On the Faber Polynomials of the Univalent Functions of Class Σ

Pavel G. Todorov
Department of Mathematics, Paissii Hilendarski University, 4000 Plovdiv, Bulgaria

Submitted by R. P. Boas
Received April 2, 1990

Abstract

With the help of the ordinary Bell polynomials we find the simplest combinatorial form for the coefficients of the Faber polynomials $\phi_{n}(t)$ expanded in powers of $t-\alpha_{0}$. We also find a remarkable inequality between the moduli $\left|\phi_{n}^{\prime}(t)\right|$ for $|t| \leqslant 1$ and the Fibonacci numbers $u_{2 n}$ with even subscripts. © 1991 Academic Press, Inc.

1. Ordinary Bell Polynomials

For arbitrary x_{1}, x_{2}, \ldots, the ordinary Bell polynomials $D_{n k}$ are generated by the formal expansions (sce Comtet [1, p. 136, Remark])

$$
\begin{equation*}
\left(\sum_{m=1}^{\infty} x_{m} z^{m}\right)^{k} \equiv \sum_{n=k}^{\infty} D_{n k} z^{n}, \quad k=1,2, \ldots \tag{1}
\end{equation*}
$$

If we apply the Faà di Bruno "precise formula" for the nth derivative of composite functions, developed in our paper [2, pp. 82-84, Section 2], to the composite function

$$
\left(\sum_{m=1}^{\infty} x_{m} z^{m}\right)^{k} \equiv t^{k} \circ\left(\sum_{m=1}^{\infty} x_{m} z^{m}\right)
$$

then we find that $D_{n k}, 1 \leqslant k \leqslant n, n \geqslant 1$, in (1) are homogeneous and isobaric polynomials of degree k and weight n with respect to x_{1}, \ldots, x_{n-k+1} with integral coefficients, and they have the explicit form

$$
\begin{equation*}
D_{n k} \equiv D_{n k}\left(x_{1}, \ldots, x_{n-k+1}\right) \equiv \sum \frac{k!\left(x_{1}\right)^{v_{1}} \cdots\left(x_{n-k+1}\right)^{v_{n-k+1}}}{v_{1}!\cdots v_{n-k+1}!} \tag{2}
\end{equation*}
$$

where the sum is taken over all nonnegative integers v_{1}, \ldots, v_{n-k+1} satisfying

$$
\begin{array}{r}
v_{1}+v_{2}+\cdots+v_{n \cdots k+1}=k, \tag{3}\\
v_{1}+2 v_{2}+\cdots+(n-k+1) v_{n-k+1}=n
\end{array}
$$

For $k=0(n \geqslant 0)$ and $0 \leqslant n<k(k \geqslant 1)$, we set

$$
\begin{align*}
& D_{n 0} \equiv D_{n 0}\left(x_{1}, \ldots, x_{n+1}\right) \equiv 0, \quad n=1,2, \ldots, \\
& D_{00} \equiv D_{(0)}\left(x_{1}\right) \equiv 1, \tag{4}\\
& D_{n k} \equiv 0, \quad 0 \leqslant n<k, \quad k \geqslant 1 .
\end{align*}
$$

In our papers [2-8] we have used the polynomials

$$
C_{n k}\left(x_{1}, \ldots, x_{n-k+1}\right) \equiv \frac{1}{k!} D_{n k}\left(x_{1}, \ldots, x_{n-k+1}\right)
$$

in the theory of univalent functions (see also Harmelin [9]). The polynomials $D_{n k}$ satisfy the recurrence relations (see $[2,3,6,8,9]$)

$$
\begin{equation*}
D_{n k}=\sum_{\mu=1}^{n-k+1} x_{\mu} D_{n-\mu, k-1}, \quad 1 \leqslant k \leqslant n, n \geqslant 1, D_{n 0}-0, D_{00}=1 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
n D_{n k}=k \sum_{\mu=1}^{n-k+1} \mu x_{\mu} D_{n-\mu, k-1}, \quad 1 \leqslant k \leqslant n, n \geqslant 1, D_{n 0}=0, D_{00}=1 . \tag{6}
\end{equation*}
$$

The first and the last polynomials are

$$
\begin{equation*}
D_{n 1}=x_{n}, \quad D_{n n}=x_{1}^{n}, \quad n \geqslant 1 . \tag{7}
\end{equation*}
$$

For $1 \leqslant n \leqslant 5$ from (5) and (7) we obtain the following short table (see in [1, p. 309], a longer table for $1 \leqslant n \leqslant 10$)
$D_{11}=x_{1} ;$
$D_{21}=x_{2}$,
$D_{22}=x_{1}^{2}$;
$D_{31}=x_{3}$,
$D_{32}=2 x_{1} x_{2}$,
$D_{33}=x_{1}^{3}$;
$D_{41}=x_{4}$,
$D_{42}=2 x_{1} x_{3}+x_{2}^{2}$,
$D_{43}=3 x_{1}^{2} x_{2}$,
$D_{44}=x_{1}^{4}$;
$D_{51}=x_{5}$,
$D_{52}=2 x_{1} x_{4}+2 x_{2} x_{3}$,
$D_{53}=3 x_{1}^{2} x_{3}+3 x_{1} x_{2}^{2}$,
$D_{54}=4 x_{1}^{3} x_{2}$,
$D_{55}=x_{1}^{5}$.

Another application of the Faà di Bruno precise formula, this time to the composite function

$$
\left(1+\sum_{n=1}^{\infty} x_{n} z^{n}\right)^{\lambda} \equiv t^{\lambda} \circ\left(1+\sum_{n=1}^{\infty} x_{n} z^{n}\right), \quad 1^{\lambda}=1
$$

for an arbitrary complex number λ, yields the formal expansion (see [2, p. 84, Formulas (25)-(26)])

$$
\begin{equation*}
\left(1+\sum_{n=1}^{\infty} x_{n} z^{n}\right)^{\lambda}=1+\sum_{n=1}^{\infty} z^{n} \sum_{k=1}^{n}\binom{\lambda}{k} D_{n k}\left(x_{1}, \ldots, x_{n-k+1}\right) . \tag{9}
\end{equation*}
$$

From (2) and (3) it is clear that (compare with [1, p. 136, Relations [3l] and [3l 3], and [9, Relation (1.11)])

$$
\begin{align*}
D_{n k} & \left(x_{1}, \ldots, x_{n-k+1}\right) \\
& =\sum_{v=0}^{k}\binom{k}{v} x_{1}^{v} D_{n-v, k-v}\left(x_{1}=0, x_{2}, \ldots, x_{n-k+1}\right) \\
& =\sum_{v=\max (0,2 k-n)}^{k}\binom{k}{v} x_{1}^{v} D_{n-k, k-v}\left(x_{2}, \ldots, x_{n-2 k+v+2}\right) \tag{10}
\end{align*}
$$

for $1 \leqslant k \leqslant n, n \geqslant 1$. (According to (4) relation (10) is true for $k=0$ and $n \geqslant 0$ as well.)

2. Faber Polynomials

Let \sum denote the class of functions

$$
\begin{equation*}
F(z)=z+\sum_{n=0}^{\infty} \alpha_{n} z^{-n} \tag{11}
\end{equation*}
$$

which are meromorphic and univalent for $|z|>1$, and let S denote the class of functions

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}, \quad a_{1}=1 \tag{12}
\end{equation*}
$$

which are analytic and univalent for $|z|<1$, i.e., the functions

$$
\begin{equation*}
F(z)=\frac{1}{f(1 / z)} \in \sum, \quad|z|>1 . \tag{13}
\end{equation*}
$$

The Faber polynomials $\phi_{n}(t)$ of degrees $n=1,2, \ldots$ with respect to $F(z)$ are generated by the Taylor expansion (see Pommerenke [10, p. 57] or [3])

$$
\begin{equation*}
\log \frac{F(z)-t}{z}=-\sum_{n=1}^{\infty} \frac{1}{n} \phi_{n}(t) z^{-n} \tag{14}
\end{equation*}
$$

for an arbitrary complex number t and sufficiently large $|z|>1$. Differentiation of (14) with respect to z and (11) give the recurrence relation (compare with [10, p. 57])

$$
\begin{align*}
\phi_{n+1}(t)= & \left(t-\alpha_{0}\right) \phi_{n}(t)-\sum_{s=0}^{n-1} \alpha_{n-s} \phi_{s}(t)-n \alpha_{n} \\
& n=1,2, \ldots, \quad \phi_{0}(t)=1, \quad \phi_{1}(t)=t-\alpha_{0} . \tag{15}
\end{align*}
$$

By aid of (15) the following polynomials $\phi_{2}(t), \phi_{3}(t), \phi_{4}(t), \ldots$ can be found successively (see this table in [10, p. 57]). In our paper [3], with the help of the ordinary Bell polynomials in $\alpha_{0}, \alpha_{1}, \ldots$, we found simple explicit formulas for the coefficients of the Faber polynomials $\phi_{n}(t)$ expanded in powers of t. Further, Johnston [11, p. 1236, Theorem 1], found explicit cumbersome formulas for the coefficients of the Faber polynomials expanded in powers of $t-\alpha_{0}$. In this section, with the help of formulas (5)-(6) and (9)-(10), we obtain the simplest combinatorial form for the coefficients of the Faber polynomials $\phi_{n}(t)$ expanded in powers of $t-\alpha_{0}$.

Theorem 1. The Faber polynomials $\phi_{n}(t)$ expanded in powers of $t-\alpha_{0}$ have the explicit form

$$
\begin{equation*}
\phi_{n}(t)=c_{0}^{(n)}+\sum_{v=1}^{n} c_{v}^{(n)}\left(t-\alpha_{0}\right)^{v}, \quad n=1,2, \ldots \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{v}^{(n)}=n \sum_{k=0}^{[(n-v) / 2]} \frac{(-1)^{k}}{k+v}\binom{k+v}{k} D_{n-k-v, k}\left(\alpha_{1}, \ldots, \alpha_{n-2 k-v+1}\right) \tag{17}
\end{equation*}
$$

for $v=1, \ldots, n$, and $c_{0}^{(1)}=0$ and

$$
\begin{equation*}
c_{0}^{(n)}=n \sum_{k=1}^{[n / 2]} \frac{(-1)^{k}}{k} D_{n-k, k}\left(\alpha_{1}, \ldots, \alpha_{n-2 k+1}\right) \tag{18}
\end{equation*}
$$

for $n=2,3, \ldots$.
Remark. For an arbitrary real number x, the symbol $[x]$ denotes the greatest integer less than or equal to x.

Proof. Differentiation of (14) with respect to t gives

$$
\begin{equation*}
\frac{z}{F(z)-t}=1+\sum_{n=1}^{\infty} \frac{1}{n+1} \phi_{n+1}^{\prime}(t) z^{-n} \tag{19}
\end{equation*}
$$

On the other hand, from (11) and (9) we have

$$
\begin{align*}
\frac{z}{F(z)-t} & =\left[1+\left(\alpha_{0}-t\right) z^{-1}+\sum_{n=2}^{\infty} \alpha_{n-1} z^{-n}\right]^{-1} \\
& =1+\sum_{n=1}^{\infty} z^{-n}\left[\sum_{k=0}^{n-1}(-1)^{k} D_{n k}\left(\alpha_{0}-t, \alpha_{1}, \ldots, \alpha_{n-k}\right)+\left(t-\alpha_{0}\right)^{n}\right] \tag{20}
\end{align*}
$$

having in mind (7) and (4). Equating the coefficients of z^{-n} in (19) and (20), we obtain

$$
\begin{equation*}
\frac{1}{n+1} \phi_{n+1}^{\prime}(t)=\sum_{k=0}^{n-1}(-1)^{k} D_{n k}\left(\alpha_{0}-t, \alpha_{1}, \ldots, \alpha_{n-k}\right)+\left(t-\alpha_{0}\right)^{n} \tag{21}
\end{equation*}
$$

for $n=1,2, \ldots$ From (10) we have

$$
\begin{align*}
& D_{n k}\left(\alpha_{0}-t, \alpha_{1}, \ldots, \alpha_{n-k}\right) \\
& \quad=\sum_{v=0}^{k}\binom{k}{v}\left(\alpha_{0}-t\right)^{v} D_{n-k, k-v}\left(\alpha_{1}, \ldots, \alpha_{n-2 k+v+1}\right) \tag{22}
\end{align*}
$$

for $0 \leqslant k \leqslant n-1, n \geqslant 1$, where if $2 k-n>0$, the terms in the sum are replaced by zeroes for $0 \leqslant v<2 k-n$. Thus (21) and (22) yield

$$
\begin{align*}
\frac{1}{n+1} \phi_{n+1}^{\prime}(t)= & \sum_{v=0}^{n}\left(t-\alpha_{0}\right)^{v} \\
& \cdot \sum_{k-0}^{[(n-v) / 2]}(-1)^{k}\binom{k+v}{v} D_{n-k-v, v}\left(\alpha_{1}, \ldots, \alpha_{n-2 k-v+1}\right) \tag{23}
\end{align*}
$$

for $n=0,1,2, \ldots$, keeping in mind (4). If we integrate (23) with respect to t from α_{0} to t, we obtain the formulas (16) and (17), where $c_{0}^{(n)} \equiv \phi_{n}\left(\alpha_{0}\right)$, $n=1,2, \ldots$, must be found. For our purpose, from (15) for $t=\alpha_{0}$ we obtain the recurrence relation

$$
\begin{align*}
c_{0}^{(n+1)}= & -\sum_{s=1}^{n-1} \alpha_{n-s} c_{0}^{(s)}-(n+1) \alpha_{n}, \\
& n=2,3, \ldots, \quad c_{0}^{(1)}=0, \quad c_{0}^{(2)}=-2 \alpha_{1} . \tag{24}
\end{align*}
$$

For $n=2$ from (24) we obtain $c_{0}^{(3)}=-3 \alpha_{2}$; i.e., the formula (18) is true for $n=2$ and $n=3$. If we assume that the formula (18) is true for any integer $n \geqslant 3$, then from (24), (18), (4), (5), and (6) it follows that

$$
\begin{align*}
c_{0}^{(n+1)} & =\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} \sum_{s=k}^{n-1} s \alpha_{n-s} D_{s-k, k}\left(\alpha_{1}, \ldots\right)-(n+1) \alpha_{n} \\
& =\sum_{k=1}^{[(n-1) / 2]} \frac{(-1)^{k+1}}{k} \sum_{s=2 k}^{n-1} s \alpha_{n-s} D_{s-k, k}\left(\alpha_{1}, \ldots\right)-(n+1) \alpha_{n} \\
& =\sum_{k=1}^{[(n-1) / 2]} \frac{(-1)^{k+1}}{k} \sum_{\mu=1}^{n-2 k}(n-\mu) \alpha_{\mu} D_{n-k-\mu, k}-(n+1) \alpha_{n} \\
& =\sum_{k=1}^{[(n-1) / 2]} \frac{(-1)^{k+1}}{k}\left(n-\frac{n-k}{k+1}\right) D_{n-k, k+1}-(n+1) \alpha_{n} \\
& =(n+1) \sum_{k=1}^{[(n+1) / 2]} \frac{(-1)^{k}}{k} D_{n+1-k, k}\left(\alpha_{1}, \ldots, \alpha_{n-2 k+2}\right) . \tag{25}
\end{align*}
$$

From the comparison of (25) and (18) we conclude that the formula (18) is true for any integer $n \geqslant 2$.

This completes the proof of Theorem 1.
For $v=n, n-1, n-2, n-3, n-4, n-5, n-6, n-7, \ldots$ from (17), (18), (8), and (7), we obtain the table

$$
\begin{aligned}
c_{n}^{(n)}= & 1, n \geqslant 1 ; \quad c_{n-1}^{(n)}=0, n \geqslant 1 ; \\
c_{n-2}^{(n)}= & -n \alpha_{1}, n \geqslant 2 ; \quad c_{n-3}^{(n)}=-n \alpha_{2}, n \geqslant 3 ; \\
c_{n-4}^{(n)}= & \frac{n(n-3)}{2} \alpha_{1}^{2}-n \alpha_{3}, \quad n \geqslant 4 ; \\
c_{n-5}^{(n)}= & n\left[(n-4) \alpha_{1} \alpha_{2}-\alpha_{4}\right], \quad n \geqslant 5 ; \\
c_{n-6}^{(n)}= & -\frac{n(n-4)(n-5)}{6} \alpha_{1}^{3} \\
& +\frac{n(n-5)}{2}\left(2 \alpha_{1} \alpha_{3}+\alpha_{2}^{2}\right)-n \alpha_{5}, \quad n \geqslant 6 ; \\
c_{n-7}^{(n)}= & -n\left[\frac{(n-5)(n-6)}{2} \alpha_{1}^{2} \alpha_{2}-(n-6)\left(\alpha_{1} \alpha_{4}+\alpha_{2} \alpha_{3}\right)+\alpha_{6}\right], \quad n \geqslant 7 ;
\end{aligned}
$$

For $0 \leqslant v \leqslant n-2, n \geqslant 3$, the formulas (17) and (18) can be united into one formula:

$$
\begin{equation*}
c_{v}^{(n)}=n \sum_{k=1}^{[(n-v) / 2]} \frac{(-1)^{k}}{k+v}\binom{k+v}{k} D_{n-k-v, k}\left(\alpha_{1}, \ldots, \alpha_{n-2 k-v+1}\right) \tag{26}
\end{equation*}
$$

Evidently, in comparison with the Johnston results [11, p. 1236, Formulas (7) and (8)], our formula (26) is simpler.

3. An Inequality for the First Derivatives of the Faber Polynomials

The aim of this section is the following
Theorem 2. Let the functions $F(z) \in \sum$ be determined by (12) and (13). Then in the disc $|t| \leqslant 1$ the derivatives $\phi_{n}^{\prime}(t)$ of the Faber polynomials $\phi_{n}(t)$ of $F(z)$, determined by (14), satisfy the sharp inequalities

$$
\begin{equation*}
\left|\phi_{n}^{\prime}(t)\right| \leqslant n u_{2 n}, \quad n=1,2, \ldots \tag{27}
\end{equation*}
$$

where $u_{2 n}$ is the $2 n$th Fibonacci number, i.e.,

$$
\begin{equation*}
u_{2 n}=\frac{(3+\sqrt{5})^{n}-(3-\sqrt{5})^{n}}{2^{n} \sqrt{5}}, \quad n=1,2, \ldots \tag{28}
\end{equation*}
$$

For $n \geqslant 2$, the equality in (27) holds only for the Koebe function

$$
\begin{equation*}
f(z)=\frac{z}{(1-\varepsilon z)^{2}}=\sum_{n=1}^{\infty} n \varepsilon^{n-1} z^{n} \in S, \quad|\varepsilon|=1 \tag{29}
\end{equation*}
$$

at the point $t=\varepsilon$.
Proof. In [3, p.434, Theorem 3], we found that, in terms of the coefficients a_{n} in (12), the Faber polynomials $\phi_{n}(t)$ have the form

$$
\begin{align*}
\phi_{n}(t) & =n b_{n}+n \sum_{k=1}^{n} \frac{t^{k}}{k} D_{n k}\left(a_{1}, \ldots, a_{n-k+1}\right), & n \geqslant 1, \\
b_{n} & =\sum_{k=1}^{n} \frac{(-1)^{k-1}}{k} D_{n k}\left(a_{2}, \ldots, a_{n-k+2}\right), & n \geqslant 1 . \tag{30}
\end{align*}
$$

In addition, Louis de Branges [12] proved the Bieberbach conjecture for the functions (12) of the class S that

$$
\begin{equation*}
\left|a_{n}\right| \leqslant n, \quad n=2,3, \ldots \tag{31}
\end{equation*}
$$

where for some n the equality holds only for the Koebe function (29). Thus, from (30) and (31) with the help of (2) and (3), we obtain the inequalities

$$
\begin{equation*}
\left|\phi_{n}^{\prime}(t)\right| \leqslant n \sum_{k=1}^{n} D_{n k}(1,2, \ldots, n-k+1) \tag{32}
\end{equation*}
$$

for $n=1,2, \ldots$ and $|t| \leqslant 1$, where for $n=2,3, \ldots$ the equality holds only for the Koebe function (29) at the point $t=\varepsilon$ for which

$$
\begin{equation*}
\phi_{n}^{\prime}(\varepsilon)=n \varepsilon^{n-1} \sum_{k=1}^{n} D_{n k}(1,2, \ldots, n-k+1), \quad|\varepsilon|=1 \tag{33}
\end{equation*}
$$

Further, in our papers [5-7] we found the equations

$$
\begin{equation*}
D_{n k}(1,2, \ldots, n-k+1)=\binom{n+k-1}{n-k}, \quad 1 \leqslant k \leqslant n, \quad n \geqslant 1 \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{n}\binom{n+k-1}{n-k}=\frac{(3+\sqrt{5})^{n}-(3-\sqrt{5})^{n}}{2^{n} \sqrt{5}}, \quad n \geqslant 1 \tag{35}
\end{equation*}
$$

respectively. On the other hand, for the Fibonacci numbers $u_{1}=u_{2}=1$, $u_{n}=u_{n-2}+u_{n-1}, n \geqslant 3$, the well-known formula

$$
\begin{equation*}
u_{n}=\frac{(1+\sqrt{5})^{n}-(1-\sqrt{5})^{n}}{2^{n} \sqrt{5}}, \quad n=1,2, \ldots \tag{36}
\end{equation*}
$$

holds. Therefore, from (32)-(36) we obtain the relations (27)-(28). (Hence the expansion

$$
\frac{1}{1-\varepsilon f(z)}=1+\sum_{n=1}^{\infty} u_{2 n} \varepsilon^{n} z^{n}, \quad|z|<\frac{3-\sqrt{5}}{2}
$$

where $f(z)$ is the Koebe function (29), generates the Fibonacci numbers $u_{2 n}$ with even subscripts.)

This completes the proof of Theorem 2.

Corollary. Under the conditions and notations of Theorem 2, for arbitrary complex numbers t_{1} and t_{2} with $t_{1} \neq t_{2}$ and $\left|t_{1,2}\right| \leqslant 1$, we have the precise inequalities

$$
\begin{equation*}
\left|\frac{\phi_{n}\left(t_{1}\right)-\phi_{n}\left(t_{2}\right)}{t_{1}-t_{2}}\right|<n u_{2 n}, \quad n=2,3, \ldots \tag{37}
\end{equation*}
$$

Proof. The inequalities (37) follow from the relations

$$
\left|\frac{\phi_{n}\left(t_{2}\right)-\phi_{n}\left(t_{1}\right)}{t_{2}-t_{1}}\right|=\left|\int_{0}^{1} \phi_{n}^{\prime}\left[t_{1}+\left(t_{2}-t_{1}\right) \tau\right] d \tau\right|<n u_{2 n}
$$

for $n=2,3, \ldots$, having in mind (27).

References

1. L. Comtet, "Advanced Combinatorics (The Art of Finite and Infinite Expansions)," Reidel, Dordrecht/Boston, 1974.
2. P. G. Todorov, New explicit formulas for the coefficients of p-symmetric functions, Proc. Amer. Math. Soc. 77 (1979), 81-86.
3. P. G. Todorov, Explicit formulas for the coefficients of Faber polynomials with respect to univalent functions of the class Σ, Proc. Amer. Math. Soc. 82 (1981), 431-438.
4. P. G. ToDOrov, New explicit formulas for the Grunsky coefficients of univalent functions, Punjab Univ. J. Math. 16 (1983), 53-72.
5. P. G. Todorov, On the coefficients of the univalent functions, C. R. Acad. Bulgare Sci. 38, No. 8 (1985), 969-972.
6. P. G. ToDOROv, On the coefficients of p-valent functions which are polynomials of univalent functions, Proc. Amer. Math. Soc. 97 (1986), 605-608.
7. P. G. Todorov, On the coefficients of certain composite functions which are power series of univalent functions, C. R. Acad. Bulgare Sci. 40, No. 9 (1987), 13-15.
8. P. G. Todorov, Explicit formulas for the coefficients of α-convex functions, $\alpha \geqslant 0$, Canad. J. Math. 39, No. 4 (1987), 769-783.
9. R. Harmelin, Generalized Grunsky coefficients and inequalities, Israel J. Math. 57, No. 3 (1987), 347-364.
10. Chr. Pommerenke, Univalent functions with a chapter on quadratic differentials by Gerd Jensen, Stud. Math. 25 (1975).
11. E. H. Johnston, Faber expansions of rational and entire functions, SIAM J. Math. Anal. 18, No. 5 (1987), 1235-1247.
12. L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
