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ABSTRACT 

The object of this paper is to develop the ideas introduced in the author’s paper 
[l] on matrices which generate families of polynomials and associated infinite series. A 
family of infinite one-s&diagonal non-commuting matrices Q, is defined, and a 
number of identities among its members are given. The matrix Qi is applied to solve a 
problem concerning the derivative of a family of polynomials, and it is shown that the 
solution is remarkably similar to a conventional solution employing a scalar generating 
function. Two sets of infinite triangular matrices are then defined. The elements of 
one set are related to the terms of Laguerre, Hermite, Bernoulli, Euler, and Bessel 
polynomials, while the elements of the other set consist of Stirling numbers of both 
kinds, the two-parameter Eulerian numbers, and numbers introduced in a note on 
inverse scalar relations by Touchard. It is then shown that these matrices are related 
by a number of identities, several of which are in the form of similarity transforma- 
tions. Some well-known and less well-known pairs of inverse scalar relations arising in 
combinatorial analysis are shown to be derivable from simple and obviously inverse 
pairs of matrix relations. This work is an explicit matrix version of the umbral calculus 
as presented by Rota et al. [24-261. 

1. INTRODUCTION 

In an earlier paper [l] the author showed that certain families of poly- 
nomials and their associated infinite series can be generated by means of 
elementary functions of certain simple infinite constant matrices. For exam- 
ple, the matrix which generates the polynomials (1 + x)~, n = 0, 1,2,. . . , by 
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rows and the infinite series (1 - x)-“, n = 1,2,. . by . , columns is 

M(r)=[(;;;)kj], i,j=1,2,3 ,... (1.1) 

1 

= XX2 2x 1 1 

X3 3x2 3X 1 ’ 

x4 4x3 6x2 4x 1 . . . . . . . . ..*....... 

XQ =e , (1.2) 

where 

0 
1 0 

Q= “i. I I . (1.3) 

4 0 . . . . . . . . . . . . . . . . 

As no proof of this relation was given in [I], two proofs will be given here. 
The first uses the fact that the matrix M(x) arose as a solution of the 

Cauchy-Bellman equation 

%)M(Y) = M(r + Y), (1.4) 

so that a relation of the form 

M(x) = eXQ, 

where Q is a constant matrix, is expected. Hence 

Q = M'(O), 

which gives (1.3). We note in passing that (1.4) has the more general solution 

M(r) = Ke”QK-‘, 
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where K is an arbitrary nonsingular constant matrix. The second proof is 
given in the next section. We note also that M(x) and the Cauchy-Bellman 
equation appear in a recent paper by Kalman [28]. 

Note that, if 

A= [a 
T o,a,,a2,a3,...l , 

x= [l ,x,x2,x3 )... ] 

T 
) 

Y= [1,(1+r),(l+x)2,(1+X)3 )... I’, 

F= [fo(x),fi(x),fi(~),f3(~),...]~, 

where A’(X) is the Appell polynomial defined by 

then 

X’ = QX, 

Y = eQX, 

X = e_QY, 

Y’ = eQQX, 

F = exQA, 

(1.5) 

0.6) 

AmX = (eQ - Z)"X, 

where 

Ax”= (x + 1)” -r”. 

The object of this paper is to develop the ideas introduced in [1] to the stage 
where they can be applied to the proofs of a number of combmatorial 
identities and other relations. 

A family of simple matrices Q, is defined, and a number of relations 
among its members are given. Two sets of triangular matrices are then 
defined. The elements of one set are related to the terms of Laguerre, 
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Her-mite, Bernoulli, Euler, and Bessel polynomials, while the elements of the 
other set consist of Stirling numbers of both kinds, the twoparameter 
Eulerian numbers, and numbers introduced in a note on inverse scalar 
relations by Touchard. It is then shown that these matrices are related by a 
number of identities, several of which are in the form of similarity transforma- 
tions. Some well-known and less well-known pairs of inverse scalar relations 
arising in combinatorial analysis are shown to be derivable from simple and 
obviously inverse pairs of matrix relations. 

The referee has pointed out that this work is an explicit matrix version of 
the umbra1 calculus as presented by Rota et al. [24-261. 

2. SOME ONESUBDIAGONAL MATRICES 

Let 

A= 

Then 

0 

a1 0 

a2 0 

a3 0 

a4 0 
.*............*.. 

I 0 
0 0 

A2 a2al 0 0 = 

a3a2 0 0 

a4a3 0 

To economize on space, matrices containing a single nonzero subdiagonal will 
be expressed in vector form with reference to its precise location. All 
subdiagonals parallel to the principal diagonal have an “equation” of the form 
i-j=n.Thus 

A=subdiag[a,,a,,a,,a, ,... ]. 
i-j=1 

To economize still further, only the element in the jth column will be given: 
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A = subdiag[aj], j = 1,2,3 ,..., 
i-j=1 

AB= subdiag[ai+lbi], j = 1,2,3 ,a-., (2.1) 
i-j-2 

ABC= y~~+j+abj+~cj]. j = 1,2,3 ,..., 

etc. Using obvious notation, the only nonzero elements in the product 
A,A,-. . A ~ lie in the subdiagonal with equation i - j = n. 

Define two matrices Q,,R, as follows: 

Q, = subdiag 
i- j=l 

Q=Qv 

R, = subdiag 
i-j=1 

= aQ+Q: 

j”L 

(2.2) 

jb+ jll 

(2.3) 

Note that 

D2(xX) = (Q+Q& 

D(xD)“X = Qm+lX (D=d/dx). (2.4) 

The definition of Q, given in [I] excludes m = 0 and has therefore been 
discarded. A few of the later formulae in that paper require slight modifica- 
tion. 

Using the notation of Comtet [5], define the falling and rising factorial 
functions (x),, (x)” as follows: 

(x),,=x(x-1)(x-2)4x-n+l), n=1,2,3,..., 

(x)o=L 

(x), = x(x f 1)(x +2) *. * (x + 72 - l), n =1,2,3,... 

= ( - 1)“( -x),, 

(2)o=1. 



32 P.R.VEIN 

The notation x(“) is often used for (x),, especially in the finite-difference 
calculus. 

It may easily be verified that 

Q; = ddiag [( j)?] , 
i-i=n 

n=0,1,2 ,..., 

QZI 
-=~~diag[(n+;-l)m], n=0,1,2 ,..., 
(n!)” (2.5) 

R”,=subdiag[(j),(j+a>,l, n=0,1,2 ).... 
i-j=” (2.6) 

LEMMA 2.1. 

[xi-j] = E xnQ:y i> j. 
ll=O 

The proof consists of the observation that the matrix on the left can be 
expressed in the form 

E r,subdiag[l]. 
n=O i-j-n 

For example, when x, = x”, 

i>j. 

LEMMA 2.2. 

For the matrix on the left can be expressed in the form 
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The result follows from (2.5) with m = 1. 
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ILLUSTRATIONS. 

(9 M(r) = [( ?:)xi-i] 

XQ =e , 

which is a second proof of the result stated in the Introduction. The author 
has recently come across yet another proof in a paper by Redheffer [18]. 

(ii) 

(iii) 

= (I+Q)” 

=(1-Q)-“. 

Note that (1.6) can now be extended as follows: 

F=e”QA= .t,$ X 
[ .I 

LEMMA 2.3. 

n-l 
(j+l)“_j”= c (j+l)“j”-1-s. 

s=o 

The proof follows from the identity 

s = n&pl-s. 
s=o 
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m-n-l 

Q,,,Q, - Q,,Q, = c Qn+sQm-s-12 m > 72. 

s=o 

Proof. Referring to (2.2) and the lemma, 

where 

~(j)=(j+l)“j~-(j+l)“jm 

= (j + l)“j,[( j + l),-,- jmpn] 

m-n-1 

=(j+l)“j” C (j+l)Sjm-n-l-s 
s=O 

m-n-l 

= sTo (j + l)“+Sjm-s-l. 

The result follows. 

In particular, 

from which it follows by induction that 

Other identities of a similar nature include 

(Q m+l-Qm)(Qm+l+Qm)=Q~+l~ 

(Q m+l+Qm)(Qm+l-Qm)=2Q~-Q~+l, 

Q ii+ I- QmQm+z = QmQm+ 1, 

Q :+1-~m+2Qm= -Q,+lQm. 

n 

(2.7) 

(2.8) 

(2.9) 
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Let 

H,= i (-l)‘(;)A”-‘H,B’, n=0,1,2 ,.... 
r=O 

THEOREM 2.2. 

(a) H,=AJ$_,--H,_,B, n=1,2,3 ,.... 

(b) H,= c (-l)‘(;)AV_,B: p=O,1,2 ,..., n. 
r=O 

The proof of (a) is elementary and applies the identity 

The particular case of (b) in which p = 1 is identical with (a). The general 
form of (b) is obtained by applying (a) repeatedly. 

Let 

K,,(m) = io( -I)‘( :)QL;Q;Q:,+l, n,s=0,1,2 )..., 

K,,(m) = Qk. 

THEOREM 2.3. 

(4 K&4 = sLl,,+l(m), 

(b) K,,(m) = (s>,,Qi,+“> 
(c) K,,(m) = n!Q;+‘. 

Pmof. Put 

A=B=Q,+l, 

H, = K,,(m) 

Ho=Qfn 
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in the previous theorem, and refer to (2.8): 

K&4 =Qm+lLl,,(m) -Kn-&4Q,+, 

n-l 

= L” ( - l)‘( n ; 1)~T,:-V2m+l~:, - Qslsrm+dQk+l 

which proves (a). Applying (a) repeatedly yields (b), and then (c) follows as 
the special case in which s = 1. n 

It may also be verified that 

e-“Q( xQ,)e'Q = xQ2 + x2Q2, 

e-XQ(xQ3)eXQ = xQ3 + x2(,' +2QQ2) + x3Q3. 

Let 

U,=fsubdiag[(m-l+j)(m+j)], m = 1,2,3,... 
i-j=1 

=$n(m-l)Q,+(2m-l)Q,+Q,], 

vm=u*um_~-~-u$J1, 

v, = I. 

Note that the suffixes in the definition of V,,, are in descending order of 
magnitude. The U,,, do not commute. V,,, arises in connection with Bessel 
polynomials. 

The pair of identities (2.9) suggests a direction in which they can be 
generalized. 

Let A,B, C, D be square matrices of the same order where DA = AD, 
CB = BC. Then the symbol 

can represent the matrix AD - BC and should not be confused with the 
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determinant of a partitioned matrix. It is a matrix, not a determinant. 
However, if the matrices do not commute in pairs as stipulated, then the 
symbol becomes ambiguous. 

Thus, the persymmetric matrix symbol 

Q, Qm+l 

Q Qmte m+l II 
could represent Q,,,Q, +s - Qi + r or Q, + sQ, - Qi + 1 which, from (2.9) are 
not equal. The ambiguity can be removed by defining two interpretations of 
the matrix symbol. 

Let 

where the upward-pointing arrows denote that the suffices in each term 
should be arranged in ascending or constant order of magnitude. Similarly, let 

where the downward-pointing arrows denote that the suffices in each term 
should be arranged in descending or constant order of magnitude. 

These definitions can be extended to third- and higher-order persymmetric 
matrix symbols. The symbol 

Q, Qm+l Qm+2 
Q m+l Qm+z Qm+s 
Q m+2 Qm+s Qm+4 

does not represent a unique matrix. There are six distinct products of 

Qm,Qm+~~Qm+4~ six distinct products of Q,, i, Qmf2, Qm+a (which occurs 
twice), three distinct products of QmrQm+a,Qm+a, and three distinct prod- 

ucts of Qm+~Qm+oQrn+~ Hence the total number of possible interpreta- 
tions of the symbol is 6332 = 1944; but it is possible to define two principal 
interpretations, one in which the suffixes in each term are arranged in 
ascending order of magnitude and one in which they are arranged in 
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descending order of magnitude. (Ascending should be interpreted as nonde- 
scending and descending should be interpreted as nonascending.) 

Let 

“Qm Qm+l Qm+2 

j&t= Qm+l Qm+2 Qm+3 

Q m+2 Qm+3 Qm+4 

= QmQm+zQm+~ +2Qm+1Qm+2Qm+z - Qi+2 - QmQi+, - Q:+lQm+d 

= - subdiag[(j+2)m(j+l)mi1jnl+z(2j2+5j+4)]. 
i- j=3 

Similarly, 

b&l= Qm+dQm+zQm +2Qm+3Qm+2Qm+l- Q;+, - Qk+,Qm - Qm+,Q;+, 

= subdiag ( j + 2) ] m+2(j+l)m+1jm(2j2+3j+2)]. 
i-j=3 

Hence 

fMsfi+JM~=2subdiag[(j+2)m(j+1)mf2jm(3j2+6j+4)] 
i-j=3 

=2subdiag[3(j+2)m+‘(j+l)m+2j”+1 
i-j=3 

+4(j +2)m(j+1)m+2jm] 

= 6Qm+1Qm+zQm+1+8QmQm+zQm~ 

The three suffixes in each of the terms on the right are symmetric about their 
centers, which is not unexpected. 

The name suggested for these determinantal matrix symbols is muterminunts. 
It is possible to define two principal interpretations of materminants only if 
the elements can be arranged in a linear sequence, as they can, for example, 
when the arrays are persymmetric or circulant. 
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3. AN APPLICATION OF THE MATRIX Q 

The finitedifference analogue of the Appell relation 

mJ&) = wm-1(4 (D=d/dx) 

is 

where 

W&) = \c/,,z(x +I) - J/,(x), 

(3.1) 

(3.2) 

The polynomial solution of (3.2) is 

PROBLEM. Prove that 

m-l 

l&;,(x)= c (-l)m+‘+l(7)(m-r-l)!+,(r). 
r=O 

Two proofs are given. The first is conventional and employs a scalar 
generating function G(x, t). The second employs the constant matrix Q, 
whose role is remarkably similar to that of t. 

First proof Let 

=(l+t)“G(O,t). (3.3) 
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8G 
ar=log(l+t)G, 

E #l,(x)t” = 2 (- l)‘+iv F I&(x)tS 

1,1 = 0 m! r=l r s=O s! . 

The proof is completed by equating coefficients of t “‘. 

Second proof. Let 

G(x)= [~,(~>,~,(x>,J,,(x),...]‘. 

Then, referring to Lemma 2.2, 

G(X)= [(iI:)(x)i-j]G(O) 
= (I + Q)"G(O) 

[Note the similarity between this equation and (3.3).] Thus 

G’(r) =log(I+Q)G(x) 

= I:1 (-l,:+lQr]G(x) 

= [(-l)i+‘+l(j~;)(i-i_I)!]G(x) 

The proof is completed by carrying out the matrix multiplication. n 

4. SOME SPECIAL TRIANGULAR MATRICES 

Laguerre polynomials Lv)( x), Her-mite polynomials H,(x), Bernoulli 
polynomials B,(r), and Euler polynomials E,(x) are defined by Abramowitz 
and Stegun [2], Erdelyi et al. [3], and Rainville [4]. The lesser-known Bessel 



IDENTITIES AMONG TRIANGULAR MATRICES 41 

polynomials y,(x) are defined by Erdelyi, Rainville, and Riordan [6]. They 
differ from Laguerre, Hermite, Legendre, and Chebyshev polynomials in that 
they are orthogonal not along the real axis, but round a contour embracing 
the origin in the complex plane. 

The Stirling numbers si j, Si j of the first and second kinds are defined by 
Comtet [5], Riordan [6], Jordan [8], Cohen [9], and Abramowitz and Stegun. 
Apart from displaying both parameters as suffices as is customary in matrix 
analysis, the notation sij, Sij is that of Comtet and Riordan. Cohen uses the 
notation 

[;]=,sij,. (;} =sii 

in order to emphasize the similarity between the Stirling numbers and the 
i 

binomial coefficients . . 
0 3 

Abramowitz and Stegun use @j in place of S. 

Jordan remarks that the utility of Stirling numbers has not been fully 
recognized; they have been neglected and are seldom used. Their importance 
in certain similarity and related transformations will be demonstrated below. 

The little-known twoparameter Eulerian numbers A i j, not to be confused 
with the one-parameter Euler numbers E,, are defined by Comtet, who gives 
a long list of references, to which may be added Stalley, Lawden, Klamkin, 
Zeitlin, Takacs, and Lehmer [lo-151 and Mortini [27]. Lawden evaluates the 
persymmetric (Hankel) determinant whose elements are Eulerian polynomi- 
als. Given a family of polynomials 

PM = 5 Cd, n=0,1,2 )...) 
r=O 

define a triangular matrix P(x) with elements 

Pii = ci_l i_jxi-j, i 2 j. 

The polynomials are said to be generated by the rows of P(x). 
The Laguerre polynomials are defined by the generating-function relation 

(1 - t) -n-lexp 2 = “gOLp)(x)rn. 
( i 

(4.1) 
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The polynomials n i OL ( > 
-I (a) L, (x), which have a unit constant term, are 

generated by the rows of the matrix 

L’a’(~)=~!~(;l:i,il~~~!], i,j=1,2,3 ,.... (4.2) 

Let 

1 
Q’(r) = ( - x)“n!L’,“’ - 

i i x 

(4.3) 

The Z(,“‘(r) are the reversed Laguerre polynomials with unit constant term. 
The matrix which generates these polynomials by rows is 

j)“‘(x) = 

[ 

(j)i_j(j + (Y)i_j( - X)i-i 
(i_ j)! 1 , L j = L2,3,... (4.4) 

(4.5) 

The numerical coefficients in the elements of the matrix satisfy the recurrence 
relation 

aij=a. z-l.j-1 -(i + j - 2+ a)ai_l,j. 

The reversed simple Laguerre polynomials are obtained by putting (Y = 0 and 
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are generated by the rows of the matrix 

= 2x2 
-6x3 

24x4 

- 4x 
18x2 

-96x3 . . . . . . 

(4.6) 

where the numerical coefficients satisfy the recurrence relation 

Also, 

1 

- 2x 1 
E(l)“‘(x) = 6x2 - 6x 1 . (4.7) 

- 24x3 36x2 - 12x 1 
120x4 - 240x3 120x2 -20x 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The numerical coefficients satisfy the recurrence relation 

aij=a. I-l,j-I - (i + j - l)ai_l, j 

and may be identified as ( - l)jLi j, where the Li j are the Lah numbers [5,6] 
defined by 

i(i-l)! i 
Lij = ( - 1) ~ 

0 (j-l)! j * (4.8) 

The Hermite polynomials are defined by the generating-function relation 

e2rt-tZ= 
O3 H,(x)t” c n! . 

n=O 
(4-g) 
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Explicitly, 
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N ( - l)T(2X)n-2’ 
H,(x)=n! c N= [in]* 

r=O r!(n - 2r)! ’ 

The even-order polynomials 

( - l)“n! 

(2n)! 
H,*(x) 

are generated by the rows of the matrix 

(i-j)!( -4r2)'-j 
(2i_2j)! 1 , i,j=1,2,3 ,.... (4.10) 

The odd-order polynomials 

( - l)“n! 

2(2n + l)!x H2n+ I(x) 

are generated by the rows of the matrix 

(i-j)!{ -4X2}i-j 
(2i_2j+1)! 

I 
, i,j=1,2,3, . . . . (4.11) 

The reversed polynomials 

are generated by the rows of the matrix 

i-1 

H(x)= j-1 [( ) (i- j)!;{l+( -l)ipj}( -;x)i-j 
{t(i- j)}! 

1 
’ 

i, j=1,2,3,.‘... (4.12) 

The Bernoulli polynomials are defined by the generating-function relation 

text 
-= 
et- 1 

f %(W 

n=O n! ’ 
(4.13) 
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The reversed Bernoulli polynomials are generated by the rows of the matrix 

Bi_j(o)xi-j , 
1 

i, j = 1,2,3 ,... . (4.14) 

The numerical coefficients in the first column are the Bernoulli numbers 
B, = B,(O). 

The Euler polynomials are defined by the generating-function relation 

2e"' M E,(x)t” 
-=C,. 
et+1 lI=O 

(4.15) 

The reversed Euler polynomials are generated by the rows of the matrix 

E(x) = [( i’:)“i_j(0)ri-j], i,j=1,2,3,... . (4.16) 

The numerical coefficients in the first column are the numbers E,(O), not the 
Euler numbers E, = 2%,(i). 

The Bessel polynomials are defined by the generating-function relation 

1 - (1 - 2ti)“2 
exp 

i I 

= E %-l(W 

x fl=O I ’ n. 

Explicitly, 

These polynomials are generated by the rows of the matrix 

Y(r)= [aijri-j], i,j=1,2,3 ,..., 

where 

(2i - j - l)! 

‘ii= (j- l)!(i-j)!2i-i' 

(4.17) 

(4.18) 
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We have 
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Y(x) = 

where 

1 

x 1 

3x2 3x 1 , (4.19) 
15X3 15x2 6x 1 

105x4 105x3 45x2 10x 1 . . . . . * . . . . . . . . . . . . . . . . . . . 

ajj=ai_l,j_1+(2i- j-2)ai_l,j. (4.20) 

Stirling numbers of the first and second kinds are defined by the relations 

s,o = fjro> (4.21) 
k=O 

X’= i $k(X)k, s,o = b3. (4.22) 
k=O 

Define Stirling matrices s(x),S(x) of the first and second kinds as follows: 

S(X) = [ sijxi-j] 

= ! 
1 

-x 1 

2x2 -3x 1 

-6x3 11x2 - 6x 

I 

1 ’ 

(4.23) 

24X4 -50x3 35x2 -10x 1 .., . . . . . . . . . . . . . . . . . . . . . . . . . . 
where 

and 

sij = s. r-l,j-1 -(i-l)Si-l,j; (4.24) 

s(x) = [Sijx’-q 

= 
’ 

(425) 
x3 7x2 6x 1 

x4 15x3 25x2 10x 1 . . . . . . . . . . . . . . . . . . . . . . 
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where 

Sij=Si_l j_l+jSi-l,j’ (4.26) 

The matrices s(l),S(l) serve as tables of Stirling numbers. 
Define a column vectorAC, an augmented column vector c, a matrix M, 

and an augmented matrix M as follows: 

c = [UilT, i = 1,2,3,... 

= a,,a,,a,,... [ IT, 

e:= [Ui-l]TI i=1,2,3 ,..., ao=l 

= [l, al,a2,a3,... IT, 

M= [m,j], i, j = 1,2,3 ,.**9 

fi= [mi-l,j-ll, i, j=1,2,3 ,..., mji = 1, mi, = m,, = Si, 

Let 

x= [x,x2,x3 ,... IT, 

x,= [(X)1,(X)2,(X)S,...lTI 

x2= [(~),,(~),,(~)3.‘.‘lT, 

g(X)= [Si-l,j-lXi-i]> 

9(X)= [Si_l,j_IxI-j], 

Define another matrix 8 as follows: 

S(x) = [Sd,i_i+l(i - j + l)!x’-j]. 

(4.27a) 

(4.27-b) 

(4.28a) 

(4.28b) 

(4.29) 
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The numerical coefficients in the elements satisfy 

The relations (4.21), (4.22) can now be expressed in the form 

x, = s( 1)x, 

x = S(l)X,. 

Hence 

s(l)S(l) = I = S(l)s(l), 

i SikSkj = aij = i SikSkj. 
k=j k=j 

These relations are well known. It follows that 

s(x)S(x) = I = s(r)+) 

for all values of x. Also 

x,=s( -1)X 

= s( - l)S(l)X,. 

Similarly, 

rz, = i(l)ri, 
rz =8(1)X,, 

sI(*)qx)=I=qx)sI(x) 

iz,=q -1)X 

= s^( - 1)$(1)X,. 

(4.30) 

(4.31) 

Having recorded these identities, it is convenient to discard the notation X 
and revert to the notation X as in Sections 1,2. 
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The proofs of the following relations are left as exercises for the reader: 

@(xi-‘X) = i (- I)'-jsijQj X 

1 
(D = d/dx), 

j=1 

(xD)‘X=xQ(l+xD)‘-‘X 

(4.32) 

Let 

w,= [(X).,(X).+1,(X).+2,...lT. 
Then 

(I+Q)‘W, = (x - n + r),.W,_,. 

In particular, 

(I+Q)“wn = (&Wo. 

The Eulerian polynomials A,(x) and the Eulerian numbers Ai j are 
defined by the generating-function relation 

(l-x)‘+’ f kixk=Ai(x) 
k-0 

= iclAijxj. 

Explicitly, 

Aij= 2 (-I)‘( i:‘)(j_k)‘e 
k=O 

The polynomials Ai(x)/x are generated by the rows of the matrix 

(4.33) 

A(x) = [ Aijri-j], (4.34) 
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5. IDENTITIES 

It will be convenient to list a number of identities in this section and to 
prove some of them in the next. 

If AB-i = B-‘A, then both products will be written A/B without ambigu- 
ity. If B is singular, then B-r does not exist, but it will be used in a symbolic 
manner. For example, 

f ( - B)2r _ sinB 

r=o (2r+l)! B ’ 

where the infinite sum is well defined for all square matrices B. 
We have 

L@‘(r)=a!(xQ)+J,(2(rQ)‘“), 

L@‘(x) = e-WQ+Qz), 

E(x) = eexQz, 

H,(x) = cos(2rQ+), 

H,(x) = 
sin(2xQi) 

2xQi ’ 

&.) = ,-(:xQ)', 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 
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s^(x)S(x) = I+ xQ, (5.10) 

S( x)2( x) = f?*Q =q- x)s( -x), (5.11) 

s(x)e@S(x) = I+ xQ. (5.12) 

i(x)e”%(x) = I+ xQ, (5.13) 

s(x)(e”Q- I)S(x) = xQ, (5.14) 

iZ(x)(e”Q- I)i?(x) = xQ, (5.15) 

S(x)log(I+ xQ)s(x) = rQ, (5.16) 

ii(x)log(I+ xQ)s(x) = xQ, (5.17) 

i( - x)S(x) = e xQ~=s(-x)~(x), (5.18) 

s( - x)S(x) = ex(Q+Qn), (5.19) 

sI( - x)!?(x) = (I - xQ)eXQ2 = e*Qe(I+ xQ) -I, (5.20) 

S( x)edXQ2s( - x) = eXQ, (5.21) 

!?( x)eMxQ2sI( - x) = e-XQ, (5.22) 

,xQ,,+l (5.23) 

e-~Qm+l(~ - xQm) -‘e~Qm+l = I+ rQm, (5.24) 

,-x(aQ+Qz),x(a+lQ+Qe) = I+ xQ, (5.25) 

,-rQe,+Q+Qd = (I+ xQ)~, (5.26) 

S( -x)e ~(aQ+Qz+) = ,(a-WQ, (5.27) 

S( - x)e r(aQ+Qz)l(x) = e(a+l)lQ, (5.28) 

e-.&=Q+Qde~CL9+Qe) c- I+ x(aQ,+Q), (5.29) 

s(x) (5.30) 
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21 
s(r) ~ I 1 eXQ+I 

S(x)=I 
I++(;,’ 

(5.31) 

A(x) = s( r)e-‘o, (5.32) 

Y-‘(r)Y(x)=I-xQ, (5.33) 

Y(x)Y-i(x) =(I- 2x99, (5.34) 

Y-1(r)(I-2xQ)hY(r)=I-xQ, (5.35) 

(5.36) 

S(l)exQs(l) = e-‘exQDeX (D = d/dx). 

Note that corresponding to each identity of the form 

(5.37) 

A-‘BA = C, 

there are identities of the form 

A-‘B’A = C’ 
3 

etc. 

6. PROOFS 

The identities (5.1), (5.4), (5.5) were proved in [l] but are reproduced 
here for comparison with (5.2), (5.6). 

To prove (5.2), note that the elements in the subdiagonal i - j = n of the 
matrix in (4.4) are 

(-xY 
(jL(j + a>,7 3 j = 1,2,3 ,... . 
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Hence 

=1+x,, a 

O” W”,” 
n=l - 

-xxi, =e . 

The result follows from (2.3). It follows that 

The identities (5.6) to (5.8) are illustrations of a more general theorem. 

THEOREM 6.1. Zf the Appell polynomials a,(x) are generated by the 
relation 

m a,(x)t” 
e”A(t)= c 7, 

n=O . 

where 

A(t)= 2 5, a,=l, 
130 ’ 

then the reversed polynomials x”cu,(l/x) are generated by the rows of the 
matrix A( xQ). 

Proof. Equating coefficients of t n/n! in the generating relation, we have 

aJx)=rgo(:)arxn-r, n=0,1,2 ,.... 

Hence 

xna,( t) =iO(y)a.xr, n=0,1,2 ,.... 

The matrix which generates these polynomials by rows with the unit elements 
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in the principal diagonal is 

[(~~~)~i_jriP’]> i,j=1,2,3,... . 

It follows from Lemma 2.2 that this matrix is equal to 

O” a&Q)' 
CT = A(xQ). 

r=O ’ 

n 

Equation (5.6) now follows by putting A(t) = e-” and (u,(x) = H,($x). 
Equations (5.7), (5.8) are proved in a similar manner, and (5.9) follows easily. 

The identities (5.10) to (5.17) relate the Stirling matrices to Q and depend 
on two lemmas on Stirling numbers. 

LEMMA 6.1. 

i 

. . 

I’~~l, 

0 otherwise. 

Proof. Referring to (4.24), (4.30), 

It si-l,k-lSkj= ~~,[Srr+(i-l)si-,,,iS,j 

k=j I 

= i SikSkj+(i-l)l~lSi_I,k~~j 

k=j k=j 

=6ij+(i-1)6,_,,j. 

The result follows. 

(5.10) now follows immediately but (5.11) requires another lemma. 

LEMMA 6.2 (Cohen [8, p. 1371). 

n 
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The left side of (5.11) now follows with the aid of (1.2). The right side is 
obtained by changing the sign of r and inverting. (5.12), (5.13) are obtained 
by eliminating first 2((x) and then S(x) from (5.10), (5.11). Equations (5.14), 
(5.15) then follow easily. (5.16) is obtained by raising (5.12) to the power r 
[see the note which follows (5.37)], and then differentiating with respect to r 
at r = 0. (5.17) is obtained in a similar manner. Note that the functions which 
appear in (5.14) to (5.17), namely e’ - l,log(l+ t), are mutually inverse in 
the scalar sense. 

One more lemma on Stirling numbers is required to prove the identities 
which contain the matrix Qa. 

LEMMA 6.3 (Riordan [7, p. 441). 

k~,(-l)ks~kskj=~(:r:i. 
J 

j! 

The left side of (5.18) can now be proved as follows: 

:( -,)S(X)= [s~_~,~_~( -~)~-j][s~~Cj] 

= [ pijxi-i] , 

where 

@ij=( -l)i i ( -l)ksi-r,k_rSkj 
k = j 

=( -l)ikgj( -l)k[Sik+(i-l)Si-l,j]Skj 

=( -l)i i ( -l)ksikS,j+( -l)i(i-l) i ( -l)ksi_r,jStj 
k-j k=j 

i! i-l 

i i 

(i-l)(i-l)! i-2 
=- 

j! j-1 - i i (j-l)! j-1 

(i-l)! i-1 
=--- 

i 1 (j-l)! j-1 ’ 
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Hence, referring to (6.1) 

The right side of (5.18) now follows by changing the sign of x and inverting. 
The same lemma can be applied to prove (5.19): 

s( - r)S(x) = [ sij( - r)i-j] [sixi-i] 

= [ EijXi-j], 

where 

Eij = ( - l)i i ( - 1)&&j 
k=j 

i! i-l =- ( 1 j! j-1 * 

The result follows. Note that Q,Qa do not commute and hence 

This point is emphasized by (5.25), (5.26). Note also that no new identity is 
obtained from (5.19) by changing the sign of x and inverting. The resulting 
equation is identical with the original. 

The left side of (5.20) is obtained by changing the sign of x in (5.10) and 
using the right side of (5.18). The right side follows easily. Both (5.21), (5.22) 
can be obtained from (5.11), (5.18), changing the sign of x where necessary. 

The identities (5.23) to (5.26) are independent of Stirling matrices and 
may be proved with the aid of further lemmas. 

LEMMA 6.4. 

mM 
eABe-A= C -2, 

n=O n! 
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where 

M, = ,&( - I)‘( ;)A”-‘BA’. 

The proof is elementary. 
Put 

B = xQ,,. 

Then, referring to Theorem 2.3, 

=X “+lK,l(m) 

= r~!(xQ,)“+~. 

Hence 

XQ,, 
= I-xQ,’ 

which is equivalent to (5.23). Equation (5.24) now follows easily. 
The proof of (5.25) can be made to depend on Theorem 2.2. Put 

A = aQ+Qz. 

57 

B= a+lQ+Q2, 

H,=I. 
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Then, referring to (2.7), 

H,=A-B 

=-Q 

H,=A2-2AB+B2 

=(A2-~-~~+B2)-(AB-BA) 

= (A - BJ2 - (Q~Q - QQ,) 

=Q2-Q2 

= 0. 

Hence, from the recurrence relation of Theorem 2.2(a), 

H,=O, n 2 2. 

(5.25) can now be proved as follows: 

00 ( - l)nH,$’ 
e -‘*exB=I-xH1+ C n, 

n=2 

=I+xQ, 

which is the stated result. 
Applying (5.25) repeatedly, 

,~(~Q+Qz)=,x(G--~Q+Q~)(I+ xQ) 

= ex(a-2Q+Qz)(~+ xQ)2 

= er(a-pQ+Qe)(I+ xQ)', s = 1,2,...,ff, 

= eXQz(I+ xQ)~, 

which is equivalent to (5.26). 
From (5.26), (5.12) 

eaxQ = S(x)e-XQzeX(aQ+Q ) 2 s(x). 
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Premultiply both sides by e-‘q and use (5.21): 

e(a-l)~~ = [e-~~S(x)e-~~2] ex(a~+~2)s(x) 

= S( - x)e xbQ+Qd,(,), 

which proves (5.27). Equation (5.28) is proved in a similar manner. 
The proof of (5.29) may be made to depend on a binomial identity. Let 

wij= ‘fJ( -1)j “,i)(r+j-1). 
r=O 

LEMMA. 

i 

i - 1, j=i, 
oij= -1, j=i-1, 

0 otherwise. 

The proof is elementary. 
Referring to (6.1) and the A, B defined in the proof of (5.25), 

(i-2)!(i-l+a)!(-x)‘-j I[ (i - l)!(i - l+ +-j 

(j-2)!(j-l+cy)!(i-j)! (j-l)!(j-l+(~)!(i-j)! I 

where 

(-l)i-‘(i-2)!(i-1+a)! 

aii= (j - l)!(j - 1+ a)!(i - j)! Oij. 

Hence, applying the lemma, 

i 

1, j=i, 

aij = i-l-tar, j=i-1, 
0 otherwise, 

e -xBexA = I+ x(aQ, +Q), 

which proves (5.29). 
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The generating-function relation (4.13) with I = 0 will be used twice, 
once in each direction, to prove (5.30): 

1odI-t xQ) 

= (I+rQ)-I’ 

The result follows. It is interesting to note that a shorter proof can be found 
by raising (5.14) to the power - 1 despite the fact that (e*Q - I))‘, (xQ)-r 
in isolation are meaningless. Referring to (5.16), 

s(x)@ %Q - I) -'(xQ)S(x) = [s(r)(e”Q- I) -‘S(X)] [s(x)(rQ)S(x)] 

= (xQ) -‘log(I+ xQ). 

This function Gstrates the note at the beginning of Section 5. It can be 
expanded as a power series in xQ and is therefore well defined. It appears 
that certain dubious intermediate steps are justified provided that there are no 
objections to the final result. 

The proof of (5.31) is simpler. Expand the function (e”Q + I)-’ as a power 
series in erQ and apply (5.12). 

Some properties of the finite forms of s(x),S(x) are given in [16]. 
The proof of (5.32) depends on two lemmas. 

LEMMA 6.4 (Comtet [5, p. 2441): 

k=l k=l 
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LEMMA 6.5. 

i Aix(;J=(i-j+l)!si,i_j+l. 
k=j 

Proof. Divide through the previous lemma by U, put u = 1+ 0, and 
expand (1 + o)~- ’ in a binomial series: 

k$lAik;c; ( k ; l)d = f: k!Sikd-k. 
k=l 

The result follows by equating coefficients of vi-‘. 

It follows that 

[kiijkj][(~?~)~i-j] = [(i-j+l)!si,i_j+lxi-j], 

that is, 

A(x)e”Q=@x), 

which is equivalent to (5.32), which then yields 

i-j+1 

Aij=(-1)‘~j-’ c (-l)rr! 
r=l 

This identity may not be well known and is an example of a combinatorial 
relation which can be obtained by the matrix method. 

The proofs of the remaining identities are left as exercises for the reader. 
Numerical calculations suggest that 

Y-‘(X) = [bijri-j], 

where 
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and where aij is defined in (4.17); and also that 

( - I)‘-ii! 

bij = (2j _ i)!( i _ j)!zi-j ’ 

Apart from the alternating signs, the nonzero elements in the jth column of 
Y-‘(x), read from top to bottom, are identical with the elements in the 
(j + 1)th row of Y(x) read from right to left. For example, the 4th column of 
Y-‘(x) is 

[O,O,O,l, - lOr,4Sx2, - 105x3,105X4,0,0,0 )... 1’. 

Milne [17] has investigated the relationship between the recurrence relations 
satisfied by the elements of mutually inverse pairs of triangular matrices. 

The proof of (5.37), and also that of (4.32) can be made to depend on the 
exponential polynomial identity 

k Sijxj=e-X(xD)nex (D=d/dx), 
j=O 

which is proved by Roman and Rota [25, p. 1341. 

7. TWO GENERAL SIMILARITY TRANSFORMATIONS 

The identities in Section 5 can be applied to prove two general similarity 
transformations. 

Let 

m +Q)’ 
A(xQ)= c -yj---7 

r=O 
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and let a matrix with a suffix 1 denote the first column of that matrix: 

AdxQ) = [ a,,a,x,a‘#,... ITT 

4bQ)= [h,,bl~,b,x~,...]~, 

S,(x)= [1,x,x2 )... IT, 

where S(x) is a Stirling matrix. 

LEMMA 7.1. 

Proof: 

e -*A(xQ)S,(x) = A,(xQ). 

A(xQ)S,(x)= [(:I:)~i_jxi-j][xi-l] 

=[ximljl(~~~jui-~] 

= [iJ~~)x~-~r_lx~-l] 

= [( jT~)#-j][ai_lxi-l] 

= eXQA1(xQ), 

which is equivalent to the stated result. 

THEOREM 7.1. 

where 

s(x)A(xQ)S(x) = B(xQh 

bi = i sijaj, n=0,1,2 ,.... 
j=O 
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Proof. Using (5.11) and the lemma, 

P. R. VEIN 

4bQ) = s(++Q)S,tx) 

= Z( x)e-@A( rQ)S,( x) 

= O(x)A,(xQ). 

The formula for bi is obtained by carrying out the matrix multiplication with 
?Z= 1. n 

LEMMA 7.2. 

A(xQ)(eX@Q+Q2) )~=(I-xQ)-~-~A~(xQ). 

Proof. Referring to (6.1) and Lemma LZ(iii), 

A(xQ)(&Q+Q2) 

d-j 
I 
[ ai_ $-l] 

f (a +lLbQ)” 1 AI(~Q) 
n-O nl 

=(I-xQ)-“-‘A,(xQ). 

THEOREM 7.2. 

m 
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where 
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Proof. Using (5.26) with a change in the sign of X, and the lemma, 

= ,-x(uQ+Qz)(~ _ XQ) -++Q) 

= epxQz(I - xQ) -lA,(xQ) 

= e”(Q-Qz)A,( XQ) 

The formula for bi is obtained by carrying out the matrix multiplication. Note 
that bi is independent of (Y. n 

These matrix identities yield scalar combinatorial identities. 

LEMMA 7.3. 

i-j 

i f Fpqap-q= ksoak'%kFr+k.r. 
p=jq=j r=j 

Each of these double sums represents the sum of the same triangular array of 
elements. 

Theorem 7.1 can be expressed in the form 
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Hence, applying the lemma, 

= ‘2 a,‘ik,..,,( k + ; - l)s,j. 
k-0 r=j 

Equating coefficients of ak we obtain the identity 

si-j,k’ c s’ 1:: z,r+k( k+;-l)srjp 

which remains valid when si j, Si j are interchanged. Two similar identities are 
proved by Riordan [6, p. 2041 using an operational method. 

8. INVERSE RELATIONS 

Several of the inverse scalar pairs obtained in this section are given by 
Riordan [6], who devotes two chapters to the subject. However, Riordan’s 
proofs are based on the use of scalar generating functions, whereas the proofs 
given below are based on the transformation of one column vector into 
another by means of functions of the matrices Q,. The close resemblance 
between the two methods has already been noted in Section 3. 

Let 

A= [a 
T 

o,a,,a,,...l 9 

B= [b,,b,,b, ,... 1’. 

The notation A,P is not used in this section. 
The inverse pair of matrix relations 

A=MB, 

B=M-‘A, 
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where 
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M = [ hij] > i, j = 1,2,3 >*.*, i > j, 

M-’ = [Pi,]. i, j = 1,2,3 ,*..> i > j, 

are equivalent to the inverse pair of scalar relations 

ai= kd ‘i+l,j+lbjp 
j=O 

bi= i Pi+l,j+laj* 
j=O 

There are a number of interesting special cases of this result. When 
Xi j = Ai_ j, then, referring to Lemma 2.1, we have the following theorem on 

QO. 

THEOREM 8.1. The inverse pair 

A=MB, 

B=M-lA, 

where 

M= [“i-j] = f ‘nQ,“> 
n=O 

M-l= [pi-j] = f. 1_1"Ql> 
n=O 

is equivalent to the pair 

a, = h Xjbi_j = i hi_jbj, 
j=O j=O 

bi = i pjai_j = i pi_jaj. 
j=O j=O 

The proof is elementary. 
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For example, the inverse pair 

P. R. VEIN 

A = (I - 44,) -“‘B, 

B = (I - 4Q,)1’2A 

is equivalent to the inverse pair 

‘i-i. 

Proofi 

(I-4Qo)p1’2= 5 (%),;I. 

n=O 

Hence 

A,= 2,” ) ( 1 n=0,1,2 ,..., 

(I-4Q,)1’2=I-2 f ;(2;zl”)Q;. 
n-1 

Hence 

n = 1,2,3 ,..., 

p. = 1. 

The result follows. Note the similarity between the transformation matrix 
(I - 4Q,) - ‘19 and the scalar ordinary generating function (1 - 4~r-I”~ 
employed by Riordan [6, p. 1011 to solve the same problem. Little additional 
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work is required to prove that the inverse pair 

A = ;Q,‘[I - (I - 4Q,)“‘]B, 

B=;[I+(I-4Q,)“‘]A 

is equivalent to the inverse pair 

Note that Riordan gives this pair correctly on p. 102, but reproduces the 
formula for bi incorrectly in Table 3.2. 

Similarly, the inverse pair 

is equivalent to the pair 

A = (I+ QJB, 

B=(I+Q,)PPA 

ai=i P ( 1 j-0 I 
hi-j, 

bi= h -.* l+ 
i i j=() 3 

= i ( -l)'(j+q-l)bi_j. 
j=O \ 3 / 

When 

xii = 
i i 
i-1 h,_j, j-l 

then, referring to Lemma 2.2, we have the following theorem on Q: 
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THEOREM 8.2. The inverse pair 

A=MB, 

B=M-‘A, 

where 

M=[(j_:)~i-j]=C,~, 

Mpl=[(~!:)Pi_j]=~o~> 

is equivalent to the inverse pair 

bi=i ” 0 j-0 3 

For example, the pair 

A = eQB, 

B=e-QA 

is equivalent to the pair 

a,=x !bi, 
‘0 j=O I 

bi= i (-I)i-‘(i)aj. 
j=O 

P. R. VEIN 

The proof is elementary and consists of expanding eQ, e-Q in series and 
showing that X, = 1, CL, = ( - 1)“. 
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The pair 

is equivalent to the pair 

A = (I+Q)PB, 

B=(I+Q)-PA 

pi = i ( i;g)aj 
j=O 

= jgo( -q-q i-;‘y-‘)aj, 

where CV~ = a,/i!, pi = b,/i!. 

The pair 

A = +Q-l[I - (I - 4Q)“2]B, 

B=:[I+(J-4Q)1’2]A 

is equivalent to the pair 

The pair 

A = ePRB, 

B=e-PRA 

where R is defined implicitly by the relation 

71 

ReeR = Q 03.1) 
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and explicitly by the Lagrange series (Riordan [S, pp. 96, 146]), 

n”-’ n 
R= f + (8.2) 

n=l * 

is equivalent to the Abel pair 

a,=i ” 
0 j=l 3 

p(p+i-$-QX, 

bi= i (-l)ie’j:)p(p-i+ j)ipipl,j. 

j=l 

Proof: 

m p(n + p)"-lQn 
gR= C 

fl=O n! 

i -- I = [( i j_I p(p+i-j)‘-j-l ) 
I 

e-~R= _ 
CC p(n - p)“-lQn 

’ n! ?l=O 

(8.3) 

(8.4) 

The result follows. Note that Riordan [6, p. 931 obtains the inverse pair by 
applying Abel’s generalization of the binomial theorem and then states the 
orthogonal relation, that is, a relation of the form 

CUikVkj = 6ij, 

k 

which the result implies. Using the matrix method, the orthogonal relation 
comes first for it is implied by the identity 
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Referring to (6.1), it can be seen that the pair 

A = e@+QzB, 

B = ,-aQ-QPA 

is equivalent to the pair 

pj= i ( -ly(;;*u)aj. 
j=O 

The pair 

is equivalent to the pair 

A = eQzeQB, 

BE e-Qe-Q2A 

pi = i LC;-‘)(l)aj, 
j=O 

which may not be well known. The Lc,“‘(x) are the Laguerre polynomials. 
The pair 

A = ePB, 

B=eePA, 

where 
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is equivalent to the pair 

bi= i (-I)~-’ 
j-0 

which is due to Stanton and Sprott [ 191. 
Inverse pairs of a different type can be found by replacing the column 

vectors A, B by F, X, where 

F= [fo(x),fi(r),fi(~),...]~, 

X=[l,r,2 ,... I’. 

For example, the pair 

F = e-aQ-Q,x, 

X = eaQ+QzF, 

where 

A’(x) = ( - l)‘i!Lc*)(x), 

is equivalent to the pair 

L$“‘(x)= i (-l)j(;:$ 
j=O 

;= j~o(-l)ij;:~)L:ol(x). 

Using (5.19), the Stirling relation (4.31) gives the pair 

X, = eQ+Qzxl, 

X, = e-Q-Qzx2, 
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which is equivalent to the pair 

(X)i = ( - l)i k Lij(X)j, 

j=O 

(x)i = i ( - l)jLij(r)j, 
j=O 

where the Lij are the Lah numbers defined in (4.8). 
The formulae which express L?)(x) in terms of the (x)~ and vice versa 

can be obtained from the pair 

F = ePaQ-QzS( 1)X, 

X, = s(l)e@+QzF. 

Other inverse scalar pairs are given by Carlitz [20-231. 

9. TOUCHARD NUMBERS AND MATRICES 

Define numbers ti j, Ti j and matrices t(x), T( x) in a manner similar to the 
definitions of Stirling numbers si j, Si j and Stirling matrices s(x), S(x), 

Let 

t 
(i+i+~)‘= C tijd, tiO = 6iO, (9.1) 

j=O 

xi = i T,,(j +1+ 1c)j, T,, = sio. (9.2) 
j=O 

Then 

t,,= i-1 *i-j 

‘I 
i 1 j-1 2 ) 

Tij= ( _ l)i-i i 0 *i-j. jJ 
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The numbers tij have 
maps-see Comtet [5, 

Let 

a combinatorial interpretation in the theory of acyclic 
p. 701. 

t(x) = [tijkj] 
i, j = 1,2,3 . . . . 

T(x) = [ Tijri-j] 

Then 

t(x)T(x) = I = T(x)+), 

f(x)?(x) = I = ?(x)f(x). 

Using the column vectors F,X defined in Section 8 with 

f;(x)=(i+l+x)‘, 

(9.1), (9.2) can be expressed in the form 

Let 

F = t(l)X, 

X = T( l)F. 

Oc (n+l)“-‘(xQ)” 
E(x)= c 

n=O n! 

= li 1 f-: (i_i+l)i-j-lxi-j] 
then 

E-l(x) = _ 5 (n - ~);;'(xQ)~ (0” = 1) 
n=O 

=-- 
[i 1 i$ (i_,j_l)i-jklxi-j]. 
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Note that 

E(1) = err, 

77 

but 

E(x) # exR. 

Note also that the functions defined by 

are both Appeal polynomials of the form (1.5), where a j is given respectively 
by (j + l)j- l, - ( j - l)j- l. They satisfy (3.1). 

The proofs of the following identities are left as exercises for the reader: 

b)T(x) = E-‘(x) - xQ, 

f(l)T(l) = (I - R)eeXR = 2, 

T( r)z( X) = (I - xQ)e-‘o, 

t(l)QT(l) = R, 

t( l)Qe-QT( 1) = Q, 

>eR=I+- Q oeR 
I-R’ 

The inverse pair (9.1), (9.2) is related to an inverse pair due to Touchard and 
quoted by Riordan [6, p. 961. A similar pair is quoted by Rota et al. [26, p. 
7441 and attributed without a reference to Clarke. In view of the similarities 
in properties between tij,Tij,t(x),T(x) and sij, Sij,s(x),S(x), it is suggested 
that ti j, q j be called the Touchard numbers of the first and second kinds and 
that t(x), T(x) be called the Towhard matrices of the first and second kinds. 
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10. A FOOTNOTE ON STIRLING MATRICES 

P. R. VEIN 

The Stirling matrices s = s(l), S = S(1) can each be expressed in terms of 
Q,Q2 and one new matrix 2: 

s = z-le-:'Q+Qdz > 

s = z-l,;CQ+Qdz , 

where 

1 
1 1 

2 

z= 
I 2 1 

l,Tl * 28 

1 4151 m & 
.?j4 54 9 1 

., . . . . . . . . . . . . . . . . 

It may be verified that the sum of the elements in each row of Z-‘, except 
the first, is zero. 

The author is indebted to the referee for several constructive comments. 
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