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Abstract. The eigenvectors and eigenvalues of symmetric block circulant ma-
trices had been found, and that method is extended to general block circulant
matrices. That analysis is applied to Stephen J. Watson’s alternating circulant
matrices, which reduce to block circulant matrices with square submatrices of
order 2.

1. Circulant Matrix

A square matrix in which each row (after the first) has the elements of the
previous row shifted cyclically one place right, is called a circulant matrix. Philip
R. Davis (1979, p.69) denotes it as

B = circ(b0, b1, · · · , bn−1)
def=




b0 b1 b2
. . . bn−2 bn−1

bn−1 b0 b1
. . . bn−3 bn−2

bn−2 bn−1 b0
. . . bn−4 bn−3

. . . . . . . . . . . . . . . . . .

b2 b3 b4
. . . b0 b1

b1 b2 b3
. . . bn−1 b0




. (1)

Thomas Muir (1911, Volume 2, Chapter 14) had denoted its determinant as
C(b0, b1, · · · , bn−1).

1.1. Complex nth roots of 1. Denote

ϑ
def=

2π

n
. (2)

Then the nth roots of 1 are:

ρj = ei2πj/n = eijϑ = cos jϑ + i sin jϑ (j = 0, 1, 2, · · · , n− 1). (3)

For all integers f and j,

ρf
j + ρf

j = eifjϑ + e−ifjϑ = 2 cos jfϑ, (4)

ρf
n−j = ei2π(n−j)f/n = ei2πf−i2πjf/n = e−i2πjf/n = ρf

j , (5)
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and

cos(n− j)fϑ = cos 2π(n− j)f/n = cos(2fπ − 2πfj/n)
= cos 2πfj/n = cos jfϑ. (6)

For even n = 2h and all integers j

ρh = eiπ = −1, ρh
j = ei2πjh/(2h) = eiπj = (−1)j . (7)

1.2. Eigenvalues of circulant matrices. It is readily verified that B has n
orthogonal eigenvectors and n eigenvalues

w(j) =




1
ρj

ρ2
j

...
ρn−1

j




, λj = b0 + b1ρj + b2ρ
2
j + b3ρ

3
j + · · ·+ bn−1ρ

n−1
j (8)

for j = 0, 1, 2, · · · , n− 1.

1.2.1. Duplicated eigenvalues. From this, it follows that the circulant matrix B is
real and has eigenvalues λj , if and only if [Davis (1979), p.80, Problem 15]1

λj = λn−j , (j = 1, 2, · · · , n− 1). (9)

This does not relate to λ0 (which is real for real B), and for even n = 2h it implies
that λh is real.

If B is real symmetric then its eigenvalues are real, and (9) reduces to

λj = λn−j , (j = 1, 2, · · · , n− 1). (10)

The entire set of eigenvalues λ1, λ2, · · · , λ(n−1)÷2 is duplicated by (10).
With odd n = 2h− 1, B has also the eigenvalue λ0 which is a simple eigenvalue

with multiplicity 1; unless λ0 equals any λj for 1 ≤ j ≤ h − 1, in which case λ0

occurs with odd multiplicity greater than or equal to 3. With even n = 2h, B
has also the eigenvalues λ0 and λh. If λ0 = λh then they have even multiplicity,
whether or not they equal any λj for 1 ≤ j ≤ h − 1. Otherwise λ0 either has
multiplicity 1 or else it equals some λj for 1 ≤ j ≤ h − 1, in which case λ0 occurs
with odd multiplicity greater than or equal to 3. And similarly for λh.

Hence, for real symmetric B, if n is odd then there is one eigenvalue with odd
multiplicity, and if n is even then there are either two eigenvalues or none with odd
multiplicity. All other eigenvalues have even multiplicity.

1.2.2. Eigenvalues of complex symmetric circulant matrices. A square matrix A
is called Hermitian, if and only if A∗ = A. If the matrix is real, this reduces to
AT = A. Each Hermitian matrix has a full set of orthogonal eigenvectors, each
with real eigenvalue.

The complex circulant matrix B in (1) is symmetric if and only if bj = bn−j

for j = 1, 2, · · · , (n− 1)÷ 2. Complex symmetric matrices are usually regarded as
being less interesting than Hermitian matrices. Symmetric circulant matrices are

1Actually, Davis denotes our λj−1 by λj and his result is printed as λj = λn+1−j for j =

1, 2, · · · , n; whereas it should be (in Davis’s notation) λj = λn+2−j for j = 2, 3, · · · , n.
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mentioned only briefly by Philip R. Davis (1979, p.67, Problem 1 & p.81, Problem
16), and the following result seems to be new.

Theorem 1: Every complex symmetric circulant matrix of order n has a single
eigenvalue with odd multiplicity if n is odd, but it has either two eigenvalues or
none with odd multiplicity if n is even. All other eigenvalues occur with even
multiplicity.
Proof: For j = 0, 1, · · · , n− 1, the formula (8) gives the eigenvalue

λj = b0 + b1ρj + b2ρ
2
j + · · ·+ bn−2ρ

n−2
j + bn−1ρ

n−1
j

= b0 + b1ρj + b2ρ
2
j + · · ·+ b2ρ

−2
j + b1ρ

−1
j

= b0 + b1

[
ρj + ρj

]
+ b2

[
ρ2

j + ρ2
j

]
+ · · ·

+bh−1

[
ρh−1

j + ρh−1
j

]
+

{
0 if n = 2h− 1
bhρh

j if n = 2h .

}
(11)

In view of (4) and (7), this reduces to

λj = b0 + 2
h−1∑

f=1

bf cos jfϑ +
{

0 if n = 2h− 1
bh(−1)j if n = 2h .

(12)

Replacing j by n− j, we get

λn−j = b0 + 2
h−1∑

f=1

bf cos(n− j)fϑ +
{

0 if n = 2h− 1
bh(−1)2h−j if n = 2h

= b0 + 2
h−1∑

f=1

bf cos jfϑ +
{

0 if n = 2h− 1
bh(−1)j if n = 2h

= λj , (13)

in view of (6).
Thus, with h = (n + 1)÷ 2, the sequence of eigenvalues λ1, λ2, · · · , λh−2, λh−1 is

duplicated as the sequence λn−1, λn−2, · · · , λn−h+2, λn−h+1. Every distinct eigen-
value in the first sequence occurs an even number of times within that pair of
sequences.

With odd n = 2h− 1, B has the eigenvalue

λ0 = b0 + 2(b1 + b2 + · · ·+ bh−1) (14)

which is a simple eigenvalue with odd multiplicity 1; unless λ0 equals any λj for
1 ≤ j ≤ h− 1, in which case λ0 occurs with odd multiplicity greater than or equal
to 3.

With even n = 2h, B has the eigenvalues

λ0 = b0 + 2(b1 + b2 + · · ·+ bh−1) + bh,

λh = b0 + 2
(− b1 + b2 − · · ·+ (−1)h−1bh−1

)
+ (−1)hbh. (15)

If λ0 = λh then they have even multiplicity, whether or not they equal any λj for
1 ≤ j ≤ h− 1. Otherwise λ0 either has multiplicity 1 or else it equals some λj for
1 ≤ j ≤ h− 1, in which case λ0 occurs with odd multiplicity greater than or equal
to 3. And similarly for λh.
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Therefore, if n is odd then B has 1 eigenvalue with odd multiplicity, and if n is
even then B has either 2 eigenvalues or none with odd multiplicity.

2. Block Circulant Matrices BCn,κ

Thomas Muir (1920,Volume 3, Chapter 15) defined a circulant determinant
whose elements are determinants to be a block circulant determinant.

The eigenvalues of block circulant matrices (as in (19) below) were stated by
Bernard Friedman (1961, Theorem 6a). He declared that those eigenvalues were
well known — but for a proof he gave an erroneous citation of Muir, T. and Met-
zler, W. Theory of determinants, Chapter XII. That appears to refer to Thomas
Muir (1930), A Treatise On The Theory Of Determinants, (revised and enlarged
by William H. Metzler), Albany NY, Privately published. Metzler’s Chapter 12
contains a section on block circulant determinants, but says nothing about eigen-
values. Chapter 15 on Determinantal Equations discusses characteristic equations
of matrices, but says nothing about block circulants. Metzler’s text is obscured
by many misprints2; but nonetheless several results in his Chapter 12 could be in-
verted, modified and rewritten for matrices, to form a basis for proving that “well
known” expression for the eigenvalues of a block circulant matrix. The London
edition [Muir, 1933] is said [Farebrother, Jensen & Styan, p.6] to be “Apparently
identical to Muir (1930)”, and the Dover edition (1960) is described as “Unabridged
and corrected (paperback) republication of Muir (1933)”.

For real symmetric block circulant matrices with symmetric submatrices, the
eigenvectors and eigenvalues (with their multiplicities) have been found [Tee, 1963].

The class of complex block circulant matrices B = bcirc(b0,b1, · · · ,bn−1), where
all square submatrices are of order κ > 1, is denoted by Philip R. Davis as BCn,κ

(1979, p.177). The eigenvectors of B had been found for the case where all subma-
trices bj are themselves circulant [Trapp], [Chao] and Davis (1979, p.185, Theorem
5.8.1).

The analysis of the eigenvectors for real symmetric block circulant matrices with
symmetric submatrices [Tee, 1963] is here extended to general complex block cir-
culant matrices.

2.1. Eigenvectors and eigenvalues. Consider a compound vector w, of the
form:

w =




v
ρv

ρ2v
...

ρn−1v




, (16)

where v is a non-null κ-vector and ρ is any nth root (3) of 1.

2The Forder Collection in Auckland University Library has a copy of that book by Muir & Metzler,
with a letter from Metzler to Henry George Forder (1930 June 5) pasted into it. Metzler explained
that, in revising and enlarging Muir’s Treatise, “My object was to give the mathematicians of the
world a chance to benefit by more than thirty years of labor in this particular field without having
to pay twice as much for the book if put up by a regular publisher. I am sorry that there are so
many misprints but more than 50% occurred after the last proof went back”.
That copy includes Metzler’s Errata sheet listing about 150 misprints: but the book contains very
many further misprints.
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The vector w is an eigenvector of B with eigenvalue λ, if and only if

Bw = wλ. (17)

The first few of the n compound rows of this equation are:

(b0 + b1ρ + b2ρ
2 + b3ρ

3 + · · ·+ bn−1ρ
n−1)v = vλ,

(bn−1 + b0ρ + b1ρ
2 + b2ρ

3 + · · ·+ bn−2ρ
n−1)v = ρvλ,

(bn−2 + bn−1ρ + b0ρ
2 + b1ρ

3 + · · ·+ bn−3ρ
n−1)v = ρ2vλ, (18)

and so forth.
Each of the n compound rows in (18) reduces to the first of them, and that can

be rewritten as the eigenvector equation

Hv = vλ, (19)

where the square matrix H (of order κ) is:

H = b0 + b1ρ + b2ρ
2 + b3ρ

3 + · · ·+ bn−1ρ
n−1. (20)

For vectors of the form (16) the set (20) of n eigenvector equations of order κ, for
the n values of ρ, is equivalent to the single eigenvector equation (17), of order nκ.
For each of the n values of ρ, the equation (19) can be solved to give κ eigenvectors
v (or fewer if the eigenvectors of H happen to be defective), each with its eigenvalue
λ. Each eigenvector v of H, with its corresponding ρ, gives an eigenvector w of
the block circulant matrix B, with that eigenvalue λ.

For any ρ, if H has m linearly independent eigenvectors v(1),v(2), · · · ,v(m),
then it follows from the structure of (16) that the corresponding eigenvectors
w(1),w(2), · · · , w(m) of B are linearly independent. Conversely, if B has linearly in-
dependent eigenvectors w(1),w(2), · · · ,w(m) of the form (16), each with the same ρ,
then the first elements of those compound vectors are a set of linearly independent
eigenvectors of H (for that ρ).

2.2. Orthogonal eigenvectors. Consider any κ-vectors s and t, and the com-
pound vectors

x =




s
ρjs
ρ2

js
...

ρn−1
j s




, y =




t
ρkt
ρ2

kt
...

ρn−1
k t




. (21)

The scalar product of x and y is

x∗y = s∗t + s∗(ρjρk)t + s∗(ρjρk)2t + · · ·+ s∗(ρjρk)n−1t

=
(
1 + (ρjρk) + (ρjρk)2 + · · ·+ (ρjρk)n−1

)
(s∗t)

=
(
1 + u + u2 + · · ·+ un−1

)
(s∗t), (22)

where u = ρjρk = ei2π(k−j)/n, and so un = ei2π(k−j) = 1.
If j 6= k then u 6= 1 and x∗y = (s∗t)(1− un)/(1− u), and so x∗y = 0.
Therefore, if j 6= k then x and y are orthogonal.
In particular, if s is an eigenvector of Hj (with ρ = ρj) and t is an eigenvector

of Hk (with ρ = ρk) and j 6= k, then x and y are orthogonal eigenvectors of B.
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For each ρ, H has at least 1 eigenvector, and hence the eigenvectors of B span
at least n dimensions.

2.3. Hermitian block circulant matrices. The block circulant matrix B in (17)
is Hermitian if and only if b∗j = bn−j for j = 1, 2, · · · , n ÷ 2 and b0 is Hermitian.
Note that, if n = 2h then bh = b∗h, so that both b0 and bh must be Hermitian.

The matrix H then (20) reduces to

H = b0 + b1ρ + b2ρ
2 + · · ·+ bn−2ρ

n−2 + bn−1ρ
n−1

= b0 + b1ρ + b2ρ
2 + · · ·+ b∗2ρ

−2 + b∗1ρ
−1

= b0 +
[
b1ρ + b∗1ρ

]
+

[
b2ρ

2 + b∗2ρ2
]

+ · · ·

+
[
bh−1ρ

h−1 + b∗h−1ρ
h−1

]
+

{
0 if n = 2h− 1
bhρh if n = 2h .

(23)

Hence, for ρ = ρj , in view of (7) the expression (23) for H reduces to

Hj = b0 +
h−1∑

f=1

[
bfρf

j + b∗fρf
j

]
+

{
0 if n = 2h− 1
bh(−1)j if n = 2h .

(24)

Taking the conjugate transpose of (24), it follows that for all j, Hj = H∗
j .

Therefore, if B is Hermitian then each Hj in (20) is Hermitian, with κ real
eigenvalues and κ orthogonal complex eigenvectors, and those give nκ orthogonal
complex eigenvectors (16) of B.
Hermitian submatrices. Whether or not the entire matrix B is Hermitian, if each
submatrix b0, · · · ,bn−1 is Hermitian (including real-symmetric), then it follows
from (20) that the matrix H0 with ρ0 = 1 is Hermitian. Hence, H0 has κ orthogonal
eigenvectors and κ corresponding real eigenvalues.

Accordingly, every matrix of type BCn,κ with Hermitian submatrices has κ or-
thogonal eigenvectors (16) with ρ = 1 and real eigenvalues. And if n is even then
similarly for ρ = −1.

2.3.1. Real symmetric block circulant matrices. Equation (24) for Hermitian Hj

now reduces to

Hj = b0 +
h−1∑

f=1

[
bfρj

f + bT
f ρf

j

]
+

{
0 if n = 2h− 1
bh(−1)j if n = 2h ,

(25)

and so H0 and (for even n = 2h) Hh are real-symmetric, with real orthogonal
eigenvectors with real eigenvalues. But the other Hj are not real-symmetric in
general, and so their eigenvectors are complex in general. But each Hj is Hermitian
with all eigenvalues real. And the eigenvalues of B are the union of the n sets of κ
eigenvalues for all the Hj .



EIGENVECTORS OF BLOCK AND ALTERNATING CIRCULANT MATRICES 201

Replacing j by n− j in (25), we get that

Hn−j = b0 +
h−1∑

f=1

[
bfρ f

n−j + bT
f ρf

n−j

]
+

{
0 if n = 2h− 1
bh(−1)2h−j if n = 2h

= b0 +
h−1∑

f=1

[
bfρf

j + bT
f ρj

f

]
+

{
0 if n = 2h− 1
bh(−1)j if n = 2h

= Hj (0 < j < n). (26)

Let v be an eigenvector of Hj with eigenvalue λ, i.e. Hjv = vλ (17), for
1 ≤ j ≤ (n − 1) ÷ 2. Taking the complex conjugate of this equation, we get
Hjv = vλ, and hence Hjv = vλ, since λ is real. Therefore,

Hjv = vλ ⇔ Hn−jv = vλ (j = 1, 2, · · · , (n− 1)÷ 2). (27)

Thus, Hn−j also has eigenvalue λ, with eigenvector v. The entire set of eigenvalues
of H1, H2, · · · ,H(n−1)÷2 is duplicated by the relation (27).

But that duplication does not apply to H0, nor (for even n = 2h) to Hh.
Let µ be any of the κ eigenvalues of H0, or of the 2κ eigenvalues of H0 and

of Hh when n = 2h. If the sum of the multiplicities of µ in those 2 submatrices
is odd (e.g. if µ is a simple eigenvalue of H0 but not an eigenvalue of Hh), then
B has µ as an eigenvalue of odd multiplicity, whether or not µ = λj for some
j = 1, 2, · · · , (n−1)÷2. But if the sum of the multiplicities of µ in those submatrices
is even, then B has µ as an eigenvalue of even multiplicity, whether or not µ = λj

for some j = 1, 2, · · · , (n− 1)÷ 2.
Thus, we have proved the following generalization of Theorem 1:
Theorem 2: Every real symmetric block circulant matrix of type BCn,κ has no

more than 2κ eigenvalues with odd multiplicity if n is even, but it has no more
than κ eigenvalues with odd multiplicity if n is odd. All other eigenvalues occur
with even multiplicity.
Non-extension from real-symmetric to Hermitian case. Does the relation (27) gen-
eralize from block circulant matrices which are real-symmetric to Hermitian block
circulant matrices?

No, for a counter-example is given by Hermitian B ∈ BC4,2 with

b0 =
[

0 2 + i
2− i 0

]
, b1 =

[
0 i
0 0

]
, b2 = 0, b3 = b∗1. (28)

Since ρ1 = i,

H1 = b0 + ib1 − b2 − ib3 =
[

0 2 + 2i
2− 2i 0

]
, (29)

with the eigenvalues λ = ∓√8. But ρ3 = −i, and hence

H3 = b0 − ib1 − b2 + ib3 =
[

0 2
2 0

]
, (30)

with the eigenvalues λ = ∓2.
Thus, the relation (27) does not apply for Hermitian B.
Real orthogonal eigenvectors of B. From the eigenvector v of Hj and the eigen-

vector v of Hn−j , both with real eigenvalue λ, we can construct complex orthogonal
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eigenvectors w and w of B with eigenvalue λ as in (16). In w we use ρ = ρj and
vector v, and in w we use ρ = ρn−j = ρj and vector v .

But since B is real symmetric it has a full set of real orthogonal eigenvectors,
whereas w and w are complex. Those may be replaced by their linear combinations
<(w) = (w + w)/2 and =(w) = i(w −w)/2, which are an orthogonal pair of real
eigenvectors of B for the double real eigenvalue λ.

2.3.2. Real symmetric matrix and submatrices. If all submatrices bj are also real-
symmetric, then the expression (25) for H simplifies, as in [Tee, 1963].

In (25) now bf = bT
f , and so

bfρj
f + bT

f ρf
j = bf

(
ρf

j + ρf
j

)
= 2bf cos fjϑ, (31)

which is a real symmetric submatrix. Accordingly, the expression (25) simplifies to

Hj = b0 + 2
h−1∑

f=1

bf cos fjϑ +
{

0 if n = 2h− 1
bh(−1)j if n = 2h ,

(32)

which is a real-symmetric submatrix. Therefore, each Hj has κ real orthogonal
eigenvectors v with real eigenvalues.

However, each corresponding (16) eigenvector w of B is complex, except for
ρ0 = 1 and also (with even n = 2h) for ρh = −1. But, for even n = 2h, (−1)n−j =
(−1)2h−j = (−1)2h(−1)−j = (−1)j ; and so it follows from (6) and (32) that for all
n,

Hn−j = Hj , (1 ≤ j ≤ (n− 1)÷ 2). (33)

Hence, if Hj has a real eigenvector v with real eigenvalue λ, then so does Hn−j .
For 1 < j < n those subscripts are distinct, except for j = h with even n = 2h.
Accordingly, Theorem 2 applies in this case.

It follows from (33) that B has double real eigenvalue λ with a complex conjugate
pair (16) of eigenvectors

w =




v
ρjv
ρ2

jv
...

ρn−1
j v




, w =




v
ρjv
ρ2

jv
...

ρn−1
j v




, (34)

which are orthogonal by (22). Those may be replaced by their linear combinations
(w + w)/2 and i(w −w)/2:

<(w) =




v
cos jϑv

cos 2jϑv
...

cos(n− 1)jϑv




, =(w) =




0
sin jϑv

sin 2jϑv
...

sin(n− 1)jϑv




, (35)

which are an orthogonal pair of real eigenvectors of B for the double real eigenvalue
λ.
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2.4. Computation of all eigenvectors. If the n eigenvector equations (19) give
nκ distinct eigenvalues, as is almost always the case, then those are the complete
set of eigenvalues of B. The corresponding vectors (16) give all eigenvectors of B,
which are unique (apart from arbitrary nonzero scaling factors for each).

But if B has multiple eigenvalues, this is not necessarily the case. For example,
if B = I, then every non-null vector is an eigenvector of B, with eigenvalue 1.

If, for any ρ, H has multiple eigenvalue λ with linearly independent eigenvectors
v(1),v(2), · · · ,v(m), then the corresponding w(1),w(2), · · · ,w(m) are linearly inde-
pendent eigenvectors of B with eigenvalue λ, and conversely. Any non-null linear
combination v(1)α1 + · · · + v(m)αm is an eigenvector of H with eigenvalue λ, and
that corresponds to w(1)α1 + · · · + w(m)αm, which is an eigenvector of B with
eigenvalue λ.

However, if the eigenvectors x and y of B in (21), with ρj 6= ρk, have the
same eigenvalue λ, then every non-null linear combination z = xα + bβ is also an
eigenvector of B with eigenvalue λ. But, except in the trivial cases α = 0 or β = 0,
z is not of the form (16), as in (35).

2.4.1. Jordan Canonical Form. For the general case of H with multiple eigenval-
ues, with eigenvectors which might be defective, consider the Jordan Canonical
Form

L = U−1HU, (36)
so that

HU = UL. (37)
Here, U is non-singular and the block-diagonal matrix L is a direct sum of Jordan
blocks

L = dJ1,J2,J3, · · · ,Jmc def=




J1

J2

J3

. . .
Jm




(1 ≤ m ≤ κ). (38)

Each Jordan block is either of the form [λq], where the corresponding column of U
is an eigenvector with eigenvalue λq; or else it is of the form Jq = λqI + R, where
R and the unit matrix I are of the same order as Jq, and

R =




0 1
0 1

0 1
. . . . . .

0 1
0




. (39)

In this case, the first of the corresponding sequence of columns of U is an eigenvector
with eigenvalue λq, and the other columns of U in that sequence are generalized
eigenvectors with eigenvalue λq. L is unique, apart from permutation of the Jordan
blocks. The eigenvectors (and generalized eigenvectors) in U are not uniquely
specified — any eigenvector (and its associated generalized eigenvectors) can be
scaled by any nonzero factor; and if H has multiple eigenvalue λ with linearly
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independent eigenvectors v(1),v(2), · · · ,v(g), and if z(1), z(2), · · · , z(g) are a linearly
independent set of linear combinations of v(1),v(2), · · · ,v(g), then those g vs could
be replaced by the g zs.

H has defective eigenvectors, if and only if L has at least one Jordan block of
order greater than 1. For any eigenvalue λq, its eigenvectors span space whose
dimension equals the number of Jordan blocks with λq. The eigenvalue λq has
multiplicity equal to the number of times that it occurs on the diagonal of L, which
is the sum of the orders of the Jordan blocks with λq.

Consider the compound vector T, whose n elements are square matrices of order
κ (cf. (16)):

T =




U
ρU

ρ2U
...

ρn−1U




. (40)

The κ columns of U are linearly independent (since U is non-singular), and hence
the columns of T are linearly independent.

The first few compound rows of BT are:

(b0 + b1ρ + b2ρ
2 + b3ρ

3 + · · ·+ bn−1ρ
n−1)U = HU = UL,

(bn−1 + b0ρ + b1ρ
2 + b2ρ

3 + · · ·+ bn−2ρ
n−1)U = ρHU = (ρU)L,

(bn−2 + bn−1ρ + b0ρ
2 + b1ρ

3 + · · ·+ bn−3ρ
n−1)U = ρ2HU = (ρ2U)L,

(41)

and so forth (cf. (18)). Therefore,

BT = TL . (42)

For H with ρ = ρj , rewrite (42) as

BTj = TjLj . (43)

Define the square matrices of order nκ:

W def= [T0 T1 . . . Tn−1] (44)

and

Λ def= dL0,L1,L2, · · · ,Ln−1c =




L0

L1

L2

. . .
Ln−1




. (45)

Within each Tk the columns are linearly independent, and (22) each column of Tk

is orthogonal to every column of every Tj , for j 6= k. Therefore the columns of W
are linearly independent, and so W is non-singular.

For k = 0, 1, · · · , n− 1, the eigenvector equations (43) can be represented as

BW = WΛ. (46)
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The matrix Λ is a direct sum of Jordan blocks (of order ≤ κ), and W is non-
singular. Hence (46) gives the Jordan Canonical form of B.

Λ = W−1BW. (47)

Thus, we have proved the following theorem:
Theorem 3: The Jordan Canonical Form of any block circulant matrix

bcirc(b0,b1, · · · ,bn−1) of type BCn,κ is the direct sum of the Jordan Canonical
Forms of the n matrices Hj =

∑n−1
m=0 bmρm

j of order κ, for j = 0, 1, · · · , n− 1.
Radka Turcajová (1997, Theorem 3.1) has proved the related result that “Each

block circulant matrix is unitarily similar to a block diagonal matrix”.

2.5. Block circulant matrix with eigenvector defect. As an example, con-
sider B with submatrices

b0 = 0, bj = jI−R (j = 1, 2, · · · , n− 1), (48)

where R is a Jordan block of order κ > 1, with a single eigenvector v and all κ
eigenvalues are zero:

R =




0 1
0 1

0 1
. . . . . .

0 1
0




, v =




1
0
0
...
0
0




. (49)

For each ρ,

H = b0 + b1ρ + b2ρ
2 + b3ρ

3 + · · ·+ bn−1ρ
n−1

= I(ρ + 2ρ2 + · · ·+ (n− 1)ρn−1)−R(ρ + ρ2 + · · ·+ ρn−1). (50)

For j = 1, 2, · · · , n − 1 the root ρj 6= 1, and the coefficient of R is 1, since
1 + ρj + ρ2

j + · · · + ρn−1
j = (1 − ρn

j )/(1 − ρj) = 0. The coefficient s of I is found
thus:

s(1− ρ) = ρ + 2ρ2 + 3ρ3 + · · · + (n− 1)ρn−1

− ρ2 − 2ρ3 − · · · − (n− 2)ρn−1 − (n− 1)ρn

= ρ + ρ2 + ρ3 + · · · + ρn−1 − (n− 1)ρn.
(51)

Therefore s(1− ρj) = −1− (n− 1), and so s = n/(ρj − 1). Hence,

Hj =
n

ρj − 1
I + R, (j = 1, 2, · · · , n− 1). (52)

Thus, for j > 0, Hj is a Jordan block with the single eigenvector v as in (49), with
all κ eigenvalues equal to n/(ρj − 1). Indeed, since Hj is its own Jordan Canonical
Form Lj with HjI = ILj , the unit matrix I is an orthogonal matrix of the single
eigenvector and the κ− 1 generalized eigenvectors of Hj .

With ρ0 = 1, we get H0 = I(n(n− 1)/2)−R(n− 1), so that H0 has the single
eigenvector v as in (49), with all κ eigenvalues equal to n(n− 1)/2.

Thus, the matrix B (as in (48)) has an orthogonal set of n eigenvectors, each
with an eigenvalue of multiplicity κ.
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To get the Jordan Canonical Form of H0, consider the diagonal matrix D =⌈
1, (1− n)−1, (1− n)−2, · · · , (1− n)1−κ

⌋
. Then D−1RD = 1

1−nR, and hence

D−1H0D = D−1
(

1
2n(n− 1)I + (1− n)R

)
D = 1

2n(n− 1)I + R, (53)

which is the Jordan Canonical Form of H0. Thus H0D = D
(

1
2n(n− 1)I + R

)
,

with D as an orthogonal matrix of the single eigenvector and the κ− 1 generalized
eigenvectors of H0.

Therefore, we have found the complete Jordan Canonical Form (45) Λ =
dL0,L1, · · · ,Ln−1c of B, with

L0 = 1
2n(n− 1)I + R, Lj =

n

ρj − 1
I + R (j = 1, 2, · · · , n− 1), (54)

and the complete orthogonal matrix W (44) of n eigenvectors, each with κ − 1
associated generalized eigenvectors, where (cf. (40))

W =




D I I . . . I
D ρ1I ρ2I . . . ρn−1I
D ρ2

1I ρ2
2I . . . ρ2

n−1I
...

...
...

...
...

D ρn−1
1 I ρn−1

2 I . . . ρn−1
n−1I




. (55)

This class (48) of matrices of type BCn,κ could be used as a test for procedures
for computing eigenvectors and eigenvalues of matrices with defective eigenvectors.
As with any test matrix, it could also be used with any symmetric permutation of
the rows and columns.

3. Alternating Circulant Matrices

Stephen J. Watson considered a matrix which he calls an alternating circulant
matrix. “Specifically, consider a 2n by 2n matrix where each row is obtained from
the preceding row by the simple cyclic permutation (1 2 3 . . . 2n) followed by
multiplication by −1” [Watson]. He reported that he has discovered a way to
characterize the spectrum of such matrices, and he wondered whether that was a
known fact.

Watson’s alternating circulant matrix has rows 1 and 2 of the form:[
c0 c1 c2 c3 · · · c2n−2 c2n−1

−c2n−1 −c0 −c1 −c2 · · · − c2n−3 −c2n−2

]
. (56)

That represents a matrix B of type BCn,2 where the square submatrices are

b0 =
[

c0 c1

−c2n−1 −c0

]
, bj =

[
c2j c2j+1

−c2j−1 −c2j

]
, (j = 1, 2, · · · , n− 1). (57)

In this case, for each of the n values of ρ, the matrix H is

H =
[

d e
−eρ −d

]
, (58)

where

d = c0 + c2ρ + c4ρ
2 + c6ρ

3 + · · ·+ c2n−2ρ
n−1,

e = c1 + c3ρ + c5ρ
2 + c7ρ

3 + · · ·+ c2n−1ρ
n−1. (59)
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If any value of ρ gives d = e = 0 then H is a null matrix with both eigenvalues
equal to 0, and every non-null 2-vector v is an eigenvector of H. The vectors

»
1
0

–

and
»

0
1

–
could be used as an orthogonal basis for the eigenspace of that null

matrix.
Otherwise, for each of the n values of ρ, the two eigenvalues of H are

λ1 =
√

d2 − ρe2, λ2 = −λ1, (60)

with eigenvectors

v(1) =
[

e
−d + λ1

]
, v(2) =

[
e
−d− λ1

]
. (61)

If the eigenvectors of H are defective then the 2 eigenvalues of H are equal,
which happens if and only if they are both 0, with d2 = ρe2. In that case, both
eigenvectors of H are of the form

v =
[

e
−d

]
, (62)

so that the eigenspace of H has dimension 1 rather than 2.
For each ρ and v we construct (16) an eigenvector w of B, with corresponding

eigenvalue λ. Thus, the eigenvectors and eigenvalues of Watson’s alternating cir-
culant matrix have been found. The eigenvectors span 2n dimensions, except that
for each value of ρ such that d2 = ρe2 6= 0 the eigenspace loses 1 dimension.

3.1. Bound for eigenvalues. For any square matrix A and any norm ‖A‖, each
eigenvalue µ has modulus |µ| ≤ ‖A‖. The spectral radius ς(A) is defined as the
maximum modulus of any eigenvalue, and so 0 ≤ ς(A) ≤ ‖A‖.

For the alternating circulant matrix B in (56), using the rowsum norm we get
that

ς(B) ≤ ‖B‖row =
2n−1∑

k=0

|ck| . (63)

For each ρ and its corresponding eigenvalue λ of B (cf. (60)),

|λ|2 =
∣∣d2 − ρe2

∣∣ ≤ |d|2 + |−ρ| |e|2 = |d|2 + |e|2 . (64)

From (59),

|d| =
∣∣∣∣∣∣

n−1∑

j=0

c2jρ
j

∣∣∣∣∣∣
≤

n−1∑

j=0

|c2j | |ρ|j =
n−1∑

j=0

|c2j | , (65)

and similarly

|e| ≤
n−1∑

j=0

|c2j+1| . (66)

Therefore, for each eigenvalue λ,

|λ|2 ≤ |d|2 + |e|2 ≤



n−1∑

j=0

|c2j |



2

+




n−1∑

j=0

|c2j+1|



2

. (67)



208 GARRY J. TEE

This inequality holds for all λ, and hence

ς(B) ≤

√√√√√



n−1∑

j=0

|c2j |



2

+




n−1∑

j=0

|c2j+1|



2

. (68)

3.1.1. Sharp bound for spectral radius. The inequality (68) may be rewritten as:

ς(B)2 ≤



n−1∑

j=0

|c2j |



2

+




n−1∑

j=0

|c2j+1|



2

=




n−1∑

j=0

|c2j |+
n−1∑

j=0

|c2j+1|



2

− 2




n−1∑

j=0

|c2j |






n−1∑

j=0

|c2j+1|



= ‖B‖2row − 2
n−1∑

j=0

|c2j |
n−1∑

h=0

|c2h−1| . (69)

This gives an upper bound for ς(B) less than or equal to (63), with those bounds
being equal if and only if ck = 0 either for all even k, or for all odd k.

Indeed, we shall shew that (68) gives the smallest possible bound for ς(B), in
terms of the moduli |ck|.

For alternating circulant matrix B with first row [c0, c1, . . . , c2n−1], consider the
complex alternating circulant matrix B′ with first row [c′0, c

′
1, . . . , c

′
2n−1], where

c′k = |ck| ≥ 0 for even k and c′k = i |ck| for odd k. Hence, each element of B′ has
the same modulus as the corresponding element of B.

For B′ with ρ = 1, we get that d = c′0 + c′2 + c′4 + · · ·+ c′2n−2 =
∑ |c′k| =

∑ |ck|
for even k, and e = c′1 + c′3 + · · · + c′2n−1 = i

∑ |c′k| = i
∑ |ck| for odd k. Hence,

for the real eigenvalues ∓λ with ρ = 1,

λ2 = d2 − ρe2 = d2 − e2 =




n−1∑

j=0

∣∣c′2j

∣∣



2

+




n−1∑

j=0

∣∣c′2j+1

∣∣



2

, (70)

and so the inequality (67) for eigenvalues reduces to an equality when ρ = 1 for
such B′. Hence, the inequality (68) reduces to an equality for such B′.

Therefore the inequality (68) is the sharpest bound for ς(B), in terms of the
moduli of the elements of B.

3.1.2. Real alternating circulant matrices. If B is real then with ρ = 1 it fol-
lows from (59) and (58) that H =

»
d e

−e −d

–
is real, and hence its eigenvalues

∓√d2 − e2 are either both real or both imaginary. Therefore, every real alternating
circulant matrix B has at least one pair of eigenvalues ∓λ which are either both
real or both imaginary (or both zero), with eigenvectors (or eigenvector) of the form
(16) with ρ = 1. If d = ±e 6= 0 then the double zero eigenvalue has a single real
eigenvector (16), with (cf. (62)) v=

»
1

−1

–
if d = e, but v=

»
1
1

–
if d = −e.

If B is real with even n, then with ρ = −1 it follows from (59) and (58) that
H =

»
d e
e −d

–
is real-symmetric. Hence H has a pair of real and orthogonal

eigenvectors, with real eigenvalues ∓√d2 + e2. Therefore, every real alternating
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circulant matrix B with even n has at least one pair of real orthogonal eigenvectors
(16) with ρ = −1, and with real eigenvalues ∓λ.

3.1.3. Sharp bound for spectral radius with even n. For any complex alternating
circulant matrix B with first row [c0, c1, . . . , c2n−1] with even n, consider the real
alternating circulant matrix B′ with first row [c′0, c

′
1, . . . , c

′
2n−1]. Here

c′k =





|ck| for (k = 0, 4, 8, · · · , 2n− 4),
− |ck| for (k = 1, 5, 9, · · · , 2n− 3),
− |ck| for (k = 2, 6, 10, · · · , 2n− 2),
|ck| for (k = 3, 7, 11, · · · , 2n− 1).

(71)

Hence, each element of B′ has the same modulus as the corresponding element
of B.

With ρ = −1 the inequality in (65) then reduces to equality, since for each
j, c2j(−1)j ≥ 0; and hence

d =
n−1∑

j=0

∣∣c′2j

∣∣ . (72)

Similarly, with ρ = −1 the inequality in (66) then reduces to equality, since for
each j, c2j−1(−1)j ≤ 0; and hence

e = −
n−1∑

j=0

∣∣c′2j+1

∣∣ . (73)

Thus, if the coefficients of B′ satisfy (71), then the inequalities in (67) and (68)
reduce to equalities. In that case, the pair of real eigenvalues ∓λ for ρ = −1 each
attain the bound (67):

λ2 = d2 − ρe2 = d2 + e2

= (c′0 − c′2 + c′4 − c′7 + · · ·+ c′2n−4 − c′2n−2)
2

+ (c′1 − c′3 + c′5 − c′7 + · · ·+ c′2n−3 − c′2n−1)
2

=




n−1∑

j=0

∣∣c′2j

∣∣



2

+




n−1∑

j=0

∣∣c′2j+1

∣∣



2

. (74)

It was shewn in (70) that, for any n, the eigenvalue bound (67) can also be
attained with ρ = 1 by complex B′.

3.2. Alternating circulant matrix with defective eigenvectors. As a real
example with defective eigenvectors, consider

B =




1 0 −3 2
−2 −1 0 3
−3 2 1 0

0 3 −2 −1


 (75)

with n = 2, so that the values of ρ are 1 and −1. For ρ = 1 the pair of eigenvalues
must be both real or both imaginary or both zero: in this case (78) they prove to
be both zero.

For this real alternating circulant matrix B, n = 2 is even and all inequalities
(71) do hold, since 1 = c0 ≥ 0 ≥ c2 = −3, and c1 = 0 ≤ 0 ≤ 2 = c3. Accordingly,
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ρ = −1 gives a pair of real orthogonal eigenvectors with real eigenvalues equal to
plus and minus the bound (68), with λ2 = (c0 − c2)2 + (c1 − c3)2 as in (74).

Indeed, with ρ = −1 we get from (59) & (60) that d = 4, e = −2, λ = ±√20,
giving real symmetric H =

»
4 −2

−2 −4

–
, with orthogonal eigenvectors

v(1) =
[ −2
−4 +

√
20

]
, v(2) =

[ −2
−4−√20

]
. (76)

Hence, B has the real orthogonal eigenvectors

w(1) =




−2
−4 +

√
20
2

4−√20


 , w(2) =




−2
−4−√20

2
4 +

√
20


 (77)

with eigenvalues λ1 =
√

20, λ2 = −√20.
With ρ = 1 we get from (59) & (60) that d = −2, e = 2, λ = 0, giving H =» −2 2
−2 2

–
, with the single eigenvector

v(3) =
[

2
2

]
, (78)

for double eigenvalue λ3 = λ4 = 0.
Consider the Jordan canonical form HU = UL (cf. (37)):

[ −2 2
−2 2

] [
2 f
2 g

]
=

[
2 f
2 g

] [
0 1
0 0

]
, (79)

where f and g are the elements of the generalized eigenvector with double zero
eigenvalue. This matrix equation is equivalent to −2f + 2g = 2. Hence, f is an
arbitrary parameter and g = 1 + f .

Therefore, the Jordan canonical form BW = WΛ (cf. (46)) has the matrix of
3 eigenvectors and 1 generalized eigenvector (with arbitrary parameter f)

W =




−2 −2 2 f√
20− 4 −√20− 4 2 1 + f

2 2 2 f

−√20 + 4
√

20 + 4 2 1 + f


 , (80)

and the eigenvalues as the diagonal elements of

Λ =




√
20

−√20
0 1

0


 . (81)

In this W, each of columns 3 and 4 (with ρ = 1) is orthogonal (cf. (22)) to
columns 1 and 2 (with ρ = −1). Columns 3 and 4 are linearly independent, and
columns 1 and 2 are orthogonal; and so all 4 columns are linearly independent. If



EIGENVECTORS OF BLOCK AND ALTERNATING CIRCULANT MATRICES 211

we take f = −1/2, so that

W =




−2 −2 2 −1/2√
20− 4 −√20− 4 2 1/2

2 2 2 −1/2
−√20 + 4

√
20 + 4 2 1/2


 , (82)

then column 4 is also orthogonal to column 3, and hence the entire matrix (82) is
then orthogonal.
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