About q-Bernstein polynomials

Andreea Ve eleanu
Babes- Bolyai University, Faculty of Mathematics and Computer Sciences, Cluj - Napoca, Romania.

Due to the importance of Bernstein polynomials, many of their generalizations and related topics has been inte nsive research. In recent year, the q- Bernstein polynomials have attracted much interest and a great number of interest ing results have been obtained [5], [6], [8], [13], [19], [20], [16], [17], [19] .

In 1912, S. N. Bernstein published his famous paper [2] containing a constructive proof of the Weierstrass Approximation Theorem. Using the Law of Large Numbers for a sequence of Bernoulli trials he defined polynomials called in nowadays Bernstein polynomials. Later it was found that Bernstein polynomials p ossess many remarkable properties, which made them an area of intensive research. A systematic treatment of the theory of Bernstein polynomials as it was until the 90's is presented [10],[16] . New papers are constantly coming out and new applications [3] and generalizations are being discovered [13]. The aim of these generalizations is to provide appropriate tools for studying various problems of analysis, geometry, statistical inference and computer science.

The rapid development of q - calculus has led to the discovery of new generalizations of Bernstein polynomials involving q-integers. The first person how make progress in this direction was Lupa ş. In 1987 he introduced [7] a q-analogue of the Bernstein operator and investigated its approximating an d shape- preserving properties [1].

In 1997, Phillips [14] introduced another generalization on Bernstein polynomials based on q-integers called q-Bernstein polynomials. The q-Bernstein polynomials attracted a lot of interest and were studied widely by a number of authors from different perspectives. A review of the results on the q - Bernstein polynomials, along with an extensive bibliography on this subject and a collection of open problems is given in [9]. The subject remains under ample study, and there have been new papers constantly coming out [11],[24], [25] .

It has been known ([14] and references therein) that some properties of the classical Bernstein polynomials are extended to the q- Bernstein polynomials. For example, the q-Bernstein polynomials posses the end- point interpolations property, the shape- preserving properties on the case $0<\mathrm{q}<1$, and representation via divided differences. Like the Bernstein polynomials, the q- Bernstein polynomials reproduce linear functions, and are degree-reducing on the set of polynomials.

On the other hand, the approximation properties of the q-Bernstein polynomials are essentially different from those of the classical ones. What is more, the cases $0<q<1$ and $\mathrm{q}>1$ are not similar to each other. This abs ence of similarity is caused by the fact that, for $0<q<1$, the q - Bernstein polynomials are positive lin ear operators on $\mathbf{C}[0,1]$, while for $q>1$, the positivity does not hold any longer. It should be pointed out that in terms of the convergence properties, the similarity between the classical Bernstein and qBernstein polynomials ceases to be true even on the case $0<q<1$ [5], [17]. This is because, for $0<\mathrm{q}<1$, the q - Bernstein polynomials, despite being positive linear operators, do not satisfy the conditions of Korovkin' s Theorem. They do, however,
satisfy the conditions of Wang' s Korovkin - type theorem [18], serving as a model example fot the theorem.

Due to the lack of positivity, the study of the convergence properties of the q Bernstein polynomials in the case $\mathrm{q}<1$ turns out to be essentially more complicated than the one in the case $0<q<1$. In spite of the intensive research conducted in this area recently, the class of functions in $\mathbf{C}[0,1]$ uniformly approximated by their q-Bernstein polynomials when $q>1$ is yet to be described. However, the results obtained for specific classes of functions have already revealed some new phenomena as well as interesting facts [10], [11], [20] . To some extent, the explanation for such an exotic behavior of the q - Bernstein polynomials is present in [19].

It has been proved there that basic q-Bernstein polynomials combine the fast increase magnitude with the sign oscillations on [0,1$]$. This creates substantial hurdles in the numerical study of the q - Bernstein polynomials for $q>1$. It is exactly this unexpected behavior of q - Bernstein polynomials with respect to convergence that makes the study of such properties interesting and challenging.

References

[1] O. Agratini, On certain q-analogues of the Bernstein operators, Carpatian J. Math. 20 (1) (2008) 1-6.
[2] S.N. Bernstein, Démonstrasion du théorème de Weierstrass fondée sur la calcul des probabilities, Commun. Soc. Math. Charkow, 13 (1912), 1-2.
[3] S. Cooper and S. Waldron, The eignstructure of the Bernstein operators, J. Approx. Theory 105 (2000), 133-165.
[4] R. DeVore, G. G. Lorentz, Constructive Approximatin, Springer- Verlag, 1993.
[5] A. Il'inskii, S. Ostrovska, Convergence of generalized Bernstei n polynomials, J. Approx. Theory 116, (2002), 100-112.
[6] G. G. Lorentz, Bernstein polynomials, Chelsea, New York, 1986.
[7] A. Lupaş, A q-analogue of the Bernstein operators, University of Cluj- Napoca, Seminar on numerical and statistical calculus, No. 9 (1987) 85-92.
[8] S. Ostrovska, q-Bernstein polynomials and their iterates, J. Approx. Theory 123 (2) (2003) 232-255.
[9] S. Ostrovska, The first decade of the q-Bernstein polynomials: results and perspectives, J. of Math. Anal. Approx. Theory 2 (1) (2007) 35-51.
[10] S. Ostrovska, The approximation of power function by the q - Bernstein polynomials in the case $q>1$, Math. Computer. 198 (1) (2008) 585-597.
[11] S. Ostrovska, q - Bernstein polynomials of the Cauchy kernel, Appl. Math. Comput. 198 (1) (2008) 261-270.
[12] S. Ostrovska, On the approximation of analytic functions by the q - Bernstein polynomials, in the case $q>1$, Electron. Trans. Numer. Anal. 37 (2010) 105-112.
[13] S. Petrone, Random Bernstein polynomials, Scand. J. Statist. 26 (1999), 373-393.
[14] G.M. Phillips, Bernstein polynomials based on the q-integers, Annals Numer. Math. 4 (1997), 511-518.
[15] G.M. Phillips, Interpolation and Approximatin by Polynomials, CMS Books in Mathematics, vol. 14, Springer, Berlin, 2003.
[16] V. S. Videnskii, Bernstein polynomials, Leningrad State Pedagogical University, Leningrad, 1990 (in Russian).
[17] V. S. Videnskii, On some classes of q-parametric positive operators, Operator Theory: Adv. Appl. 158 (2005), 213-222.
[18] H. Wang, Korovkin- type theorem and application, J. Approx. Theory 132 (2) (2005) 258-264.
[19] H. Wang, S. Ostrovska, The norm for the q - Bernstein operators in case $q>1$, Math. Computer. 79 (2010) 353-363.
[20] Z. Wu, The saturation of the convergence on the interval [0,1] for the q-Bernstein polynomials in the case $q>1$, J. Anal. Appl. 357 (1) (2009) 137-141.

