

(2.6) B(x) =
aq(x− 1)(bx− c)

x2
, D(x) =

(x− aq)(x− cq)

x2
.

The orthogonality relation is

(2.7)

∫ aq

cq

w(x)Pn(x)Pm(x)dqx = hnδnm, hn = u1u2 . . . un,

with the q-integral defined as [10], [11]∫ aq

cq

f(x)dqx = aq(1− q)
∞∑
s=0

f(aqs+1)qs − cq(1− q)
∞∑
s=0

f(cqs+1)qs

and the weight function

(2.8) w(x) = g
(a−1x; q)∞(c−1x; q)∞
(x; q)∞(bc−1x; q)∞

,

where
(a; q)s = (1− a)(1− aq) . . . (1− aqs−1)

is the shifted q-factorial [11] and (a; q)∞ = lims→∞(a; q)s. (In (2.8), g is a normal-
ization factor which is not essential for our considerations.)

Consider the operator (q+1)−1L, where the operator L is defined by (2.5). Put

(2.9) q = − exp(ε), a = − exp(εα), b = − exp(εβ)

and take the limit ε → 0 which corresponds to the limit q → −1. It is not difficult
to verify that the limit does exist and that we have

(2.10) L0 = lim
q→−1

(q + 1)−1L = g0(x)(R− I) + g1(x)∂xR,

where

(2.11) g0(x) =
(α+ β + 1)x2 + (cα− β)x+ c

x2
, g1(x) =

2(x− 1)(x+ c)

x
.

The operator I is the identity operator and R is the reflection operator Rf(x) =
f(−x).

Equivalently, the operator L0 can be presented through its action on f(x):

(2.12) L0f(x) = g0(x)(f(−x)− f(x))− g1(x)f
′(−x).

On monomials xn the operator L0 acts as follows.
For n even,

(2.13) L0x
n = 4n(x− 1)(x+ c)xn−2.
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For n odd,

(2.14) L0x
n = −2(α+ β + n+ 1)xn + 2(β − cα+ n− c)xn−1 + 2(n− 1)cxn−2.

In any case, the operator L0 is lower triangular, with 3 diagonals, in the basis xn:

(2.15) Lxn = ξnx
n + ηnx

n−1 + ζnx
n−2

with the coefficients ξn, ηn, ζn straightforwardly obtained from (2.13), (2.14). It
is easily seen that the operator L0 preserves the linear space of polynomials of
any fixed dimension. Hence for every n = 0, 1, 2, . . . there are monic polynomial

eigenfunctions P
(−1)
n (x) = xn +O(xn−1) of the operator L0.

This eigenvalue equation is obtained as the q → −1 limit of the eigenvalue
equation (2.4):

(2.16) L0P
(−1)
n (x) = λn P (−1)

n (x),

where

(2.17) λn =

{
2n, n even,

−2(α+ β + n+ 1), n odd.

Consider the limit q → −1 for the recurrence coefficients. Assuming (2.9), we have

(2.18) A(−1)
n = lim

ε→0
An =

{ (c+1)(α+n+1)
α+β+2n+2 , n even,

(1−c)(α+β+n+1)
α+β+2n+2 , n odd

and

(2.19) C(−1)
n = lim

ε→0
Cn =

{ (1−c)n
α+β+2n , n even,

(1+c)(β+n)
α+β+2n , n odd.

Hence for the recurrence coefficients we have

(2.20) u(−1)
n = lim

ε→0
An−1Cn =

⎧⎨
⎩

(1−c)2n(α+β+n)
(α+β+2n)2 , n even,

(1+c)2(α+n)(β+n)
(α+β+2n)2 , n odd

and

(2.21) b(−1)
n = lim

ε→0
1−An − Cn =

{
−c+ (c−1)n

α+β+2n + (1+c)(β+n+1)
α+β+2n+2 , n even,

c+ (1−c)(n+1)
α+β+2n+2 − (c+1)(β+n)

α+β+2n , n odd.

The polynomials P
(−1)
n (x) satisfy the 3-term recurrence relation

(2.22) P
(−1)
n+1 (x) + b(−1)

n P (−1)
n (x) + u(−1)

n P
(−1)
n−1 (x) = xP (−1)

n (x).

For any real c �= 1 and real α, β satisfying the restriction α > −1, β > −1, the

recurrence coefficients b
(−1)
n are real and the recurrence coefficients un are posi-

tive. This means that the polynomials P
(−1)
n (x) are positive definite orthogonal

polynomials.
Let us consider expression (2.3) in detail,

(2.23) Pn(x) = κn

n∑
s=0

(q−n; q)s(abq
n+1; q)s(x; q)s

(q; q)s(aq; q)s(cq; q)s
qs.
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In the limit q → −1 it is easy to obtain that

(x; q)s
(cq; q)s

=

⎧⎪⎪⎨
⎪⎪⎩

(
1−x2

1−c2

)s/2

, s even,

1−x
1+c

(
1−x2

1−c2

)(s−1)/2

, s odd.

Hence, in the limit q → −1 the sum (2.23) is divided into two parts. The first part
is an even polynomial with respect to x, i.e. p(x2), where p(x) is a polynomial. The
second part will have the form (1− x)q(x2) with another polynomial q(x). Simple
calculations lead to the following formulas.

If n is even,

P (−1)
n (x) = κn

[
2F1

(
−n

2 ,
n+α+β+2

2
α+1
2

∣∣∣∣1− x2

1− c2

)
(2.24)

+
n(1− x)

(1 + c)(α+ 1)
2F1

(
1− n

2 ,
n+α+β+2

2
α+3
2

∣∣∣∣1− x2

1− c2

)]
.

If n is odd,

P (−1)
n (x) = κn

[
2F1

(
−n−1

2 , n+α+β+1
2

α+1
2

∣∣∣∣1− x2

1− c2

)(2.25)

− (α+ β + n+ 1)(1− x)

(1 + c)(α+ 1)
2F1

(
−n−1

2 , n+α+β+3
2

α+3
2

∣∣∣∣1− x2

1− c2

)]
.

The normalization coefficient is given by

(2.26) κn =

⎧⎪⎨
⎪⎩

(1−c2)n/2((α+1)/2)n/2

((n+α+β+2)/2)n/2
, n even,

(1 + c)
(1−c2)(n−1)/2((α+1)/2)(n+1)/2

((n+α+β+1)/2)(n+1)/2
, n odd.

The remaining problem is to find the orthogonality relation and the corresponding
weight function w(x) for the big −1 Jacobi polynomials. Of course, this could be
done directly from the known orthogonality relation for the big q-Jacobi polynomials
by taking the limit q → −1. However it is more instructive to derive the weight
function using the method of polynomial mappings [8], [15]. This method will
allow us to find nontrivial relations between the big −1 Jacobi polynomials and the
ordinary Jacobi polynomials. This will explain the origin of the rather “strange”
expressions (2.24) and (2.25).

3. Polynomial systems and the Christoffel transform

In this section we consider a scheme allowing us to obtain a new family of or-
thogonal polynomials starting from two sets of orthogonal polynomials related by
the Christoffel transform. This scheme is a simple generalization of the well-known
Chihara method for constructing symmetric orthogonal polynomials from a pair
of orthogonal polynomials and their kernel partner [4]. It is also very close to the
scheme proposed by Marcellán and Petronilho in [15].

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



5496 LUC VINET AND ALEXEI ZHEDANOV

Let Pn(x), n = 0, 1, 2, . . . be a set of monic orthogonal polynomials satisfying
the recurrence relation

(3.1) Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x).

Consider a partner family of orthogonal polynomials Qn(x) related to Pn(x) by the
Christoffel transform [16]

(3.2) Qn(x) =
Pn+1(x)−AnPn(x)

x− ν2
,

where ν is a real parameter and An = Pn+1(ν
2)/Pn(ν

2).
If the polynomials Pn(x) are monic orthogonal with respect to the linear func-

tional σ,

〈σ, Pn(x)Pm(x)〉 = 0, n �= m,

then the polynomials Qn(x) are monic orthogonal with respect to the functional
σ̃ = (x− ν2)σ, i.e. [16]

〈σ, (x− ν2)Qn(x)Qm(x)〉 = 0, n �= m.

The polynomials Pn(x) are expressed in terms of the polynomials Qn(x) via the
Geronimus transform [21]

(3.3) Pn(x) = Qn(x)−BnQn−1(x),

where the coefficients Bn are related to An and the recurrence coefficients by the
formulas

(3.4) un = BnAn−1, bn = −An −Bn + ν2.

Now, starting from a pair of polynomials Pn(x), Qn(x) we can construct another
family of orthogonal polynomial Rn(x) by proceeding as follows.

For even numbers n, let the polynomials Rn(x) be defined according to

(3.5) R2n(x) = Pn(x
2)

and for odd numbers n, let

(3.6) R2n+1(x) = (x− ν)Qn(x
2).

It is obvious that for all n = 0, 1, 2, . . . the polynomials Rn(x) are monic polyno-
mials in x of degree n.

What is more important is that the polynomials Rn(x) are orthogonal, since they
satisfy the 3-term recurrence relation

(3.7) Rn+1(x) + (−1)nνRn(x) + vnRn−1(x) = xRn(x),

where

(3.8) v2n = −Bn, v2n+1 = −An.

This construction can also be carried out in reverse.
Assuming that the polynomials Rn(x) satisfy the recurrence relation (3.7) with

some real parameter ν and positive coefficients vn, it can easily be shown by induc-
tion that

R2n(x) = Pn(x
2), R2n+1(x) = (x− ν)Qn(x

2),

where Pn(x), Qn(x) are monic polynomials of degree n.
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The polynomials Rn(x) are orthogonal with respect to a positive definite linear
functional ρ:

(3.9) 〈ρ,Rn(x)Rm(x)〉 = 0, n �= m.

Let
rn = 〈ρ, xn〉

be the corresponding moments. We use the standard normalization condition r0 =
1. It can then be proven, again by induction, that

(3.10) r2n+1 = νr2n, n = 0, 1, 2, . . .

and that the even moment r2n is an even monic polynomial of degree 2n in the
argument ν, i.e.

r2n = ν2n + nv1ν
2n−2 +

n(n− 1)

2
v1(v1 + v2)ν

2n−4 +O(ν2n−6).

It is directly verified that the polynomials Pn(x) and Qn(x) are orthogonal as they
satisfy the recurrence relations

Pn+1(x) + (v2n + v2n+1 + ν2)Pn(x) + v2nv2n−1Pn−1(x) = xPn(x)

and

Qn+1(x) + (v2n+2 + v2n+1 + ν2)Qn(x) + v2nv2n+1Qn−1(x) = xQn(x).

Moreover, the polynomials Qn(x) are Christoffel transforms of the polynomials
Pn(x):

Qn(x) =
Pn+1(x) + v2n+1Pn(x)

x− ν2
,

while the polynomials Pn(x) are Geronimus transforms of Qn(x):

Pn(x) = Qn(x) + v2nQn−1(x).

Assume that the polynomials Pn(x) have moments cn. Then one has a simple
relation between the moments

(3.11) r2n = cn, r2n+1 = νcn, n = 0, 1, 2, . . . .

The moments c̃n corresponding to the polynomials Qn(x) are given by

(3.12) c̃n =
cn+1 − ν2cn

c1 − ν2
.

Expression (3.12) follows easily from the definition of the Christoffel transform [21].
Note that in the special case ν = 0 we recover the well-known scheme relating

symmetric and nonsymmetric polynomials that has been described in detail by Chi-
hara [4]. In this case the polynomials Rn(x) are symmetric, Rn(−x) = (−1)nRn(x),
and their odd moments are zero, r2n+1 = 0. All the above formulas remain valid
if one puts ν = 0. We have thus provided a generalization of the Chihara scheme
with an additional parameter ν. Note that the resulting polynomials Rn(x) are
no longer symmetric; however they satisfy the simple recurrence relation (3.7) and
have properties very close to those of symmetric orthogonal polynomials.

In [15] a more general problem was studied with the orthogonal polynomials
Rn(x) defined as R2n(x) = Pn(φ(x)), where φ(x) is a polynomial of second degree
and Pn(x) is a given system of orthogonal polynomials. Our approach corresponds
to the special case φ(x) = x2. Note that the general case of a polynomial mapping
has the form RNn(x) = Pn(πN (x)), where πN (x) is a polynomial of degree N .
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Again it is assumed that both Pn(x) and Rn(x) are nondegenerate orthogonal
polynomials. The theory of such mappings was considered in [8].

Now consider the following concrete example connected with Jacobi polynomials.
This example will allow us to establish the weight function of the big −1-Jacobi
polynomials.

Let

P (ξ,η)
n (x) = Gn 2F1

(
−n, n+ ξ + η + 1

ξ + 1
;x

)
be Jacobi polynomials with the orthogonality relation∫ 1

0

xξ(1− x)ηP (ξ,η)
n (x)P (ξ,η)

m (x)dx = hnm δnm

on the interval [0, 1].
The normalization coefficient

Gn = (−1)n
(ξ + 1)n

(n+ ξ + η + 1)n

ensures that Pn(x) is monic: P
(ξ,η)
n (x) = xn +O(xn−1).

First perform an affine transformation of the argument and consider the new
monic orthogonal polynomials

Pn(x) = (c2 − 1)n P (ξ,η)
n

(
1− x

1− c2

)
,

where c is a real parameter with the restriction 0 < c < 1.
In terms of hypergeometric functions,

(3.13) Pn(x) = (1− c2)n
(ξ + 1)n

(n+ ξ + η + 1)n
2F1

(
−n, n+ ξ + η + 1

ξ + 1
;
1− x

1− c2

)
.

Clearly, these polynomials are orthogonal on the interval [c2, 1],∫ 1

c2
(1− x)ξ(x− c2)ηPn(x)Pm(x)dx = 0, n �= m.

Also introduce the companion polynomials Qn(x) through the Christoffel transform

(3.14) Qn(x) =
Pn+1(x)−AnPn(x)

x− 1
, An =

Pn+1(1)

Pn(1)
.

It is easily seen that the polynomials Qn(x) are again expressible in terms of Jacobi
polynomials with ξ → ξ + 1:

Qn(x) = (c2 − 1)n P (ξ+1,η)
n

(
1− x

1− c2

)
,

or, in terms of hypergeometric functions,

(3.15) Qn(x) = (1− c2)n
(ξ + 2)n

(n+ ξ + η + 2)n
2F1

(
−n, n+ ξ + η + 2

ξ + 2
;
1− x

1− c2

)
.

The polynomials Pn(x) and Qn(x) are connected by the relations (3.2) and (3.3)
with ν = 1. The coefficientsAn and Bn can be found from the following observation.
Putting x = 1, we find from (3.13) and (3.15),

Pn(1) = (1− c2)n
(ξ + 1)n

(n+ ξ + η + 1)n
, Qn(1) = (1− c2)n

(ξ + 2)n
(n+ ξ + η + 2)n

.
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From these formulas we immediately get

(3.16) An =
Pn+1(1)

Pn(1)
= (1− c2)

(ξ + n+ 1)(ξ + η + n+ 1)

(2n+ ξ + η + 1)(2n+ ξ + η + 2)

and

(3.17) Bn =
Qn(1)− Pn(1)

Qn−1(1)
= (1− c2)

n(η + n)

(2n+ ξ + η)(2n+ ξ + η + 1)
.

Note that An > 0, Bn > 0 for n = 1, 2, . . . due to the restriction 0 < c < 1.
Now consider the new monic orthogonal polynomials Rn(x) defined by the rela-

tions

(3.18) R2n(x) = Pn(x
2), R2n+1(x) = (x− 1)Qn(x

2).

According to the general theory of polynomial mappings [8], [15], it is not difficult
to show that the polynomials Rn(x) are orthogonal on a domain formed by the
union of two intervals [−1,−c], [c, 1] of the real axis:

(3.19)

∫ −c

−1

Rn(x)Rm(x)W (x)dx+

∫ 1

c

Rn(x)Rm(x)W (x)dx = 0, n �= m,

where the (nonnormalized) weight function is:

(3.20) W (x) = θ(x)(1 + x)(1− x2)ξ(x2 − c2)η

and θ(x) = x/|x| is the sign function. Note that the weight function W (x) is not
positive on the interval [−1,−c].

In terms of Gauss’ hypergeometric functions we have the expressions
(3.21)

R2n(x) = Pn(x
2) = (1− c2)n

(ξ + 1)n
(n+ ξ + η + 1)n

2F1

(
−n, n+ ξ + η + 1

ξ + 1
;
1− x2

1− c2

)

and

R2n+1(x) = (x− 1)Qn(x
2)

(3.22)

= (1− c2)n
(ξ + 2)n

(n+ ξ + η + 2)n
(x− 1)2F1

(
−n, n+ ξ + η + 2

ξ + 2
;
1− x2

1− c2

)
.

The polynomials Rn(x) satisfy the 3-term recurrence relation

(3.23) Rn+1(x) + (−1)nRn(x) + vnRn−1(x) = xRn(x),

where

v2n = −Bn = (c2 − 1)
n(η + n)

(2n+ ξ + η)(2n+ ξ + η + 1)
,(3.24)

v2n+1 = −An = (c2 − 1)
(ξ + n+ 1)(ξ + η + n+ 1)

(2n+ ξ + η + 1)(2n+ ξ + η + 2)
.

Note that all the coefficients vn are negative, vn < 0, which corresponds to the
nonpositivity of the weight function W (x).
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4. The weight function and the orthogonality

of the big −1 Jacobi polynomials

In order to determine the weight function and the orthogonality region for the big
−1 Jacobi polynomials, we notice that formulas (2.24) and (2.25) can be presented
in the following equivalent form:

(4.1) P (−1)
n (x) = Rn(x)−GnRn−1(x),

whereRn(x) are the polynomials defined by (3.21), (3.22) that satisfy the recurrence
relation (3.23). In these formulas we should put ξ = (α− 1)/2, η = (β+1)/2. The
coefficients Gn have the expression

(4.2) Gn =

{ (1−c)n
2n+α+β , n even,

− (1+c)(n+α)
2n+α+β , n odd.

It is well known that if two families of orthogonal polynomials are related by a

formula such as (4.1), then necessarily the polynomials P
(−1)
n (x) are obtained from

the polynomials Rn(x) by the Geronimus transform [21]. This is equivalent to

the statement that the weight function w(−1)(x) of the polynomials P
(−1)
n (x) is

obtained from the weight function W (x) of the polynomials Rn(x) as follows:

(4.3) w(−1)(x) =
W (x)

x− μ
+Mδ(x− μ),

with two additional parameters μ and M . Formula (4.3) means that apart from the
division of the weight function W (x) by the linear factor x−μ there is an additional
concentrated mass M that is inserted at the point x = μ.

The parameter μ can be found from the recurrence relation for the coefficients
Gn [21],

(4.4) Gn+1 + (−1)n +
vn
Gn

= μ,

with the recurrence coefficients vn given by (3.24).
Substituting (4.2) into (4.4) we obtain μ = −c.

Thus the orthogonality relation for polynomials P
(−1)
n (x) takes the form

(4.5)∫
Γ

P (−1)
n (x)P (−1)

m (x)W (x)(x+ c)−1dx+MP (−1)
n (−c)P (−1)

m (−c) = 0, n �= m,

where the contour Γ is the union of the two intervals [−1,−c] and [c, 1] of the real
axis.

In order to find the value M of the concentrated mass it is sufficient to consider
a special case of the orthogonality relation (4.5) for n = 1,m = 0,

(4.6)

∫
Γ

P
(−1)
1 (x)W (x)(x+ c)−1dx+MP1(−c) = 0.

Now, P
(−1)
1 (x) is given by

P
(−1)
1 (x) = x+ ζ,

where ζ = c(α+1)−β−1
2+α+β . Substituting this expression into (4.6) and calculating the

integral (through an elementary reduction to the Euler beta-integral) we find that
M = 0.
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Thus, the orthogonality relation for polynomials P
(−1)
n (x) reads

(4.7)

∫
Γ

P (−1)
n (x)P (−1)

m (x)w(−1)(x)dx = 0, n �= m,

where the weight function w(−1)(x) can be presented in the form

(4.8) w(−1)(x) = θ(x)(x+ 1)(x+ c)−1(1− x2)(α−1)/2(x2 − c2)(β+1)/2

or, equivalently,

(4.9) w(−1)(x) = θ(x)(x+ 1)(x− c)(1− x2)(α−1)/2(x2 − c2)(β−1)/2.

Note that under the restrictions α > −1, β > −1, the weight function is positive
on the two intervals of Γ and all the moments

mn =

∫
Γ

w(−1)(x)xndx

are finite for n = 0, 1, 2, . . . .
When c → 0, the big q-Jacobi polynomials reduce to the little q-Jacobi polyno-

mials [10]. In the limit case q → −1 we see that when c → 0, the set of two intervals
coalesces to the single interval [−1, 1] and the weight function becomes

w(x) |c=0 = (1 + x)|x|β(1− x2)(α−1)/2,

which corresponds to the weight function of the little −1 Jacobi polynomials [19].
So far, we considered the case 0 < c < 0. The case c > 1 can be treated in an

analogous way. This leads to the following orthogonality relation:
(4.10)∫ −1

−c

P (−1)
n (x)P (−1)

m (x)w(−1)(x)dx+

∫ c

1

P (−1)
n (x)P (−1)

m (x)w(−1)(x)dx = 0, n �= m,

where the weight function is almost the same as in (4.9) with obvious modifications:

(4.11) w(−1)(x) = θ(x)(x+ 1)(c− x)(x2 − 1)(α−1)/2(c2 − x2)(β−1)/2

and where again we have the restrictions α > −1, β > −1.
The case c = 1 is degenerate: the recurrence coefficients un for even n become

zero, u2n = 0, which means that orthogonal polynomials P
(1)
n (x) are no longer

positive definite. The two intervals of orthogonality shrink into two points x = ±1.

5. The big −1 Jacobi polynomials as limits

of the Bannai-Ito polynomials

Bannai and Ito proved a theorem which characterizes all dual polynomial schemes
[2]. This theorem is a generalization of the Leonard theorem [14], where only the
finite-dimensional case was considered.

As part of this characterization Bannai and Ito found polynomials (see below)
that are not contained in the list of known explicit orthogonal polynomials of the
Askey scheme. They are related to the limit q → −1 of the q-Racah polynomials.
These can be either terminating (N < ∞) or nonterminating (N = ∞).

The terminating Bannai-Ito polynomials Wn(x) are specified as follows: they are
orthogonal on a finite number of points xi, i = 0, 1, 2, . . . , N given by

(5.1) xi =

{
θ0 + 2hi, i even,

θ0 − 2h(i+ 1− s), i odd,

where θ0, h, s are arbitrary parameters.
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The polynomials Wn(x) satisfy the recurrence relation [2], [18]

(5.2) AnWn+1(x) + (θ0 −An − Cn)Wn(x) + CnWn−1(x) = xWn(x),

where

(5.3) An =

{
2h(n+1+r1)(n+1+r2)

2n+2−s∗ , n even,
2h(n+1−s∗)(n+1−r3)

2n+2−s∗ , n odd

and

(5.4) Cn =

{
− 2hn(n−s∗+r3)

2n−s∗ , n even,

− 2h(n−r1−s∗)(n−r2−s∗)
2n−s∗ , n odd,

where s∗, r1, r2 are parameters such that

(5.5) s+ s∗ = r3 − r1 − r2

and r2 = −N − 1 if N is even and r3 = N + 1 if N is odd.
The polynomials Wn(x) are not monic. Instead, they satisfy the conditions [2]

Wn(θ0) = 1, n = 0, 1, 2, . . . , N . As usual, it is assumed that W−1(x) = 0. We can

introduce the monic Bannai-Ito polynomials Ŵn(x) = xn+O(xn−1) by the formula

Ŵn(x) = A0A1 . . . An−1Wn(x).

The polynomials Ŵn(x) are then seen to satisfy the recurrence relation

(5.6) Ŵn+1(x) + (θ0 −An − Cn)Ŵn(x) +An−1CnŴn−1(x) = xŴn(x).

Note that the parameter θ0 is not essential: it only specifies the initial point x0.
We can thus put θ0 = 1 without loss of generality. The recurrence relation (5.6)

then determines all polynomials Ŵn(x) uniquely.
The nonterminating Bannai-Ito polynomials (N = ∞) are given by the same for-

mulas (5.1)–(5.5) with the condition below (5.5) removed; thus h, r1, r2, r3, s and s∗

are free subject only to (5.5). As we shall show below, the nonterminating Bannai-
Ito polynomials are only quasi-definite. We shall first focus on the terminating
polynomials Wn(x) and examine their limit when N → ∞ and h → 0 to establish
the connection with the big −1 Jacobi polynomials.

Let us now consider this limit N → ∞. Given the relations that r2 and r3 have
with N , it is clear that under such a limit, we must necessarily have: r3 → ∞ and
r2 → −∞. We assume that the parameters r1, s

∗ are finite. It is now convenient
to put

r1 = α, s∗ = −α− β

with some fixed parameters α, β.
From (5.5) it then follows that s → ∞. The parameter h, moreover, is free: it

allows for a scaling of the argument x. We can thus choose h → 0 in such a way
that

(5.7) 2hr2 → c+ 1, 2hr3 → c− 1,

where c is a parameter such that 0 < c < 1.
Then, in the limit N → ∞, the recurrence coefficients An and Cn coincide with

the coefficients An, Cn given by the formulas (2.18) and (2.19), and we have already
observed that these coefficients An and Cn determine uniquely the big −1 Jacobi
polynomials.
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Consider the behavior of the argument xi in the limit N → ∞. As h → 0, let
i → ∞ in a way such that 2hi → −y, where y is a continuous variable which varies
from 0 to c. Hence from (5.1), in the limit N → ∞, the points xi, for even i,
densely cover the interval [c, 1]. Similarly, from (5.5), (5.7),

lim
N→∞

2hs = lim
N→∞

{2hr3 − 2hr2} = −2

and hence from (5.1), in the limit N → ∞, the points xi, for odd i, densely cover the
interval [−1,−c]. This corresponds to the fact that the big −1 Jacobi polynomials
are orthogonal on the union of the two intervals [−1,−c] and [c, 1].

We thus have shown that the big −1 Jacobi polynomials can be obtained from
the terminating Bannai-Ito polynomials Wn(x) through a limit process where N →
∞, h → 0. This complements the fact demonstrated in this paper that the big −1
Jacobi polynomials arise as a q → −1 limit from the big q-Jacobi polynomials.

When we remind ourselves that the big q-Jacobi polynomials result from an
N → ∞ limit of the q-Racah polynomials [10], we see that we have the following
commutative diagram for limit relations between these polynomials:

q-Racah
q→−1 ��

N→∞
��

Bannai-Ito

N→∞
��

Big q-Jacobi
q→−1

�� Big −1 Jacobi

Note finally that that there is an essential difference in the limiting behavior
of the q-Racah and the Bannai-Ito polynomials when N → ∞. Indeed, from the
q-Racah polynomials one obtains the big q-Jacobi polynomials which have a purely
discrete orthogonality measure, and thus the duality property is preserved. This
fact is indicated in [2]. Namely Bannai and Ito have included the possibility of
N = ∞ for the case of q-Racah polynomials, in which limit the duality property
is preserved. However the limiting process is not trivial and, in fact, only very
recently have details of this limit been studied by Koornwinder [12].

In contrast, for the Bannai-Ito polynomials a nondegenerate positive-definite
limiting process N → ∞ is possible only if h → 0. We briefly show that positive
definite orthogonal Bannai-Ito polynomials do not exist in the limit N → ∞ if h is
finite, thereby demonstrating that the nonterminating Bannai-Ito polynomials are
not orthogonal. Indeed, it is well known that the positive definiteness property for
orthogonal polynomials means the existence of a positive nondecreasing measure on
the real axis with respect to which the polynomials are orthogonal [4]. In turn, the
positive definiteness is equivalent to the positivity of the product An−1Cn of the
recurrence coefficient in relation (5.6) [2]. Assume that the constant h is nonzero.
Clearly, we can always assume that h > 0. Assume first that all the parameters
r1, r2, r3, s

∗ are finite. Then it is visible from expressions (5.3), (5.4) that for suf-
ficiently large values of n the coefficient An is positive while the coefficient Cn is
negative. Hence for sufficiently large n we have An−1Cn < 0, which means that
the positive definite property is violated. The only possibility to get the condi-
tion An−1Cn > 0 is to assume that either An or Cn are truncated for some finite
N and hence the positivity condition will hold only for a finite number of points
x0, x1, . . . , xN . Further simple analysis shows that the truncation condition is only
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possible for the coefficient An. This gives two possible choices of truncation condi-
tion AN = 0: either r2 = −N − 1 or r3 = N + 1 depending on the parity of N (of
course, one can equally put r1 = −N − 1 in the first case because the numerator
of An for even n is symmetric with respect to r1, r2). In this case both An and Cn

are negative for 0 < n < N + 1 and the positivity property An−1Cn < 0 holds.
If one assumes that some of the parameters r1, r2, r3, s

∗ are tending to infinity,
then it is clear from (5.3) and (5.4) that inevitably s∗ → ∞ and simultaneously
some of the parameters r1, r2 or r3 tend to infinity as well. A simple analysis shows
that in this case we also have violation of positivity: An−1Cn < 0 for sufficiently
large N .

The nonterminating polynomials with N = ∞ that are included in the solu-
tion of the Bannai-Ito dual polynomial problem are hence only formal orthogonal
polynomials in that only An−1Cn �= 0 is satisfied without positivity.

The well-known example of formal orthogonal polynomials is the Bessel polyno-
mials [4] which are quasi-definite. An orthogonality relation for these polynomials
can be provided by an integral on the unit circle [4]. Other examples of quasi-
definite orthogonal polynomials can be obtained from the ordinary Jacobi polyno-
mials if their parameters do not satisfy the standard conditions. In this case the
orthogonality relation can be rather complicated (see [13] for details).

Only if it is accompanied by the limit h → 0 can the limit N → ∞ preserve
positive definiteness of the orthogonal polynomials. This leads to the big −1 Jacobi
polynomials. But of course, the duality property is missing in the limit N → ∞
because the grid xs disappears. Instead we have bispectrality: the big −1 Jacobi
polynomials are eigenfunctions of the Dunkl-differential operator (2.12). As far as
we know the possibility of such a limiting process (i.e. N → ∞, h → 0) preserving
the positivity property has not yet been mentioned in the literature.

6. Anticommutator algebra describing big −1 Jacobi polynomials

The Askey-Wilson polynomials are described by the AW(3)-algebra [20], [17].
Among the different equivalent forms of this algebra, we choose the following one:

(6.1) XY −qY X = μ3Z+ω3, Y Z−qZY = μ1X+ω1, ZX−qXZ = μ2Y +ω2,

which possesses an obvious symmetry with respect to all 3 operators (see, e.g., [9]).
Here q is a fixed parameter corresponding to the “base” parameter in the q-

hypergeometric functions defining the Askey-Wilson polynomials [10]. The pairs of
operators (X,Y ), (Y, Z) and (Z,X) play the role of “Leonard pairs” (see [17], [9]).

The Casimir operator

(6.2) Q = (q2 − 1)XY Z + μ1X
2 + μ2q

2Y 2 + μ3Z
2 + (q + 1)(ω1X + ω2qY + ω3Z)

commutes with all operators X,Y, Z.
The constants ωi, i = 1, 2, 2 (together with the value of the Casimir operator Q)

define representations of the AW(3) algebra (see [20] for details).
Now consider the case of the big −1 Jacobi polynomials and choose the following

operators:

(6.3) X = L0 + α+ β + 1, Y = x, Z = − 2

x
(c+ (x− 1)(x+ c)R) ,

where L0 is the operator given by (2.10).
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It is then easy to verify that these operators satisfy the linear anticommutation
relations

(6.4) XY + Y X = Z + ω3, Y Z + ZY = ω1, ZX +XZ = 4Y + ω2,

where

ω1 = −4c, ω2 = 4(α− βc), ω3 = 2(β − αc).

The Casimir operator of the algebra defined by (6.4) is

Q = Z2 + 4Y 2.

In the realization (6.3) the Casimir operator takes the constant value Q = 4(c2+1).
In this realization the operator X (up to an additive constant) is the operator

of which the polynomials P
(−1)
n (x) are the eigenfunctions. The operator Y here

corresponds to multiplication by x.
The “dual” realization of the algebra (6.4) is obtained if one takes an infinite

discrete basis en, n = 0, 1, 2, . . . on which the operators X,Y act as

(6.5) Xen = (λn + α+ β + 1)en, Y en = u
(−1)
n+1 en+1 + b(−1)

n en + en−1,

where λn is the eigenvalue (2.17) and where the recurrence coefficients u
(−1)
n , b

(−1)
n

are given by (2.20), (2.21). Thus in this representation the operator Y is a Jacobi
(i.e. tri-diagonal) matrix and the eigenvalue equation

Y �P = x�P

is equivalent to the recurrence relation (2.22) for the big −1 Jacobi polynomials.

Indeed, we can present the vector �P in terms of its expansion coefficients over the
basis en:

�P =
∞∑
n=0

Cnen.

Without loss of generality we can choose C0 = 1. The coefficients Cn in this
expansion are then found to satisfy the recurrence relation (2.22) and it is seen
moreover that these Cn are monic polynomials in x of degree n. Hence Cn =

P
(−1)
n (x).

7. Two-diagonal basis for the operator L0 and a generalization

of Gauss’ hypergeometric functions

We already showed that the Dunkl-type operator L0 is tri-diagonal in the or-
dinary monomial basis xn (see formula (2.15)). There exists, however, another
polynomial basis in which the operator L0 is two-diagonal. This basis can be con-
structed as follows:

(7.1) φ0 = 1, φ1(x) = x− 1, φ2(x) = (x2 − 1), . . . ,

φ2n(x) = (x2 − 1)n, φ2n+1(x) = (x− 1)(x2 − 1)n.

It is easily verified that

(7.2) L0φn(x) = λnφn(x) + ηnφn−1(x),

where λn is the eigenvalue given by (2.17), and

ηn =

{
2n(c− 1), if n even,

−2(c+ 1)(α+ n), if n odd.
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Now consider the eigenvalue equation

(7.3) L0Pn(x) = λnPn(x)

and expand the polynomials Pn(x) over the basis φn(x):

Pn(x) =

n∑
s=0

Ansφs(x).

For the expansion coefficients Ans we have from (7.3):

(7.4) An,s+1 =
Ans(λn − λs)

ηs+1
.

From (7.4), the coefficients Ans can be found explicitly in terms of An0:

(7.5) Ans = An0
(λn − λ0)(λn − λ1) . . . (λn − λs−1)

η1η2 . . . ηs

or in terms of the coefficient Ann:

(7.6) Ans = Ann
ηnηn−1 . . . ηs+1

(λn − λn−1)(λn − λn−2) . . . (λn − λs)
.

We thus have the following explicit formula for the polynomials Pn(x):

(7.7) Pn(x) = An0

n∑
s=0

(λn − λ0)(λn − λ1) . . . (λn − λs−1)

η1η2 . . . ηs
φs(x).

Expression (7.7) resembles Gauss’ hypergeometric function and can be considered
as a nontrivial generalization of it. Indeed, products in the numerator and denom-
inator of (7.7) can easily be presented in terms of ordinary Pochhammer symbols,
and we thus recover the explicit formulas (2.24) and (2.25). Note, nevertheless,
that the form (7.7) looks much simpler.

Moreover, also note that in the basis φn(x) the operators X and Y of the algebra
defined by (6.3) and (6.4) become lower and upper triangular:

Xφn(x) = (L0 + α+ β + 1)φn(x) = (λn + α+ β + 1)φn(x) + ηnφn−1(x)

and

Y φn(x) = xφn(x) = φn+1(x) + (−1)nφn(x).

Note that such bases in which the operators X,Y are two-diagonal were central
objects in Terwilliger’s approach to Leonard pairs [17], [18]. Formulas similar to
(7.7) also appear in the theory of Leonard pairs.
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Applications, Lecture Notes in Mathematics, 1985, V. 1171, 36–62. MR838970 (88c:33015b)

[2] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes. Benjamin & Cum-
mings, Menlo Park, CA, 1984. MR882540 (87m:05001)

[3] Y. Ben Cheikh and M. Gaied, Characterization of the Dunkl-classical symmetric orthogonal
polynomials, Appl. Math. and Comput. 187, (2007) 105–114. MR2323560 (2008c:33015)

[4] T. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, NY, 1978.
MR0481884 (58:1979)

[5] L.M. Chihara and T.S. Chihara, A class of nonsymmetric orthogonal polynomials. J. Math.
Anal. Appl. 126 (1987), 275–291. MR900545 (88h:42023)

[6] C.F. Dunkl, Integral kernels with reflection group invariance. Canadian Journal of Mathe-
matics, 43 (1991) 1213–1227. MR1145585 (93g:33012)

[7] Ya.L. Geronimus, On polynomials orthogonal with respect to the given numerical sequence
and on Hahn’s theorem, Izv.Akad.Nauk, 4 (1940), 215–228 (in Russian).

[8] J. Geronimo and W. Van Assche, Orthogonal polynomials on several intervals via a polyno-
mial mapping, Trans. Amer. Math. Soc., 308(2) (1988), 559–581. MR951620 (89f:42021)

[9] T. Ito and P. Terwilliger, Double Affine Hecke Algebras of Rank 1 and the Z3-Symmetric
Askey-Wilson Relations, SIGMA 6 (2010), Paper 065, 9 pages. MR2725018

[10] R. Koekoek and R. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials
and its q-analogue, Report no. 98-17, Delft University of Technology, 1998.

[11] R. Koekoek, P. Lesky, and R. Swarttouw, Hypergeometric Orthogonal Polynomials and Their
q-analogues, Springer-Verlag, 2010. MR2656096 (2011e:33029)

[12] T. Koornwinder, On the limit from q-Racah polynomials to big q-Jacobi polynomials,
ArXiv:1011.5585.

[13] A.B.J. Kuijlaars, A. Martinez-Finkelshtein, and R. Orive, Orthogonality of Jacobi polynomi-
als with general parameters, Electronic Trans. Numer. Anal. 19 (2005), 1–17. MR2149265
(2006e:33010)

[14] D. Leonard, Orthogonal Polynomials, Duality and Association Schemes, SIAM J. Math.
Anal. 13 (1982) 656–663. MR661597 (83m:42014)

[15] F. Marcellán and J. Petronilho, Eigenproblems for Tridiagonal 2-Toeplitz Matrices and Qua-
dratic Polynomial Mappings, Lin. Alg. Appl. 260 (1997) 169–208. MR1448355 (98c:15032)
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