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Abstract

Assume that there is a set of monic polynomials Pn(z) satisfying the second-order difference equation

A(s)Pn(z(s + 1)) + B(s)Pn(z(s)) + C(s)Pn(z(s − 1)) = �nPn(z(s)), n = 0, 1, 2, . . . , N ,

where z(s), A(s), B(s), C(s) are some functions of the discrete argument s and N may be either finite or infinite. The irreducibility
condition A(s − 1)C(s) �= 0 is assumed for all admissible values of s. In the finite case we assume that there are N + 1 distinct grid
points z(s), s =0, 1, . . . , N such that z(i) �= z(j), i �= j . If N =∞ we assume that the grid z(s) has infinitely many different values
for different values of s. In both finite and infinite cases we assume also that the problem is non-degenerate, i.e., �n �= �m, n �= m.
Then we show that necessarily: (i) the grid z(s) is at most quadratic or q-quadratic in s; (ii) corresponding polynomials Pn(z) are
at most the Askey–Wilson polynomials corresponding to the grid z(s). This result can be considered as generalizing of the Bochner
theorem (characterizing the ordinary classical polynomials) to generic case of arbitrary difference operator on arbitrary grids.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

General orthogonal polynomials (OP) Pn(x) can be characterized by the three-term recurrence relation [6]

Pn+1(x) + bnPn(x) + unPn(x) = xP n(x) (1.1)

with initial conditions P0 = 1, P1 = x − b0.
The polynomials Pn(x) are monic polynomials, i.e., Pn(x) = xn + O(xn−1).
It is well known [1] that all polynomial solutions Pn(x) of the second-order differential equation

�(x)P ′′
n (x) + �(x)P ′

n(x) = �nPn(x) (1.2)
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are classical orthogonal polynomials (COP), i.e., Jacobi, Laguerre, Hermite and Bessel polynomials. In (1.2) it appears
that �(x) and �(x) are polynomials such that deg(�(x))�2, deg(�(x)) = 1. This result is known as the Bochner
theorem [5].

It is natural to consider generalization of the Bochner theorem replacing the second-order differential operator with
the second-order difference operator. Namely, we are seeking polynomial solutions Pn(z) of the problem

A(s)Pn(z(s + 1)) + B(s)Pn(z(s)) + C(s)Pn(z(s − 1)) = �nPn(z(s)), n = 0, 1, 2, . . . , N , (1.3)

where z(s), A(s), B(s), C(s) are some functions of the discrete argument s and N may be either finite or infinite. The
irreducibility condition A(s − 1)C(s) �= 0 is assumed for all admissible values of s. In the finite case we assume that
there are N + 1 distinct grid point z(s), s = 0, 1, . . . , N such that z(i) �= z(j), i �= j . If N = ∞ we assume that the
grid z(s) has infinitely many different values for different values of s. In both finite and infinite cases we assume also
that the problem is non-degenerate, i.e., �n �= �m, n �= m. We assume also that there are polynomial solutions of all
degrees n= 0, 1, . . . , N (i.e., we assume that the polynomial Pn(x) always has exact degree n for all n= 0, 1, . . . , N).

Askey and Wilson [2] discovered (OP) (the Askey–Wilson polynomials, or briefly, AWP) which satisfy Eq. (1.3) for
quadratic z(s)= as2 + bs + c or q-quadratic grid z(s)= aqs + bq−s + c, where q is some parameter such that |q| �= 1.
Finite-dimensional case (i.e., when there exists only N mutually OP n = 0, 1, . . . , N − 1) corresponds to the so-called
q-Racah polynomials [9].

In [7] it was shown that the only OP satisfying (1.3) for AW-grids are the AWP. Leonard [10] showed that in
the finite-dimensional case the only OP satisfying (1.3) are the q-Racah polynomials. For further development of the
Leonard result and its new algebraic interpretation see, e.g., [3,17]. In [8] Ismail obtained more strong result: he showed
that all polynomial (i.e., not necessarily orthogonal, ab initio) solutions of Eq. (1.3) for the AW-grid are AWP. In the
finite-dimensional case Terwilliger obtained the result that the AW-grid is the most general for polynomials satisfying
(1.3).

So far, the open problem was: in the infinite-dimensional case characterize all possible grids z(s) for which polynomial
solutions of Eq. (1.3) are obtained. In this paper we solve this problem and show that there are no grids more general than
AW-grids. Hence, all polynomial solutions for (1.3) should be orthogonal AWP. Although for the finite-dimensional
case the problem was effectively solved by Terwilliger in [18], we present here the finite-dimensional version of
the generalized Bochner theorem as well. The main reason is that our method of proof is essentially different and
deals directly with difference equation (1.3) for polynomials, whereas in the Terwilliger paper [18] another (a purely
algebraic) approach is presented.

2. Finite-dimensional case

In this section we show that if N is finite then the problem is essentially equivalent to the Leonard theorem [3,10].
Indeed, consider (N + 1) × (N + 1) tri-diagonal matrix J which acts on a basis ek, k = 0, 1, . . . , N by

Jek = C(k + 1)ek+1 + B(k)ek + A(k − 1)ek−1. (2.1)

It is assumed that C(N + 1) = A(−1) = 0 which means merely that the matrix J acts in linear space of dimension
N + 1. We will assume the non-degeneracy condition:

C(i)A(i − 1) �= 0, i = 1, 2, . . . , N . (2.2)

Find the eigenvectors v(k), k = 0, 1, . . . , N of the matrix J, i.e.,

Jv(k) = �kv
(k)

with some eigenvalues �k . We assume that all eigenvalues are distinct: �i �= �j if i �= j . Then all vectors v(k), k =

0, 1, . . . , N are independent and we have

v(k) =

N∑

s=0

vkses , (2.3)
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where vks, s = 0, 1, . . . , N are components of the vector v(k) in the basis es . For them we have relation

A(s)vk,s+1 + B(s)vks + C(s)vk,s−1 = �kvks . (2.4)

Now we can identify components vks with Pk(zs), i.e., we merely put vks = Pk(zs) for all values k, s = 0, 1, . . . , N .
Then difference equation (1.3) coincides with (2.4).

Consider transposed Jacobi matrix J ∗ defined as

J ∗ek = A(k)ek+1 + B(k)ek + C(k)ek−1 (2.5)

and corresponding eigenvalue vectors v∗(k):

J ∗v∗(k) = �k v∗(k), k = 0, 1, 2, . . . , N . (2.6)

Vectors v∗(k) can be expanded in terms of the same basis es :

v∗(k) =

N∑

s=0

v∗
kses . (2.7)

From elementary linear algebra it is known that in non-degenerated case (i.e., if �i �= �j for i �= j ) the vectors vk

and v∗(j) are biorthogonal:

(vk, v∗(j)) ≡

N∑

s=0

vksv
∗
js = 0 if k �= j . (2.8)

Introduce now the diagonal matrix M which acts on basis es as

Mes = �ses, s = 0, 1, 2, . . . , N , (2.9)

where

�s =
A(0)A(1) . . . A(s − 1)

C(1)C(2) . . . C(s)
, s = 1, 2, . . . , N, �0 = 1. (2.10)

Note that all �s are well defined due to non-degeneracy condition (2.2).
It is elementary verified that

J ∗ = M−1JM , (2.11)

and hence

v∗(k) = M−1v(k), k = 0, 1, . . . , N (2.12)

(inverse matrix M−1 exists due to non-degeneracy condition (2.2)). Relation (2.12) allows one to rewrite biorthogonality
condition (2.8) in the form

N∑

s=0

wsvksvjs = 0 if k �= j , (2.13)

where

ws = 1/�s =

s∏

i=1

C(i)

A(i − 1)
. (2.14)

In terms of polynomials Pn(x) this relation becomes

N∑

s=0

wsPk(z(s))Pj (z(s)) = 0 if k �= j . (2.15)
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But relation (2.15) means that Pn(x) are polynomials which are orthogonal on a finite distinct set of points z(s),

s = 0, 1, . . . , N with discrete weights ws �= 0. By general elementary theorems concerning OP [6] this means that
polynomials Pn(x) should satisfy a three-term recurrence relation

Pn+1(x) + bnPn(x) + unPn−1(x) = xP n(x), n = 0, 1, . . . , N . (2.16)

The roots xs, s = 0, 1, . . . , N of the polynomial PN+1(x) coincide with spectral points:

z(s) = xs, s = 0, 1, . . . , N .

Thus, we proved that (under some non-degeneration conditions) polynomials Pn(x) satisfying relation (1.3) on a grid
z(s) for finite N are orthogonal with respect to discrete weight function (2.15) and satisfy three-term recurrence relation
(2.16).

Now we are ready to relate our results with Leonard’s approach to dual OP [10].
Recall relation between non-degenerated Jacobi matrices and OP (see, e.g., [6]). Let K be an arbitrary Jacobi matrix

of dimension N + 1 × N + 1. In some finite-dimensional basis dn it can be presented as

Kdn = �ndn+1 + �ndn + �ndn−1 (2.17)

with some (complex) coefficients with non-degeneracy property

N∏

i=1

�i�i−1 �= 0. (2.18)

Construct eigenvectors 	(k) of the matrix K:

K	(k) = zk	
(k), k = 0, 1, . . . , N . (2.19)

We assume that all spectral points zk, k = 0, 1, . . . , N are distinct: zk �= zj for k �= j . Expand eigenvectors 	(k) in
terms of basis dn:

	(k) =

N∑

s=0

	ksds

with some coefficients 	ks . For these coefficients we have from (2.19) the recurrence relation

�s+1	k,s+1 + �s	ks + �s−1	k,s−1 = zk	ks, k, s = 0, 1, . . . , N . (2.20)

It is assumed that �−1 = �N+1 = 0. Then, for each value k, starting from 	k0 we can find recursively all further
coefficients 	k1, 	k,2, . . . , 	k,N . We can always normalize 	k0 = 1, k = 0, 1, . . . , N . Then it is clear from (2.20) that
	ks is a polynomial of degree s in argument zk .

Introduce polynomials Tn(x) satisfying three-term recurrence relation

�n+1Tn+1(x) + �nTn(x) + �n−1Tn−1(x) = xT n(x) (2.21)

with initial conditions �−1P−1 = 0, P0(x) = 1. Then relation (2.21) defines n-degree polynomials Tn(x) = 
nx
n +

O(xn−1) with the leading coefficient


n =
1

�1�2 . . . �n

(this leading coefficient is well defined and non-zero do to non-degeneracy condition (2.18)). From general theory of
OP it follows that polynomials Tn(x) are orthogonal on a finite set of points xk [6]

N∑

k=0

�kTn(xk)Tm(xk) = 0, n �= m, (2.22)

where xk are roots of the polynomial TN+1(x).
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We can thus associate OP Tn(x) with expansion coefficients of eigenvectors of the arbitrary non-degenerated Jacobi
matrix K:

Ts(zk) = 	ks . (2.23)

Return to our polynomials Pn(x) satisfying relation (1.3). We showed that these polynomials are orthogonal and
correspond to the Jacobi matrix K whose matrix coefficients can be restored from recurrence relation (2.16): �n = 1,

�n = bn, �n = un+1. On the other hand, we have the Jacobi matrix J defined by (2.1). By just described recipe, we can
associate with this Jacobi matrix corresponding OP Yn(x). These polynomials satisfy three-term recurrence relation

A(n)Yn+1(x) + B(n)Yn(x) + C(n)Yn−1(x) = xY n(x). (2.24)

Now it is seen that polynomials Pn(x) and Yn(x) are related as

Pn(z(s)) = Ys(�n). (2.25)

We thus have a duality property coinciding with that introduced by Leonard [10]: there are two systems of finite OP
and two finite sequences z(s) and �n such relation (2.25) holds. Our non-degeneracy conditions: all z(s) and �n are
distinct and matrices J, T are non-degenerated coincide with similar conditions in the Leonard paper. Hence we can
conclude.

Theorem 1. Under non-degeneracy conditions the finite-dimensional case of relation (1.3) generates at most finite

Askey–Wilson OP (Racah and q-Racah polynomials in other terms).

3. Infinite-dimensional case. Reducing to a more simple problem

In this section we start to analyze the infinite-dimensional case. We first derive some restrictions upon the coefficients
A(s), B(s), C(s).

In what follows we will assume that polynomial solutions Pn(z) of Eq. (1.3) are monic, i.e., Pn(z) = zn + O(zn−1).
This is not restriction of our problem, because it is possible to divide all terms in Eq. (1.3) by a (non-zero) leading
coefficient of the polynomial Pn(z).

First of all we observe that eigenvalues �n can be shifted by an arbitrary constant �n → �n + const. Such shift leads
to adding a constant to the coefficient B(s). Using this observation we always can choose �n in such a way that

�0 = 0. (3.1)

In what follows we will assume that condition (3.1) is fulfilled. We will also assume that the eigenvalue problem (1.3)
is non-degenerate, i.e.,

�n �= �m, n �= m. (3.2)

The grid z(s) is also assumed to be non-degenerate, i.e.,

z(s1) �= z(s2), s1 �= s2. (3.3)

Parameter s takes infinite number of integer values: s = s0, s0 + 1, s0 + 2, . . . where s0 is either finite or s0 = −∞. In
the first case we deal with semi-infinite grid zs , whereas in the second case we have the grid which is infinite in both
directions.

Taking the case n = 0 in (1.3) we see that A(s) + B(s) + C(s) = 0. Hence, we can rewrite Eq. (1.3) in the form

A(s)�Pn(z(s)) − C(s)∇Pn(z(s)) = �nPn(z(s)), (3.4)

where we use the standard notation [13]

�F(s) = F(s + 1) − F(s), ∇F(s) = F(s) − F(s − 1)

for any function F(s) of the argument s.
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Assume that polynomials Pn(z) have the expansion

Pn(z) = zn +
∑

i=0

�niz
i

with some coefficients �ni . Then for n = 1 we get from (3.4)

A(s)�z(s) − C(s)∇z(s) = �1Q1(z(s)),

where Q1(z) = z + �10 = P1(z). By induction, it can be easily shown that

A(s)�zn(s) − C(s)∇zn(s) = �nQn(z(s)), n = 0, 1, 2, . . . , (3.5)

where Qn(z) is a monic polynomial of degree n.
Vice versa, assume that property (3.5) holds for some z(s), A(s), C(s) with Qn(x) being a set of monic polynomials

in x of degree n. Then there exists a set of monic polynomials Pn(x) satisfying Eq. (3.4). This statement is almost
obvious and follows from the observation that on the given grid z(s) and for any monic nth degree polynomial Tn(x)

the expression A(s)�Tn(z(s))−C(s)∇Tn(z(s)) is again a nth degree polynomial in the argument z(s) with the leading
coefficient �n. Hence, it is possible to choose a polynomial Pn(x) with property (3.4).

Consider now condition (3.5) for n → n + 1:

A(s)�zn+1(s) − C(s)∇zn+1(s) = �n+1Qn+1(z(s)), n = 0, 1, . . . . (3.6)

Multiplying (3.5) by z(s) and subtracting (3.6) we get another set of conditions

A1(s)z
n(s + 1) + C1(s)z

n(s − 1) = Rn+1(z(s)), n = 0, 1, . . . , (3.7)

where A1(s)=A(s)�z(s), C1(s)=C(s)∇z(s), The polynomials Rn(z) are nth degree polynomials Rn(z)=�nz
n +

O(zn−1), where �n = �n − �n−1. Note that due to non-degeneracy condition (3.2) we have �n �= 0 and hence every
polynomial Rn(z) has exact degree n.

Consider first two conditions (3.7) corresponding to n=0 and 1. These two conditions can be considered as equations
for two unknowns A1(s), C1(s). Solving these equations we have

A1(s) =
R2(z(s)) − z(s − 1)R1(z(s)

z(s + 1) − z(s − 1)
,

C1(s) = −
R2(z(s)) − z(s + 1)R1(z(s)

z(s + 1) − z(s − 1)
. (3.8)

Note that these expressions are well defined for all possible s because, by non-degeneracy condition, z(s+1) �= z(s−1).
Hence conditions (3.7) can be rewritten as

R2(z(s))Yn − R1(z(s))z(s − 1)z(s + 1)Yn−1 = Rn+1(z(s)), n = 2, 3, . . . , (3.9)

where

Yn =
zn(s + 1) − zn(s − 1)

z(s + 1) − z(s − 1)
. (3.10)

Introduce the variables

u = z(s − 1)z(s + 1), v = z(s − 1) + z(s + 1).

Clearly Yn is a symmetric polynomial with respect to z(s − 1), z(s + 1) and hence it can be expressed in terms of
variables u, v only. Indeed, it is easily verified that Yn satisfy the recurrence relation

Yn+1 = vY n − uY n−1, Y0 = 0, Y1 = 1. (3.11)

This allows us to find an explicit expression for every Yn in terms of u, v. For example, Y2=v, Y3=v2−u, Y4=v3−2uv,
etc.
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Return to condition (3.5). We have explicit expressions for coefficients A(s), C(s):

A(s) =
R1z(s − 1) − R2

(z(s + 1) − z(s − 1))(z(s + 1) − z(s))
,

C(s) =
R1z(s + 1) − R2

(z(s + 1) − z(s − 1))(z(s) − z(s − 1))
. (3.12)

Hence we have

A(s)�z(s) − C(s)∇z(s) =

n−1∑

k=0

zn−k−1(z(s + 1)z(s − 1)R1Yk−1 − R2Yk) = −

n−1∑

k=0

Rk+1z(s)
n−k−1

(in the last equality we have used (3.9)). It is seen that this expression is indeed a polynomial of degree n with non-zero
leading coefficient �n. Thus conditions (3.5) and (3.7) are equivalent and we can use only more simple condition (3.7)
for further analysis.

4. Functional equation for the grid z(s)

From (3.9) and (3.11) we find the conditions

Rn+2(z(s)) = vRn+1(z(s)) − uRn(z(s)), n = 2, 3, . . . . (4.1)

These conditions form a system of linear equations for two unknowns u, v. Consider the first two equations corre-
sponding to n = 2 and 3. There are two possibilities:

(i) These equations are not independent. Then we should have Ri+1(x)=�(x)Ri(x), i =1, 2, 3 where �(x) is a linear
function. By induction, we then have Rn(x) = R1(x)�n−1(x), n = 1, 2, . . . for all n, where both �(x) and R1(x)

are linear functions in x. Now from (4.1) we have the condition

�2(z(s)) − v�(z(s)) + u = 0 (4.2)

or, equivalently,

(�(z(s)) − z(s + 1))(�(z(s)) − z(s − 1)) = 0. (4.3)

From (4.3) and (3.12) we see that in this case either A(s)=0 or C(s)=0 for every admissible s. But this contradicts
our non-degeneracy assumption A(s − 1)C(s) �= 0. Thus case (i) should be excluded from consideration.

(ii) These equations are independent. Putting n = 2, 3 in (4.1) we obtain a linear system of equations for unknowns
u, v from which we find

u =
	8(z(s))

	6(z(s))
, v =

	7(z(s))

	6(z(s))
, (4.4)

where 	i(x) are polynomials of degrees � i:

	6 = R2
3 − R2R4, 	7 = R4R3 − R2R5, 	8 = R3R5 − R2

4 .

Thus u, v are some rational functions in the variable z(s). In what follows we will sometimes replace the grid z(s)

with independent variable x (this is possible because the grid z(s) takes infinitely many different values).
We first prove an important statement concerning possible solutions of the system of non-linear difference equations

of the form

z(s − 1) + z(s + 1) = T1(z(s)), z(s − 1)z(s + 1) = T2(z(s)), (4.5)

where T1,2(x) are some rational functions.
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Lemma 1. Assume that system (4.5) has a solution z(s), s = s0, s0 +1, . . . with infinitely many non-coinciding values

z(s1) �= z(s2) if s1 �= s2. Then there are two possibilities:

(i) Either

T1(x) = −
�2x

2 + �4x + �5

�1x2 + �2x + �3
, T2(x) =

�3x
2 + �5x + �6

�1x2 + �2x + �3
(4.6)

with some constants �i, i = 1, . . . , 6.
(i) In this case variables z(s), z(s + 1) satisfy equation

(z(s), z(s + 1)) = 0, (4.7)

where (x, y) is a non-reducible symmetric biquadratic polynomial:

(x, y) = �1x
2y2 + �2xy(x + y) + �3(x

2 + y2) + �4xy + �5(x + y) + �6 (4.8)

or
(ii)

T1(x) = −
�2x + �4

�1x + �3
−

�3x + �4

�1x + �2
, T2(x) =

�2x + �4

�1x + �3

�3x + �4

�1x + �2
(4.9)

with some constants �i, i = 1, . . . , 4 such that �2 �= �3. In this case variables z(s), z(s + 1) satisfy equation

�1z(s)z(s + 1) + �2z(s) + �3z(s + 1) + �4 = 0. (4.10)

Remark 1. Case (ii) formally corresponds to a special case of (i) when polynomial (x, y) can be decomposed as a
product of two polynomials of the first degree in both variables x, y.

Proof. Obviously, system (4.5) is equivalent to the statement that both z(s + 1) and z(s − 1) are roots of the quadratic
equation

A2(z(s))z
2
s±1 + A1(z(s))zs±1 + A0(z(s)) = 0, (4.11)

where Ai(x) are non-zero polynomials having no common factors.
Introduce two polynomials in two variables:

W1(x, y) = A2(x)y2 + A1(x)y + A0(x), W2(x, y) ≡ W1(y, x) = A2(y)x2 + A1(x)x + A0(y).

Equation W1(x, y) = 0 and W2(x, y) = 0 define two algebraic curves in complex variables x, y. From (4.11) it is clear
that both curves contain infinitely many common distinct points (xn, yn), n = 1, 2, . . . . By the Bezout theorem this is
possible only if these curves either coincide or have a common component.

The polynomial W1(x, y) has degree 2 in variable y and hence there are two possibilities:

(i) W1(x, y) is irreducible, i.e., it cannot be decomposed into irreducible polynomials of a lesser degree in y.
(ii) W1(x, y) can be presented as a product of two polynomials, each of degree 1 in variable y: W1(x, y) = (e1(x)y +

e2(x))(e3(x)y + e4(x)) with some polynomials Rei(x), i = 1, . . . , 4.

We consider these two possibilities separately. In case (i) we have that the polynomials W1(x, y) and W2(x, y) are both

irreducible. Hence, by the Bezout theorem, they should coincide:

W1(x, y) = W2(x, y) = W1(y, x). (4.12)

But condition (4.12) means that the polynomial W1(x, y) is symmetric in variables x, y. This is possible only if all
polynomials Ai(x), i = 0, 1, 2 have degree �2 in variable x. Hence, the most general expression for W1(x, y) in this
case is symmetric biquadratic polynomial in x, y:

W1(x, y) = �1x
2y2 + �2xy(x + y) + �3(x

2 + y2) + �4xy + �5(x + y) + �6 (4.13)
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with some constants �i, i = 1, . . . , 6. We thus have

A2(x) = �1x
2 + �2x + �3, A1(x) = �2x

2 + �4x + �5, A0(x) = �3x
2 + �5x + �6

and

T1(x) = −A1(x)/A2(x) = −
�2x

2 + �4x + �5

�1x2 + �2x + �3
, T2(x) = A0(x)/A2(x) =

�3x
2 + �5x + �6

�1x2 + �2x + �3

giving expression (4.6).
Consider now the case when polynomials W1(x, y), W2(x, y) have a non-trivial common component which does not

coincide with both these polynomials. Clearly, this is possible only if W1(x, y) can be decomposed into two polynomials
linear in y:

W1(x, y) = (a1(x)y + b1(x))(a2(x)y + b2(x)) (4.14)

with some polynomials a1,2(x), b1,2(x). By definition W2(x, y) = W1(y, x) and hence we have also

W2(x, y) = (a1(y)x + b1(y))(a2(y)x + b2(y)). (4.15)

Without loss of generality we can assume that a1(x)y + b1(x) is a common component of two curves W1(x, y) = 0
and W2(x, y) = 0. Comparing (4.14) and (4.15), we can conclude that there are two possibilities:

(i) either a1(x)y + b1(x) = a1(y)x + b1(y);
(ii) or a1(x)y + b1(x) = a2(y)x + b2(y).

In case (i) we have that variables x, y satisfy symmetric polynomial relation

�1xy + �2(x + y) + �4 = 0 (4.16)

with some constants �1, �2, �4. Substituting x=z(s), y=z(s+1) into (4.16) we find from (4.16) that there are only two
non-coinciding points z(s0) and z(s0+1). For all further points we find that z(s0+2j)=z(s0) and z(s0+2j+1)=z(s0+1)

for all integer j. But this contradicts our assumption that there are infinitely many distinct points belonging to the curves.
Thus case (i) is impossible.

In case (ii) the polynomials a1,2(x), b1,2(x) should be linear in x and we have that z(s), z(s + 1) satisfy the relation

�1z(s)z(s + 1) + �2z(s) + �3z(s + 1) + �4, (4.17)

where �3 �= �2 in order to prevent impossible case (i). This case corresponds to (4.9) and (4.10). Thus, the Lemma is
proven. �

It is interesting to find explicit solutions in both cases (i) and (ii) of the Lemma. Case (i) corresponds to a parametriza-
tion of symmetric Euler–Baxter biquadratic curve (z(s), z(s + 1))= 0 with (x, y) given by (4.8). This problem was
already solved by Baxter [4] in his famous solution of the 8-vertex model. Explicitly

z(s) = 
 �(�1s + �0) (4.18)

with some parameters 
, �1, �0. Here, �(z) is an even elliptic function of the second order (i.e., having exactly two
poles in the fundamental parallelogram). Recall that (up to an arbitrary factor) any even elliptic function of the second
order can be presented in the form [19]

�(z) =
�(z − e)�(z + e)

�(z − d)�(z + d)
. (4.19)

Recently it was shown that the elliptic grid z(s) described by (4.18) appears naturally in theory of biorthogonal rational
functions with the duality property [15,16]. Note that in a special case �1 = �2 = 0 the rational functions T1(x), T2(x)

become linear and quadratic polynomials. In this case solution for z(s) is expressed in terms of elementary functions
(see below).
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For case (ii) of the Lemma the solution can be easily found in terms of elementary functions of s (we will not describe
these solutions in details because they can be obtained from the elliptic solutions by a limiting procedure).

Now return to condition (4.1) and consider first case (i) of the Lemma. We can rewrite (4.1) in the form

1 = v(x)Rn+1(x)/Rn+2(x) − u(x)Rn(x)/Rn+2(x), (4.20)

where

v(x) = −
�2x

2 + �4x + �5

�1x2 + �2x + �3
, u(x) =

�3x
2 + �5x + �6

�1x2 + �2x + �3
.

Assume first that �1 �= 0. Then for x → ∞ it is seen that rhs of (4.20) tends to 0 which contradicts to lhs of (4.20).
Thus, necessarily �1 = 0. Assume now that �1 = 0 and �2 �= 0. Then again for x → ∞ we obtain from (4.20) the
condition (recall that Rn(x) = �nx

n + O(xn−1), where �n = �n − �n−1)

1 = −�n+1/�n+2

whence �n = �n+2 for all n = 2, 3, . . . . But this contradicts our condition of non-degeneracy of the spectrum �n. We
thus have necessarily �1 = �2 = 0. But in this case v(x), u(x) become polynomials of the first and second degrees:

v(x) = −�x − �, u(x) = x2 + �x + �, (4.21)

where � = �4/�3, � = �5/�3, � = �6/�3 and equations for the grid become

z(s − 1) + z(s + 1) = −�z(s) − �, z(s − 1)z(s + 1) = z2(s) + �z(s) + � (4.22)

with arbitrary complex parameters �, �, �. Equivalently, variables z(s), z(s + 1) belong to a non-degenerating conic
(i.e., ellipsis, hyperbola or parabola):

z2(s + 1) + z2(s) + �(z(s + 1) + z(s)) + �z(s)z(s + 1) + � = 0 (4.23)

which is symmetric with respect to z(s), z(s + 1) (this means that the plot of this conic in Cartesian co-ordinates
x = z(s), y = z(s + 1) is symmetric with respect to the line y = x). Eqs. (4.22) and (4.23) were studied in [11–13]. In
these works it was shown that all non-degenerate solutions of these equations can be presented in the form

z(s) = C1q
s + C2q

−s + C0 (4.24)

or

z(s) = C2s
2 + C1s + C0 (4.25)

or

z(s) = (−1)s (C2s
2 + C1s + C0) (4.26)

with some constants C0, C1, C2. The first case (4.24) occurs if � = q + q−1, where q �= ±1 (i.e., � �= ±2). The second
case (4.25) occurs if � = −2 and the third case (4.26) occurs if � = 2. All these cases exhaust possible types of the
Askey–Wilson grids [12].

Note that when C1C2 = 0 in (4.24) we obtain so-called exponential grids, say z(s) = C1q
s + C0. Similarly, when

C2 = 0 in (4.25) or (4.26) we obtain the linear grid: z(s) = C1s + C0 or z(s) = (−1)s(C1s + C0). However, in these
case the conic (4.23) becomes degenerated—it divided into two lines. This corresponds to case (ii) of the Lemma
(see below).

Now substituting v(x), u(x) into (4.1) we obtain that for arbitrary given polynomials R1(x), R2(x) one can construct
uniquely the polynomial Rn(x) = �nx

n + O(xn−1) with leading coefficient satisfying the recurrence relation (which
easily follows from (4.1) for given v(x)u(x)):

�n+2 + ��n+1 + �n = 0, n = 2, 3, . . . . (4.27)

General solution for �n can be easily found from (4.27): if � = q + q1 �= ±2 we have

�n = G1q
n + G2q

−n (4.28)
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with arbitrary G1, G2. If � = −2 then

�n = G1n + G0 (4.29)

and if � = 2 then

�n = (−1)n(G1n + G0). (4.30)

From �n = �n − �n−1 we can easily reconstruct the spectrum �n which has the same functional dependence on n as
the Askey–Wilson grid z(s) has on s.

Finally, we should consider case (ii) of the lemma. In this case similar considerations lead to conclusion that �1 = 0.
Then condition (4.10) becomes

�2z(s) + �3z(s + 1) + �4 = 0 (4.31)

which describes exponential or linear grids z(s). Thus, case (ii) can be considered as a degeneration of case (i). It should
be noted that linear and exponential grids are described by non-symmetric recurrence relations (4.31) (with respect
to z(s), z(s + 1)). The reason is that in this case conic (4.23) is degenerated to a two straight lines each of which is
non-symmetric.

We see that in both cases (i) and (ii) of the lemma solutions Rn(x) of the recurrence relation (4.1) are indeed
polynomials of exact degree n. Hence, by previous considerations, we obtain a unique set of polynomials Pn(x) which
are solutions of Eq. (3.4). From explicit form (3.12) of the coefficients A(s), C(s) we can conclude that they coincide
with those defining the AWP [11–13].

We thus proved that under some non-degeneracy conditions, the only admissible grid is the Askey–Wilson grid and
corresponding polynomials Pn(x) coincide with the AWP.

5. Concluding remarks

The authors of [13] exploited relations (3.4) as a starting point in their approach to construction of the AWP. In a
slightly different manner, Magnus in [11,12] derived relations (4.23) from the following requirement: find all the grids
z(s) and y(s), such that for any polynomial Pn(x) of degree n we have the property

Pn(z(s + 1)) − Pn(z(s))

z(s + 1) − z(s)
= Tn−1(y(s)), (5.1)

where Tn−1(x) is a polynomial of degree n − 1 and relation (5.1) should be valid for all n = 1, 2, . . . and for infinitely
many distinct values s of the grids z(s) and y(s). Relation (5.1) can be also presented in the form

DsPn(x) = Tn−1(y(s)), (5.2)

where Ds stands for “discrete derivation” operator which acts on the space of function f (x) as

Dsf (x) ≡
f (z(s + 1)) − f (z(s))

z(s + 1) − z(s)
.

For the AW-grid it was known that the operator Ds satisfies property (5.2). Magnus proved that these grids are the only

preserving property (5.2).
On the other hand, it was noted in [13] that if polynomials Pn(x) satisfy the AW-equation (3.4) then the new polyno-

mials Tn(x) obtained from Pn(x) by (5.1) also satisfy AW-equation (3.4) but with different coefficients A(s), C(s). This
property can be considered as a covariance of the Askey–Wilson equation (3.4) with respect to the discrete Darboux
transformation (see, e.g., [14]).

However, property (5.1) cannot be directly derived from Eq. (3.4) if the grid z(s) is not concretized. This is why
derivation of the necessity of the AW-grid for Eq. (3.4) is not quite elementary and needs rather involved technique
which was demonstrated in the present paper.
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