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Abstract

The main purpose of this paper is to study some sums of powers of
Fibonacci polynomials and Lucas polynomials, and give several interest-
ing identities. Finally, using these identities we shall prove a conjecture
proposed by R. S. Melham in [4].
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1 Introduction

For any variable quantity x, the Fibonacci polynomial Fn(x) and the Lucas poly-
nomial Ln(x) are defined as F0(x) = 0, F1(x) = 1, and Fn+1(x) = xFn(x) +
Fn−1(x) for all n ≥ 1; L0(x) = 2, L1(x) = x, and Ln+1(x) = xLn(x) + Ln−1(x)
for all n ≥ 1. If x = 1, then Fn(1) = Fn and Ln(1) = Ln, the famous Fi-
bonacci sequence and Lucas sequence, respectively. It is clear that these two
polynomial sequences are the second-order linear recurrence sequences. Letting

α = x+
√
x2+4
2 , β = x−

√
x2+4
2 , then from the properties of the second-order linear

recurrence sequences, we have

Fn(x) = αn−βn

α−β and Ln(x) = αn + βn.

Concerning Fn(x) and Ln(x), various authors studied them and obtained
many interesting results. For example, E. Lucas’s classical work [3] first studied
the arithmetical properties of Ln, and obtained many important results. Y. Yuan
and Z. Wenpeng [6] proved some identities involving Fn(x).
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Recently, several authors studied the sums of powers of Fibonacci numbers
and Lucas numbers, and obtained a series important identities, see [1], [2] and [5].
At the same time, R. S. Melham [4] also proposed the following two conjectures:

Conjecture 1. Let m ≥ 1 be an integer. Then the sum

L1L3L5 · · ·L2m+1

n∑
k=1

F 2m+1
2k

can be expressed as (F2n+1 − 1)
2
R2m−1 (F2n+1), where R2m−1(x) is a polynomial

of degree 2m− 1 with integer coefficients.
Conjecture 2. Let m ≥ 0 be an integer. Then the sum

L1L3L5 · · ·L2m+1

n∑
k=1

L2m+1
2k

can be expressed as (L2n+1 − 1)Q2m (L2n+1), where Q2m(x) is a polynomial of
degree 2m with integer coefficients.

The main purpose of this paper is to obtain some identities involving Fibonacci
polynomials and Lucas polynomials. As applications, we use these identities to
prove that the above Conjecture 2 is true. That is, we shall prove the following
conclusions:

Theorem 1. For any positive integers h and n, we have the identities

(a).
h∑

m=0

F 2n
2m+1(x) =

1

(x2 + 4)n

{
(h+ 1)

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

) F4k(h+1)(x)

F2k(x)

}
;

(b).
h∑

m=0

L2n
2m+1(x) = (h+ 1)(−1)n

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
(−1)n−k

F4k(h+1)(x)

F2k(x)
;

(c).
h∑

m=0

F 2n+1
2m+1(x) =

1

(x2 + 4)n

n∑
k=0

(
2n+1
n−k

) F2(2k+1)(h+1)(x)

L2k+1(x)
;

(d).
h∑

m=0

L2n+1
2m+1(x) =

n∑
k=0

(
2n+1
n−k

)
(−1)n−k

L2(2k+1)(h+1)(x)

L2k+1(x)
.

Theorem 2. For any positive integers h and n, we have the identities

(A).
h∑

m=1

L2n
2m(x) = h

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

) F2k(2h+1)(x)− F2k(x)

F2k(x)
;
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(B).
h∑

m=1

F 2n
2m(x) =

(−1)n

(x2 + 4)n

[
h

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
(−1)k

F2k(2h+1)(x)− F2k(x)

F2k(x)

]
;

(C).
h∑

m=1

L2n+1
2m (x) =

n∑
k=0

(
2n+1
n−k

) L(2k+1)(2h+1)(x)− L2k+1(x)

L2k+1(x)
;

(D).
h∑

m=1

F 2n+1
2m (x) =

1

(x2 + 4)n

n∑
k=0

(
2n+1
n−k

)
(−1)n−k

F(2k+1)(2h+1)(x)− F2k+1(x)

L2k+1(x)
.

As several applications of Theorem 2, we can deduce the following:

Corollary 1. Let h ≥ 1 and n ≥ 0 be two integers. Then the sum

L1(x)L3(x)L5(x) · · ·L2n+1(x)

h∑
m=1

L2n+1
2m (x)

can be expressed as (L2h+1(x)− x)Q2n (x, L2h+1(x)), where Q2n(x, y) is a poly-
nomial in two variables x and y with integer coefficients and degree 2n of y.

Corollary 2. Let h ≥ 1 and n ≥ 0 be two integers. Then the sum

L1(x)L3(x)L5(x) · · ·L2n+1(x)
h∑

m=1

F 2n+1
2m (x)

can be expressed as (F2h+1(x)− 1)H2n (x, F2h+1(x)), where H2n(x, y) is a poly-
nomial in two variables x and y with integer coefficients and degree 2n of y.

Taking x = 1 in Corollary 1 and Corollary 2, then we have the following
conclusions for Fibonacci and Lucas numbers:

Corollary 3. Let h ≥ 1 be a positive integer. Then the sum

L1L3L5 · · ·L2n+1

h∑
k=1

F 2n+1
2k

can be expressed as (F2h+1 − 1)H2n (F2h+1), where H2n(x) is a polynomial of
degree 2n with integer coefficients.

Corollary 4. Let h ≥ 1 be an integer. Then the sum

L1L3L5 · · ·L2n+1

h∑
k=1

L2n+1
2k
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can be expressed as (L2h+1 − 1)Q2n (L2h+1), where Q2n(x) is a polynomial of
degree 2n with integer coefficients.

Taking x = 2 in Corollary 1, note that Ln(2) = Pn, the nth Pell number,
P0 = 0, P1 = 1 and Pn+2 = 2Pn+1 + Pn for n ≥ 0. Then we also have the
following:

Corollary 5. Let h ≥ 1 be an integer. Then the sum

P1P3P5 · · ·P2n+1

h∑
k=1

P 2n+1
2k

can be expressed as (P2h+1 − 2)R2n (P2h+1), where R2n(x) is a polynomial of
degree 2n with integer coefficients.

It is clear that our Corollary 1 proves a generalization of Melham’s Conjecture.
Our Corollary 3 make some substantial progress for the Melham’s Conjecture 1.
Corollary 5 give some new identities for the Pell numbers.

2. Proof of the theorems

In this section, we shall give the proofs of our Theorems. First we prove Theorem
1. In fact, for any positive integer n and real number x 6= 0, by using the familiar
binomial expansion (

x+
1

x

)n
=

n∑
k=0

(nk )xn−2k

we get (
x+

1

x

)2n

=
(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)(
x2k +

1

x2k

)
, (1.1)

(
x− 1

x

)2n

= (−1)n
(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
(−1)n−k

(
x2k +

1

x2k

)
, (1.2)

(
x+

1

x

)2n+1

=
n∑
k=0

(
2n+1
n−k

)(
x2k+1 +

1

x2k+1

)
, (1.3)

and (
x− 1

x

)2n+1

=
n∑
k=0

(
2n+1
n−k

)
(−1)n−k

(
x2k+1 − 1

x2k+1

)
. (1.4)

Now taking x = α2m+1 in (1.1), (1.2), (1.3), and (1.4), then 1
x = −β2m+1.

From the definitions of Fn(x) and Ln(x), we may immediately deduce the iden-
tities



Identities involving Fibonacci, Lucas polynomials 99

F 2n
2m+1(x) =

1

(x2 + 4)n

[
(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
L2k(2m+1)(x)

]
, (1.5)

L2n
2m+1(x) = (−1)n

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
(−1)n−kL2k(2m+1)(x), (1.6)

F 2n+1
2m+1(x) =

1

(x2 + 4)n

n∑
k=0

(
2n+1
n−k

)
F(2m+1)(2k+1)(x), (1.7)

and

L2n+1
2m+1(x) =

n∑
k=0

(
2n+1
n−k

)
(−1)n−kL(2m+1)(2k+1)(x). (1.8)

Now taking x = α2m in (1.1),(1.2), (1.3), and (1.4), we deduce the identities

L2n
2m(x) =

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
L4km(x), (1.9)

F 2n
2m(x) =

1

(x2 + 4)n

[
(−1)n

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
(−1)n−kL4km(x)

]
, (1.10)

L2n+1
2m (x) =

n∑
k=0

(
2n+1
n−k

)
L2m(2k+1)(x), (1.11)

and

F 2n+1
2m (x) =

1

(x2 + 4)n

n∑
k=0

(
2n+1
n−k

)
(−1)n−kF2m(2k+1)(x). (1.12)
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For any integer h > 0, we sum on m in (1.5),

h∑
m=0

F 2n
2m+1(x) =

1

(x2 + 4)n

[
(h+ 1)

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

) h∑
m=0

L2k(2m+1)(x)

]

=
h+ 1

(x2 + 4)n

{
(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
h+ 1

[
α2k

(
α4k(h+1) − 1

)
α4k − 1

+

β2k
(
β4k(h+1) − 1

)
β4k − 1

]}

=
h+ 1

(x2 + 4)n

{
(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)
h+ 1

α4kh+2k − α4kh+6k + β4kh+2k − β4kh+6k

2− α4k − β4k

}
. (1.13)

Note that the identities

α4kh+2k − α4kh+6k + β4kh+2k − β4kh+6k

= −
(
α4kh+4k − β4kh+4k

) (
α2k − β2k

)
= −(x2 + 4)F4kh+4kF2k

and

2− α4k − β4k = −
(
α2k − β2k

)2
= −(x2 + 4)F 2

2k,

from (1.13) we may immediately deduce the identity

h∑
m=0

F 2n
2m+1(x) =

1

(x2 + 4)n

{
(h+ 1)

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

) F4k(h+1)(x)

F2k(x)

}
.

This proves the identity (a) of Theorem 1.

Similarly, from formulae (1.6), (1.7) and (1.8) we can deduce the other three
identities of Theorem 1.
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Now we prove Theorem 2. From (1.9), we have

h∑
m=1

L2n
2m(x) = h

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

) h∑
m=1

(
α4km + β4km

)
= h

(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

)(α4k(h+1) − α4k

α4k − 1
+
β4k(h+1) − β4k

β4k − 1

)

= h
(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

) α4kh − α4k(h+1) − 2 + α4k + β4kh − β4k(h+1) + β4k

2− α4k − β4k

= h
(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

) (α4kh+2k − β4kh+2k
) (
α2k − β2k

)
−
(
α2k − β2k

)2
(α2k − β2k)

2

= h
(2n)!

(n!)2
+

n∑
k=1

(
2n
n−k

) F2k(2h+1)(x)− F2k(x)

F2k(x)
.

This proves the identity (A) of Theorem 2.
Similarly, from formulae (1.10), (1.11) and (1.12) we can also deduce the other

three identities of Theorem 2.
Now we use (C) of Theorem 2 to prove Corollary 1. It is clear that if P (x) ∈

Z(x), then a − b divides P (a) − P (b). From this properties and note that the
identity L2k+1 (L2n+1(x)) = L(2n+1)(2k+1)(x) we can deduce

(L2h+1(x)− x) | L2k+1 (L2h+1(x))− L2k+1(x) =

= L(2h+1)(2k+1)(x)− L2k+1(x). (1.14)

Combining (C) of Theorem 2, (1.14) and note that (L2k+1(x)− x, L2k+1(x)) = 1
we may immediately deduce the identity

L1(x)L3(x)L5(x) · · ·L2n+1(x)
h∑

m=1

L2n+1
2m (x)

= L1(x)L3(x)L5(x) · · ·L2n+1(x)

(
n∑
k=0

(
2n+1
n−k

) L(2h+1)(2k+1)(x)− L2k+1(x)

L2k+1(x)

)
= (L2h+1(x)− x)Q2n (x, L2h+1(x)) ,

where Q2n(x, y) is a polynomial in two variables x and y with integer coefficients
and degree 2n of y. This proves Corollary 1.

To prove Corollary 2, from (D) of Theorem 2 we know that we only to prove
the polynomials x2 + 4 and (F2h+1(x)− 1) satisfying

(
F2h+1(x)− 1, x2 + 4

)
= 1

and (F2h+1(x)− 1) | (F(2h+1)(2k+1)(x)− F2k+1(x)) for all integers k ≥ 0.
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First from the definition of Fn(x) and binomial expansion we can easy to
prove (F2h+1(x)− 1, x2 + 4) = 1. Therefore,

(
F2h+1(x)− 1, (x2 + 4)n

)
= 1.

Next, we prove that the polynomial (F2h+1(x)− 1) divide (F(2h+1)(2k+1)(x)−
F2k+1(x)). In fact note the fact that

Fa(x)− Fb(x) = F(a−εb)/2(x)L(a+εb)/2(x)

valid for all a ≡ b (mod 2) with ε ∈ {1,−1} given by ε = 1 if a ≡ b (mod 4)
and ε = −1 if a − b ≡ 2 (mod 4). Take a = 2h + 1, b = 1 so a − b = 2h and
a1 = (2k + 1)a, b1 = 2k + 1. Then a1 − b1 = (2k + 1)(a− b), so ε is the same for
(a, b) as for (a1, b1) (namely it is 1 if h is even and −1 if h is odd). Thus,

F2h+1(x)− 1 = F2h+1(x)− F1(x) = Fh(x)Lh+1(x) or Fh+1(x)Lh(x)

according to whether h is even or odd, respectively, and also

F(2h+1)(2k+1)(x)− F2k+1(x) = F(2k+1)h(x)L(2k+1)(h+1)(x)

or

F(2k+1)(h+1)(x)L(2k+1)h(x)

again according to whether h is even or odd respectively. Now the claim follows
from the fact that Fu(x)|Fv(x) whenever u|v and if additionally v/u is odd, then
also Lu(x)|Lv(x). This completes the proof of Corollary 2.

It seems that using our method we can not solve the Melham’s Conjecture 1
completely. But we believe that it is true.
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