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With the help of the ordinary Bell polynomials we find the simplest com- 
binatorial form for the coefficients of the Faber polynomials 4,(r) expanded in 
powers of t - aO. We also find a remarkable inequality between the moduli Iq5L(t)l 
for ItI < 1 and the Fibonacci numbers u2,, with even subscripts. 0 1991 Academic 

Press, Inc. 

1. ORDINARY BELL POLYNOMIALS 

For arbitrary x1, x2, . . . . the ordinary Bell polynomials Dnk are generated 
by the formal expansions (see Comtet [l, p. 136, Remark]) 

(~,x,,,f”~~~~D,,~~~, k=l,2 ,.... (1) 

If we apply the Faa di Bruno “precise formula” for the nth derivative of 
composite functions, developed in our paper [2, pp. 82-84, Section 23, to 
the composite function 

then we find that Dnk, 1 < k d n, n 2 1, in (1) are homogeneous and 
isobaric polynomials of degree k and weight n with respect to 
Xl 7 . . . . x, _ k + , with integral coefficients, and they have the explicit form 

D,,k = Dnk(X1, . . . . x,-k+ ,) = c k!(x,)Y’...(x,-k+l)Yn-k+’ 
VI!...V,-k+,! ’ (2) 
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where the sum is taken over all nonnegative integers vr, . . . . v, k + , 
satisfying 

v1 + v2 + ... + v,, k + , = k, 
(3) 

v,+2vz+ -.* +(n--+11)v,,.,+,=n. 

For k=O (n>O) and O<n<k (k> l), we set 

D,, = Dncl(Xl, a’*> xn + 1) = 0, n = 1) 2, . ..) 

D,,=D,(x,)= 1, 

D,, = 0, O<n<k, k> 1. 

(4) 

In our papers [2-81 we have used the polynomials 

in the theory of univalent functions (see also Harmelin [9]). The poly- 
nomials Dltk satisfy the recurrence relations (see [2, 3, 6, 8, 91) 

n-k+1 

DA= c -@n-+1, ldk~n,n>,l,D,,=O,D,=l, (5) 
jl=l 

and 

n-ktl 

nDnk = k c PXpDn-+l, l~k~n,n>,l,D,,=O,D,=l. (6) 
p= 1 

The first and the last polynomials are 

D,, =x,, D,,=x;, na 1. (7) 

For 1 < n d 5 from (5) and (7) we obtain the following short table (see in 
[ 1, p. 3091, a longer table for 1 < n < 10) 

D,, =x1; Dz, = ~2, Dz2=x;; 

D,, =x3, 032 = 2x1 x2, D,, TX;; 

D41 =x4, D,, = 2x,x, +x;, D,, = 3x:x,, 

D,,=x;; D,, = ~5, D,,=2x,x,+2x2x3, 

D,, = 3x:x, + 3x,x$, D,, =4x+,, D,, =x;. 

(8) 
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Another application of the Fal di Bruno precise formula, this time to the 
composite function 

for an arbitrary complex number A, yields the formal expansion 
[2, p. 84, Formulas (25)-(26)]) 

1+ f 
A 

x,z” = 1+ f zn i 
A 

n=l II=1 k=l 0 
k D&(X1, . . ..X.-k+l). 

From (2) and (3) it is clear that (compare with [l, p. 136, Relations 
and [3r’]], and [9, Relation (l.ll)]) 

= x’;Dn- v,k-dX1 =O, x2, a.., x,-k+,) 

= 
i xyDn-k,k-v(X2, ..v&-2k+v+2) 

Y = max(O,Zk ~ n) 

(see 

(9) 

c3u 

(10) 

for 16 k < n, n 2 1. (According to (4) relation (10) is true for k = 0 and 
n 2 0 as well.) 

2. FABER POLYNOMIALS 

Let C denote the class of functions 

F(z)=z+ f a,z-“, 
II=0 

(11) 

which are meromorphic and univalent for Izj > 1, and let S denote the class 
of functions 

f(z)= f v”, fz1= 1, (12) 
tI=l 

which are analytic and univalent for (2) < 1, i.e., the functions 

1 
F(z) =f(yz) E CT Iz( > 1. (13) 
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The Faber polynomials $,(t) of degrees n = 1,2, . . . with respect to F(z) are 
generated by the Taylor expansion (see Pommerenke [ 10, p. 573 or [3]) 

F(z) - t 
log-= - 

Z 
(14) 

for an arbitrary complex number t and sufficiently large (zJ > 1. Differentia- 
tion of (14) with respect to z and (11) give the recurrence relation 
(compare with [lo, p. 573) 

n-l 
A+,(f)=(~-“o)ht(t)- c %-.~s(t)--%~ 

s = 0 
n = 1) 2, . ..) 40(t) = 13 fj,(t)=t-No. (15) 

By aid of (15) the following polynomials d*(t), &(t), d4(f), . . . can be found 
successively (see this table in [lo, p. 571). In our paper [3], with the help 
of the ordinary Bell polynomials in uo, a,, . . . . we found simple explicit 
formulas for the coefficients of the Faber polynomials 4,(t) expanded in 
powers of t. Further, Johnston [ll, p. 1236, Theorem 11, found explicit 
cumbersome formulas for the coefficients of the Faber polynomials 
expanded in powers of t - ~1~. In this section, with the help of formulas 
(5)-(6) and (9)(lo), we obtain the simplest combinatorial form for the 
coefficients of the Faber polynomials d,(t) expanded in powers of t - c(~. 

THEOREM 1. The Faber polynomials d,(t) expanded in powers of t - a(, 
have the explicit form 

(b,(t) = cb”’ + i C~,nyt-CIO)v, n = 1, 2, . . . . (16) 
I’ = 1 

where 

D n-k- v.k (x I? -? an--2k--v+1) (17) 

for v = 1, . . . . n, and ct) = 0 and 

[+I ( _ 1 )k 
cg)=n 1 

k=l 
kDn-k&b . ..> %-2ktl) (18) 

,for n = 2, 3, . . . . 

Remark. For an arbitrary real number x, the symbol [x] denotes the 
greatest integer less than or equal to x. 
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Proof Differentiation of (14) with respect to t gives 

(19) 

On the other hand, from (11) and (9) we have 

Z 
l+(cr,-t)z-‘+ f 1 

-1 
-= 
F(z) - t 

CI,-lZPn 
n=2 

=I+ f Z-n 

n-1 

n=l 
k~O(-l)k~~k(~O-t.~l....,~,k)+(f--O)” , 1 

(20) 

having in mind (7) and (4). Equating the coefficients of zPn in (19) and 
(20), we obtain 

~(““(‘)=~~‘(-1)kD”*(1”-t,a”...,2.~k)+(f-a,)” (21) 
k=O 

for n = 1, 2, . . . . From (10) we have 

D,,k(%,-tr al, . . . . an-k) 

for O<k<n-1, n>l, where if 2k-n>O, the terms in the sum are 
replaced by zeroes for 0 < v < 2k - n. Thus (21) and (22) yield 

&d’+,(t)= i (t-“0)” 
v=o 

Dn-k-“,“(a1,...,an-Zk-v+l) (23) 

for n = 0, 1, 2, . . . . keeping in mind (4). If we integrate (23) with respect to 
t from a, to t, we obtain the formulas (16) and (17), where c$“‘= dn(cro), 
n = 1, 2, ..*, must be found. For our purpose, from (15) for t = a, we obtain 
the recurrence relation 

n-1 

$+I)= -,c, cr”_,+((n+l)a,, 

n = 2, 3, . . . . cp = 0 3 cb2’= -2a,. (24) 
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For n = 2 from (24) we obtain cb” = - 3cr,; i.e., the formula (18) is true for 
n = 2 and n = 3. If we assume that the formula (18) is true for any integer 
n 2 3, then from (24), (18) (4), (5), and (6) it follows that 

=(n+l)r(~~)‘21~~~+I~k,k(?,,...;a.,-2k+2). 
k=l 

(25) 

From the comparison of (25) and (18) we conclude that the formula (18) 
is true for any integer n 2 2. 

This completes the proof of Theorem 1. 

For v=n, n-l, n-2, n-3, n-4, n-5, n-6, n-7 ,... from (17) (18), 
(8), and (7) we obtain the table 

C@) = 1, n 3 1; n crJ1=O,n>l; 

crl,= -na,,n>2; cr13= -na,,n>3; 

C(n) = n(n - 3) 
n-4 ----a:--na 

2 39 n>4; 

crl,=n[(n-4)a,a,-a,], n>5; 

c(M) _ 
n-6- - 

n(n -4Mn - 5) a: 
6 

a1a3+a:)-nct5, n 3 6; 

- - 
cyl,= (n 5)(n 6) -n 

2 
afa2-(n-6)(a,a,+a,a,)+a, I , n > 7; 

. . . 

For 0 <v < n - 2, n 2 3, the formulas (17) and (18) can be united into 
one formula: 

ccn’ = n 

D 

n-k--.,ktCII, . . . . aH-2k ,m+,h (26) 
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Evidently, in comparison with the Johnston results [ll, p. 1236, Formulas 
(7) and (8)], our formula (26) is simpler. 

3. AN INEQUALITY FOR THE FIRST DERIVATIVES 
OF THE FABER POLYNOMIALS 

The aim of this section is the following 

THEOREM 2. Let the.functions F(z)E C be determined by (12) and (13). 
Then in the disc 1 tl < 1 the derivatives & t) of the Faber 
of F(z), determined by (14), satisfy the sharp inequalities 

I4Xt)l d au2n? n = 1, 2, . . . . 

where u2,, is the 2nth Fibonacci number, i.e., 
r r 

p&momials i,(t) 

(27) 

U 2n = 

(3 + 45,” - (3 - J5,” 
2nd ’ 

n = 1, 2, . . . . 

For n 2 2, the equality in (27) holds only for the Koebe function 

(28) 

(29) 

at the point t = E. 

Proof In [3, p. 434, Theorem 33, we found that, in terms of the 
coefficients a,, in (12), the Faber polynomials d,(1) have the form 

h(t)=nb,+n i ~~,k~a,,...,an-k+l), n> 1, 
k=l 

= i (-l)k% 
(30) 

b n k nk (a 2,..., anpk+2) 9 na 1. 
k=l 

In addition, Louis de Branges [12] proved the Bieberbach conjecture for 
the functions (12) of the class S that 

la, I G 4 n = 2, 3, . . . . (31) 

where for some n the equality holds only for the Koebe function (29). 
Thus, from (30) and (31) with the help of (2) and (3), we obtain the 
inequalities 

I&(t)1 <n i D&(1, 2, . . ..n-k+ 1) 
k=l 

(32) 
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for n = 1, 2, . . . and ItI < 1, where for n = 2, 3, .,. the equality holds only for 
the Koebe function (29) at the point t = E for which 

qqE)=n&“-’ i Dnk(l, 2, . ..) n-k+ l), (El = 1. (33) 
k=l 

Further, in our papers [5-71 we found the equations 

Dnk( 1, 2, *.., n-k+ l)=(“fi”, ‘), l<k<n, n> 1, (34) 

and 

n+k-1 

> 
= (3 + &I” - (3 - Js,” 

n-k 2nd 1 
n> 1, (35) 

respectively. On the other hand, for the Fibonacci numbers u, = u2 = 1, 
u, = u n 2 + U, _, , n B 3, the well-known formula 

u Jl+$Y-(l-Jk 
” 

2nd ) 
n = 1, 2, . . . . (36) 

holds. Therefore, from (32)-(36) we obtain the relations (27)(28). (Hence 
the expansion 

1 
=l+ f l& EnZn, 

3-a 
1 -&f(Z) 

IZJ <- 
n=l 2 ’ 

wheref(z) is the Koebe function (29), generates the Fibonacci numbers uzn 
with even subscripts.) 

This completes the proof of Theorem 2. 

COROLLARY. Under the conditions and notations of Theorem 2, for 
arbitrary complex numbers t, and t2 with t, # tz and It,,,1 d 1, we have the 
precise inequalities 

hl(tl)-4n(t2) <nu 
t1 - t2 

2n3 n = 2, 3, . . . . 

Proof: The inequalities (37) follow from the relations 

hz(t*) - dn(t1) 
t2 - t1 

<nu2,, 

(37) 

for n = 2, 3, . . . . having in mind (27). 
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