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EXPLICIT FORMULAS FOR THE COEFFICIENTS

OF FABER POLYNOMIALS WTTH RESPECT TO

UNIVALENT FUNCTIONS OF THE CLASS 2

PAVEL G. TODOROV

Abstract. In this note, we obtain three natural explicit formulas for the coeffi-

cients of the Faber polynomials with respect to the univalent functions of the class

2. As an application, we obtain two new explicit formulas for the Grunsky

coefficients of functions in 2; these formulas are simpler than those due to Schur

[2] and Hummel [4]. The method used in this paper is different from the one that

we used to obtain explicit expressions for the Grunsky coefficients for functions of

the class 5 [6].

Let 2 denote the class of functions

oo

F(z) = z +  2 «n^"n (1)
n-0

which are meromorphic and univalent for |z| > 1, and let

«*>(') = t +   2   ßn^ (2)
n-0

denote the inverse of a function F in 2. Let S denote the class of functions

/(*) = 2 anz",       a, = 1, (3)
n = i

which are analytic and univalent for |z| < 1, i.e.,

F{z)=W77)^   |z| > L (4)

It follows from results due to Grunsky [1], Schur [2] and Schiffer [3] that the Faber

polynomials $m(f) with respect to F(z) are the coefficients in the expansion

logf(^Ll = _ 2  -Um(')*-m (5)
Z m-l  m

as well as the regular part of the Laurent expansion of [<&(t)]m. The coefficients in

the expansions

*-[*W)W" + 2 c^r" (6)
71=1
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432 P. G. TODOROV

and

"•¡eEiörJLvT <7)
are connected by the relations

Cmn =  mgmn> m, /I =   1, 2, . . . , (8)

where the gmn are the Grunsky coefficients of F(z). In (7), and elsewhere in this

paper, we use only the principal values of the logarithms and powers that appear in

the formulas.

Explicit formulas for the coefficients cmn and gmn in terms of the a„ in (1) and the

a„ in (3) were found by Schur [2] and Hummel [4], respectively. By methods we

have used elsewhere [5], [6] it is possible to obtain additional explicit expressions

for the coefficients gnm in terms of the coefficients an in (3). Despite these small

successes, the problem of finding explicit expressions for the coefficients of the

Faber polynomials í»m(í) themselves in terms of the coefficients in (1), (2), and (3)

has remained open.

In this paper, we solve that problem; we find explicit formulas for the coeffi-

cients of the Faber polynomials in terms of the a„, ß„ and a„. As an application we

obtain, in a natural way, three explicit formulas for the coefficients in (6) in terms

of the coefficients a„, a„ and ß„, and an, in turn. In particular, we obtain two new

explicit formulas for the Grunsky coefficients gnm in terms of an, and a„ and ßn,

respectively.

We shall make use of the factorial polynomials

(at)* = x(x - l)(x - 2) • • • (x - k + 1), k = 1, 2,. . . , (x)o = 1. (9)

For arbitrary c,, c2, . .., cn we shall also use the homogeneous isobaric polynomi-

als of degree k and weight n introduced elsewhere [5], [6]:

(c Y' • ■ ■ (c         y—**>
Q,(c„ . . ., cn_k+x) = 2 l ''„t...:,-.       \<k<n,

y 1 • *n — it + 1 •

Qo(c„ • • • , c„+i) = 0,       Cofi(cx) = 1, (10)

where the sum is taken over all nonnegative integers vx, . .., v„_k+1 satisfying

vx + ■ ■ ■ + vn_k+x = k, vx + 2v2 + • • • + (n - k + l)t>n-k+x = n. The poly-

nomials (10) are easily computed if one uses the recursion relations

i   n-*+l

Cn,k = T    2    ^C„-u,*-i.        1 < * < «, 1 < n,
K      u-l

_
Cn,k — Q,*(C1> • • • > Cn-*+l)>

C„,o = 0,    C0i0 = 1,    Q, = c„,    Cn,„ = cnx/n\.

We note that the expression k\Cnk(cx, .. . , cn_k+x) is the coefficient Cz. of z" in

the A:th power of the formal power series (cxz + . . .), that is,

Q-    2  V"     =k\Cntk(cx,...,cn_k+x),        Kk<n.

(See (24), below, and/or formula (45) in [6].)
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We now proceed to establish our results, starting with an expression for the

coefficients of the Faber polynomials ®m(t) in terms of the an in (1).

Theorem 1. In terms of the coefficients a„ in (1), the Faber polynomials <J>m(f) are

given by

*«(') = -™*m + m 2  -*--„(«)'",       m = 1, 2, ..., (11)
n-l

where

and where

^log^l

F(z)

=  2 ("1)*_1(A: - l)!Cm>0, «„..., ol,,.*),    (12)
A-l

m —n

=    2   (-")*Cm-n,*(«0> «1. • • • . <*m-n-k)-     (13)
k = 0

Proof. If we replace z by \/z in (5), and if we use ¥(z) = zF(\/z) = 1 +

2"»i a.„_xzn, \z\ < 1, then we obtain

log(*(z) - /z) = log *(z) + logil - -£-) - - 2   ~*«W*".      (14)
V ¥(*)/ m=l  W

If we apply the Faà di Bruno "precise formula" for the nth derivative of

composite functions, developed in an earlier publication [5, Theorem 1], to the

composite function log ^(z) = (log w) ° ^f(z), then we obtain

log *(z) =   2 *mzm,
m-1

\*-l/*m = C.-flog *(z)] == 2 (-l)*-1^ - 1)!Q,,(«0) .... et-*).       (15)
*-i

Since we also have the expansion,

l0g(1-^)) = -n|1^nZ''^(z)rn' <16>

another application of the Faà di Bruno formula, this time to the composite

function on [*(z)]~n = w~" ° ^(z), yields

[*(z)]- =1+2 *m(n)zm,
m-l

(17)

where, making use of (9)

*» ■ C,.[*(z)]-" = 2 i-n)kCm,k(a0, ..., flL._t),
*-i

*„(«) = 1,       « = 1,2,....

If we now use (16) and (17), we obtain

(18)

ce m     I

= - 2 *" 2 7*-~X»)<"
m— 1        n— 1

(19)
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434 P. G. TODOROV

Finally, from (14), (15) and (19) we deduce

log(*(z) - tz) = - 2  *■
m=\

*m + 2 -^m-n(n)tn
n=\

(20)

Now the expansions in (15), (19) and (20) converge for all sufficiently small |/|

and/or for all z close enough to the origin so that ^(z) =£ 0 there. If we now

compare the coefficients of (14) and (20), then we obtain (11), (12) and (13). This

completes our proof of Theorem 1.

Now we find expressions for the coefficients of the polynomials í»m(í) in terms of

the coefficients ßn in (2).

Theorem 2. In terms of the ßn in (2), the Faber polynomials $>m(f) are given by the

formulas

(21)*«(') = 2 *2»-»(«)ï",       m = 1, 2, ... ,
n-0

' *(0 "T

t2 i

= rn\C2m^m(ß_x, ß0,..., ßm_n_x),       ß_x = 1. (22)

Proof. If we replace /by l/t in (2), then we obtain a series

where

<$>2m-n(m) = C,-2-—

+(í)«<*(4)- v«-2'"   **—*• (23)

that converges in the largest disc with center at t = 0 not containing a singular

point of </>(/). The Faà di Bruno "precise formula", now applied to the composite

function [<i>(0]m = wm ° <K0> yields a series

[<*>(')]"" =   2 Um)t",
n = m

</>„(«,) 3 C,.[tfi)]m = tn\CnJ>ß-X> ßo> ■ ■ ■ ! Ä—,-i), i»_i = 1. (24)

that has the same radius of convergence as the series for </>(*)• From (23) and (24)

we obtain the Laurent expansion

m oo

[*(')]" =  2 4>2m-Árn)f + 2 <t>2m+Á^)r". (25)
n=0 n-1

From (25) we obtain the series (21) whose coefficients are given by (22). This

completes our proof of Theorem 2.

We now find the coefficients of <&m(t) in terms of the a„ in (3).

Theorem 3. The Faber polynomials $m(t) have the form

m

*-.(') = mK + m 2 (* - 1)!Q,,*(öi> • • •, am_k+x)tk,       m =1,2,
k-l

log- =  2 (-l)*"*"* - l)!Cm,,(a2, . . ., am_k+2),
k=\

«i=l,2,.. (26)

and where the an are those in (3) above.
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Proof. If we replace z by 1/z in F(z) in (4) and (5), we obtain

logz(-^ - /) = log(l - tf(z)) - log^ = - jl   jr*Jfy*». (27)

If we now apply the Faà di Bruno formula once again, this time to the composite

function log[/(z)/z] = [log w] ° [f(z)/z], then we obtain

logM=  2 bmz-,       \z\<\, (28)
Z ni-l

where the bm are those in (26). Another application of the Faà di Bruno formula, to

log(l - tfiz)) = log(l - tw) of(z), yields

Ml - tf(z)) = - 2 cm(t)zm,

m

cm(t) = 2 (k - \)\CmJc(ax, ..., am_k+x)tk,       a, = 1. (29)
*-i

The series in (29) converges for sufficiently small |r| and |z|.

From (27), (28) and (29) we obtain

108[2(¿)-')]--|,[t- + c-w>" (30)

We now compare the expansions in (27) and (30), to obtain (26); this completes our

proof.

We remark that for F(z) given by (4), a comparison of the expansions (11), (21)

and (26) would yield additional identities analogous to those obtained by compar-

ing (11) and (21).

We turn now to the task of obtaining explicit forms for the coefficients of the

expansion in (6) corresponding to each of the three cases we have just considered,

and those forms in turn will yield three explicit expressions for the Grunsky

coefficients gmn in (7).

Theorem 4. In terms of the coefficients an in (1), the Grunsky coefficients gmn in (7)

are given by

m    m — r

8mn =   2     2   (-l)V + k -  tyClr+ivi"-!' «o, . . . , «r + „_,)
r=l  k = 0

•Q,-r,*:(«0. «!>•••> <*m-r-k)> (31)

where a_x = 1.

Proof. With / = F(Ç), I?I > 1, in (11) we obtain

m     ,

*n,W)) = -m*m + « 2 -*m-Âr)[HOY, (32)

and then another application of the Faà di Bruno formula, as in the proof of
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Theorem 2, yields

[finy = 2 h2r_n(r)r + 2 ^„(or*.    \s\ > i
n—O n—In-0

fhr*n(r) = C{-»*
HS)

f2
= r]C2r^n,r(a_x, a0, . . ., ar+„_x),       a_, = I.      (33)

In (33), the upper (lower) signs correspond to one another. Now from (32), and (33)

we obtain

*„(*tt)) = m -*m + 2 -*m-Âr)h2r(r)
r-l   r

m m     i

+ « 2 r 2 -*»-,0-)A*-»(r)

oo m     1

+ «2 f-"2 -*m-Ár)h2r+n(r)
n-\ /■-!   r

(34)

Since the expansions in (6) and (34) must be the same, it follows that

m    ,

2 -*m-r(r)h2r(r) -<*„       m = 1, 2,...,
r-\   r

m     ,

2 -*m-r(r)h2r-„(r) =0,        1< « < m - 1, 2 < m,
r = n   r

must hold, and hence the coefficients c^, in (6) satisfy the relations

m     j

^ = »12 7Ä2r+n(r)^m_f(r). (35)
r-\   r

From (8) and (35), keeping (13) and (33) in mind, we obtain (31). This completes

our proof of Theorem 4.

We note that our formulas (35), and its equivalent (31), are simpler than

corresponding results due to Schur [2, pp. 36-37, formulas (11) and (18)].

Theorem 5. 77te Grunsky coefficients gmn in (7) are given by

m

gmn = {m-  1)!  2   r\C2r + n,(<*-l, «0> • • • > «r + n-l)
r-l

•C2m_r,m(/3.„ ß0, . . . , /3m_r_,),       a_, = fi.t = 1, (36)

where the a„ and the ßn are those in (1) and (2), respectively.

Proof. With / = F(Ç), |f | > 1 in (21) and using (33) we have

mm oo m

*m(W;)) = 2 r 2 **n-Ám)th,-Ar) + 2 rn 2 ^-»^„to- (37)
„ = 0       r=n „_1 r-\

By comparing (6) and (37) we see that we must have

m

2  <t>2m-Ám)h2r-n(r) = °> 0  < «   < W -   1, 1   < «1,
r —n
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and hence the coefficients cmn in (6) satisfy

Cmn  =   2   K + n(r)<t>2m-Á™)-
r-1

(38)

From (8), (22), (33) and (38) we obtain (36). This completes our proof.

It should be noted that (36), in spite of its "simplicity", is a "first" in the sense

that it expresses the Grunsky coefficients in explicit form simultaneously in terms of

the coefficients of both the function (1) and its inverse (2).

Theorem 6. In terms of the an in (3), the Grunsky coefficients gmn in (7) are given

by the following explicit formula:

m    n + k

gmn = 2   2 (-!)'(* + * - l)!Cm,*(a„ . . ., a„_k+x)
k-\ i-1

■C„ + kAa2' • ■ • > an + k-s + 2)> a\ =   1- (39)

Proof. If we set / = [1 //(?"')], |f | > 1, in (26) we obtain

1
$_

. An
= mbm + m^(k- l)!Cm,,(a„ . . ., ^.^[Af"1)]^-      (40)

k = l

If we now use the same technique used above in obtaining (17) and (18) we obtain

/or-*   °°= 2 gÁ-k)zn,       \z\ < 1,
n = 0

&.(-*) = 2 (-k)sCn¡s(a2, ..., a„_s+2). (41)
i-0

If we set z = 1/f, |f | > 1 in (41), then we obtain

[Xnr = 2 gk-n(-W + 2 gk+n(-k)rn,
n-0 n-1

which, in view of (40), yields

*»[i/Xr')] = « K +  2(k- \)\CmJc(ax, ..., am_k+x)gk(-k)

+ m

¿fc-1

m m

2 r 2 (k - \)\Cm¿(ax, . . ., am_k+x)gk_n(-k)
/i — 1        k== n

oo m

+ 2 r" 2 (* - l)!Cm>,(a„ . . ., am_k+x)gk+n(-k)
« = i       /t-i

If we compare (6) with (42), with F(f) = [l//(f _,)]> then we obtain
m

2 (k - l)!CmA(a„-am_k+x)gk(-k) = -bm,       m = 1, 2, ...,
fc-i

m

2 0- l)!Cm>/t(a„ . . . , am_fc+,)£,_„(-*) = 0,
k-n

1   <«<»!—   1, «1 = 2, 3, ... ,
m

Cmn = ™^{k- l)!Cm>*(a„ • • •, am-*+i)g*+n(-A:),       a, = 1,
k=i

which combine with (8) and (41) to give us (39). This completes our proof.

(42)
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The explicit formulas (39) for the Grunsky coefficients (indeed, for/»-symmetric

functions) are not new. They have been obtained by a method different from the

one used here [6].
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