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Abstract-using random variables as motivation, this paper presents an exposition of forma,lisms 
developed in [1,2] for the classical umbral calculus. A new construction and a variety of examples 
are presented, culminating in several descriptions of sequences of binomial type in terms of umbra1 

polynomials. @ 2001 Elsevier Science Ltd. All rights reserved. 

1. INTRODUCTION 

The system of calculation now known as the “umbra1 calculus” originated with Blissard in the 
nineteenth century in informal calculations involving the “lowering” and “raising” of exponents. 
The work of Rota and his collaborators in [3-51 and other works formalized these methods in 
the modern language of linear operators and Hopf algebras. While this clarified the underlying 
theory, it rendered the original nineteenth century work no more easy to read or check. In [1,2,6], 
the original classical notation was revived and extended so as to be rigorous by modern standards. 
In [7], the first attempts were made to apply this newly revived classical umbra1 calculus to one 

of the most significant successes of the modern theory, namely the study of sequences of binomial 

type. 
The purposes of this paper are twofold. Since much of this paper is expository, no prior 

knowledge of umbra1 calculus in any of its guises is assumed. To start, we develop the modern 

formulation of the classical umbra1 calculus in analogy with the idea of a random variable. This 
renders the definitions of [1,2] transparent. In the second part of this paper, we introduce a 
new operation on umbrae arising naturally from the analogy to random variables. We show that 

all sequences of binomial type and all umbra1 maps arise directly from the application of this 
operation. We further apply the tools of classical umbra1 calculus developed in the first part of 

the paper to provide several other compact presentations for sequences of binomial type. 
The author has attempted to document at least the recent history of the main results and 

definitions contained herein. 

2. RANDOM VARIABLES AND THE 

CLASSICAL UMBRAL CALCULUS 

Fundamental to the classical umbra1 calculus is the idea of associating a sequence of numbers 

ao,a1,a2,*.. to an “umbra1 variable” (u, which is said to represent the sequence. To be slightly 

I am greatly indebted to G.-C. Rota who first suggested that the formalization of umbrae developed in [1,2] was 
amenable to interpretation as a generalization of random variables. I am likewise indebted to N. Ray; the influence 
of my conversations with him can be traced throughout Sections 5.2 and 5.3. 
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more formal, the umbra1 calculus relies on associating the sequence as, al, as,. . . to the sequence 

1, a!, &a?, . . . of powers of Q. 

This kind of association is familiar in modern mathematics: to any random variable G, we 

associate a sequence of numbers 1, gr,gs, . . . where gi is the ith moment of G. Specifically, we 

are defining the sequence 1, gr , gs, . . . by applying the expectation operator, E, componentwise 

to the sequence 1, G, G2,. . . consisting of powers of the random variable G. 

We will proceed to carry this analogy further, calculating with random variables in precisely 

the way we will later be using umbra1 variables. We start by letting G be a random variable 

distributed uniformly over the interval [0, 11. The sequence of moments 1, gr, gs, . . . associated 

to G is thus given by gn = Jo1 gn dg = l/(n + 1). 

If we let p(t) E @[t] b e any polynomial with complex coefficients, it is immediate that 

E [p’(G)] = /‘p’(g) 4 = APW 
0 

where A is the forward difference operator A&t) = p(t + 1) - p(t). A comment on notation: 

since A is defined as an operator on the ring of polynomials in t, Ap(0) can only be interpreted 

as (Ap)(O) or as 0. We adopt the former reading. Since the calculation in equation (1) only 

required that p(t) was differentiable, it could just as well have been carried out for a polynomial 

with coefficients in some larger integral domain or indeed for a polynomial in t whose coefficients 

contained various random variables which were independent of G. So suppose Gi is a random 

variable independent of and identically distributed to G. Consider p(G + G’) as a polynomial 

q(G) in G with coefficients in @[G’]. Using equation (l), the expected value, averaging over 

values of G, of p”(G + G’) = q”(G) is Aq’(0) = Ap’(G’). Applying equation (1) again, recalling 

that the derivative D and A = eD - I commute and that G’ is identically distributed to G, gives 

E[Ap’(G’)] = A2p(0). S omewhat more suggestively, this calculation can be written 

E [p” (G + G’)] = E [Ap’ (G’)] = E [Ap(O)] . (2) 

The first property to observe here is that the independence of G and G’ matters, as 

E [p”(G + G)] = E [Ap”(2G)] = p’(2 ’ ‘)2- I+(‘), 

since p”(2t) = Dt (p’(2t)/2), w h ere Dt is the derivative with respect to t. 

The second important property is the rather trivial observation that we can calculate the 

expectation of a polynomial in several random variables all independent and identically dis- 

tributed to G simply by knowing the moments of G. For example, by equation (2), we know that 

E[20(G + G’)3],= A2t5jt=o. Th is could be evaluated directly. Alternatively, and denoting E[G”] 

by Gk, it could be evaluated as 

20. E [G3 + 3G2G’ + 3GG’2 + GA] = 20 (G3 + 3G2G1 + 3G1Gz + G3) 

= 20 (2G3 + 6G2G1) 

Applying the above observations quickly reconstructs the moment generating function E[eG”] 

for G. Since Dt (etz/z) = et’, equation (1) implies E[eGz] = (eZ - eO)/z. 

For the duration of the next calculation, we are going to make some assumptions that simply do 

not hold within the confines of probability theory. The remainder of this section will be devoted 

to describing how to replace random variables with “umbra1 variables” in a way that makes the 

following calculations legitimate. So, for the moment, let us assume that there is an object B 
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that behaves much like a random variable. Let us call this object an “umbra1 variable”. We treat 

it just like a random variable, but stipulate both that it is independent of B and that B + G = 0. 

With these stipulations, we find that by independence 

E [e(G+B)z] = E [eGzeBz] = E [eGz] E [eBZ] = FE [eBZ] . 

But since G + B = 0, the left-hand side above is just 1. We have just calculated that E[eB*] = 

t/(et - 1). Since this is the exponential generating function, ‘&,. Bk(z”/k!), for the Bernoulli 

numbers, Bk, we find that if the above calculation can be made rigorous, then E[Bk] = Bk. 

Since calculations such as the previous are too useful to abandon (see [2] for a variety of 

examples involving the Bernoulli numbers) we define umbra1 vatiables or umbrae which formalize 

the roles of both the random variable G and the new object B in the preceding calculation. 

Just as a random variable is usually capitalized, we will typically distinguish our umbrae by 

writing them as Greek letters, e.g., (Y, /3, a”‘, . . . . Let us denote the collection of whichever umbra1 

variables we will be using by A. See [1,2] for the relevant, and straightforward, technical details. 

In practice, when we introduce a new umbra, say Q, we specify explicitly or implicitly how E 

acts on it, namely what values E[cr”] takes for each Ic. Any two distinct umbrae in A, say Q 

and y or Q: and (Y’, will act like independent random variables, regardless of how E acts on them. 

Generalizing, any collection of distinct umbrae will behave as do independent random variables. 

Formally, this can be accomplished by defining a linear evaluation map, E : F[d] --+ F on 

the polynomials F[d] in the umbrae with coefficients in a suitably chosen commutative ring F. 

We require that E is F-linear, E[l] = 1, and E[M . M’] = E[M]E[M’] for any two monomi- 

als, M and M’, in F[d] such that no umbra appears to nonzero power in both n/r and M’. This 

map was called eval in [ 1,2]. 

We call p,q E F[d] umbrally equivalent, written p N q when Eb] = E[q]. Analogous to 

the notion of identically distributed random variables, we define p,q E F[d] to be umbrully 

exchangeable, when p” N q” for all k 2 0. If, for example, we have Q = 3, then E[o”] = 3”; 

this is consistent, in the analogy to random variables, with considering a analogous to a random 

variable which always takes on the value 3. We note that equality implies exchangeability which 

implies umbra1 equivalence. The converses are false. 

We define p,q E F[d] t o b e independent when no umbra appears in both p and q. More 

formally, an umbra that appears to a nonzero power in some monomial with nonzero coefficient 

in p does not appear to a nonzero power in any monomial with nonzero coefficient in q. For 

example, (;y2 + QQ’ and pf12 - ,0 + Q”’ are independent, but a2 + CYCY’ and ppt2 - ,8 + (u are not 

independent. Nor are the falling factorials (a)(,) and (cx)(+~) independent. On the other hand, 

at2 + p and y - t are independent where t is some element of F. 

In random variables, we can usually substitute one identically distributed random variable for 

another (modulo independence constraints). Similarly, we can substitute exchangeable umbrae 

as per the following lemma. 

LEMMA 1. (See [l].) If a polynomial p(t) is independent of two exchangeable umbrae cx and a’, 

then p(a) E ~(a’). I 

This substitution lemma holds equally well if (Y or a’ is replaced by an umbra1 polynomial 

q E WI- 
For the duration of this paper, we let e be an umbra such that &k N 60,k where 6 in the 

Kronecker delta. As long as we work with polynomials in the umbrae, there is no harm in 

defining 0’ = 1. Under this convention, we consider 0 = E. This is consistent with the convention 

that 1 is the Oth moment of a random variable which always takes on value 0. 

To pick up our earlier example, let y be an umbra such that yi N l/(n + 1) and let ,9 be an 

umbra such that y + ,0 = 0. It is an easy exercise to see that given any umbra y, such an inverse 
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umbra can be found recursively. Here we have made formal in y and ,0 exactly the properties we 

had assumed for G and B. We have y and /3 are independent and p + y z 0. 

Extending our notions of independence, exchangeability, and equivalence coefficientwise to for- 

mal power series (see [6] for a general but technical treatment) we can duplicate the computation 

we performed for G and B. By the substitution lemma we have e@+r)’ N e”.’ = 1. Thus, we 

have epZeyz pu 1. By independence, this implies that e,OZ (e’ - 1)/x 2: 1, and hence (by linearity) 

that e/jr 21 Z/(eZ - 1). F rom a technical viewpoint, there are a number of ways to justify the 

first step in the preceding sentence. The most direct solution is to apply the substitution lemma 

coefficientwise to the formal power series in Z. A general approach which views multiplication 

by eY_’ z/(e* - 1) as a linear operator “equivalent” to the identity is given in [G]. The intuition 

behind both these proofs is that since eYz and e@ are independent, E can be applied in two 

stages first to y and then to p, analogously to finding the expectation by first averaging over one 

random variable and then over another independent random variable. 

As a demonstration of these techniques, we rewrite in modern umbra1 notation the first example 

in [8], one in the series of papers in which Blissard during the 1860s introduced his ‘Yepresentative 

notation”-the umbra1 calculus. To point out just how closely the modern language captures 

Blissard’s lgth century original, we present most of this example in Blissard’s own words. 

Blissard starts with the problem, “Required to expand {x/ log(1 + ZC)}‘““. He then 

lets, “{z/ log( 1 + X)}” = 1 + Piz + Pzx” + . . . + P,x” + 8.~” and defines U, to be the 

coefficient of P/72! in ((e’ - l)/Q)rn where B is an ordinary variable. He observes that, 

ii ee-1 m ( ) en 

0 
=l+UrH+Uz&+..,+U~,l 2.._+&c 

= eue(by representative notation).” 

In modern language, he is letting U be an umbra such that U” cv U,, and his “=” would 

be replaced with 5~“. The next operation takes place purely on the level of formal power 

series. Blissard substitutes log(1 + X) for Q and finds that, 

gt{ log(:+x)}‘n = (1+x)“,” 

where again the only change necessary to modernize his work is to replace “=” with “z”. 

If we “equate coefficients of x?, then 

p 
n 

= U(U - l)(U - 2) . . . (U - n + 1). )) 

1 . 2 .3. . n 
3 

again we would replace “=” with “N”. 

The preceding formula for P, has the advantage of being extremely compact. Blissard concludes 

with an expansion of it, and we shall proceed likewise, though our precise techniques are somewhat 

more umbra1 than those Blissard used. 
With y as before, we have (ee - 1)/f? = ey’. Thus, 

eO-1 m ( > 0 
~ ,(r’+r”+...+r”‘)s 

where y’ + y” +. . . + 7”’ is a sum of m distinct (and thus independent) umbrae each exchangeable 

with y. We conclude that U 3 y’ + y” + . + y”‘, and thus P, N (y’+y”~““y”‘). We conclude 
with the following formula for evaluating the powers U”. Since OF tm+n = (m + n)(,)P, we 

have, generalizing calculation (2), that 

(m + n)(,jUn = (m + ?I)(~) (7’ + y” + . . + y”‘)” N A7n Omfn. 
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This last is better known as m! S(m + n, m), where S(n, k) is the Stirling number of the second 

kind counting the number of set partitions of an n-set into k parts. So Un N S(m + n, m)/(mz). 

We can use this, together with the expansion of the falling factorials in terms of Stirling numbers 

of the first kind, to derive . 

y’ + . . . + 7”’ 

n 

3. UMBRAL PRESENTATIONS OF APPELL SEQUENCES 

Historically, the objects of interest in umbra1 computations were of course sequences of numbers 

or polynomials. For our present purposes, this means that we will primarily be studying the 

“moments” E[cr”] of an umbra a. We say that the umbra o represents a sequence ac, al, az, . . . , 

ai E F, when ok N ok for all integers k 2 0. Necessarily this implies that as = 1. An umbrul 

presentation of a sequence al, us,. . . of elements in F is any sequence q1 , q2, . . . of polynomials in 

F[d] such that qi N ui for i 2 0. Throughout this paper we freely assume that, for any sequence 

in F, we can find infinitely many umbrae representing the given sequence. 

Now let F be k[z, y] where k is a commutative ring containing Q. The remainder of this 

paper will focus on umbra1 presentations for sequences of polynomials. For example, for any 

umbra o, we can define a sequence of polynomials s,(z), n = 0, l,& . . . , by sn(x) N (X + CY)~. 

This definition immediately yields the calculation 

s,(y +x) 21 (y +x + cty = c 
i 0 9 yi(x + cxy - a> i 

1 YiSn-i(X). 

A sequence of polynomials SO(X) , s1 (cc), s2 (cc), . . . with S,,(z) having degree n is said to be an 

Appell sequence when it satisfies the identity 

Sn(Y +X) = C 9 Yi%-i(X)7 
i 0 

given by equation (3) for all n > 0. We shall call an Appell sequence sn(z) normalized when sr (x) 

is manic. Any Appell sequence may be rewritten as a normalized Appell sequence by replacing 

S,(Z) with s~(x)/s~(O). H ere, s;(z) is the first derivative of s(z). We hold with this notation for 

derivatives throughout this paper. In the literature, Appell sequences are frequently defined to 

be normalized. 

PROPOSITION 2. (See [2].) A sequence, SO(Z), si(z), . . . , ofpolynomials in k[x] with sn(x) having 
degree n is a normalized Appell sequence 8 there exists an umbra cx such that s, N (x + o)” for 

n 2 0. 

PROOF. The if direction is given by calculation (3). 

(only if): Replacing x with 0 in the defining equation (4) shows that in an Appell sequence, 

each polynomial sn(y) can be recovered from the sequence of values so(O), si(O), . . . . Choosing 

an umbra cr that represents this sequence guarantees (Z + cry>” N S,(Z). I 

Similarly we have the standard result that a sequence so(x), sr(z), . . . of polynomials, .s~(x) of 

degree n, is an Appell sequence iff 

Sk(X) = n. Sn_l(cc), (5) 

for all n 2 0. The only if direction follows since DZ(x + cr)” = n(x + a)‘+‘. To show the if 

direction, we observe that any sequence of polynomials satisfying equation (5) is determined by 

the sequence of values of so(O), sr(O), Q(O), . . . and apply the argument in the preceding proof. 
The sequences of polynomials with which we will be most concerned in this paper are those of 

“binomial type”, i.e., sequences of polynomials which satisfy an analog of the binomial theorem. 
Before approaching this topic, however, we lift another tool from random variables to umbra1 

calculus. 
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4. SUMS OF RANDOM VARIABLES AND 
THE “DOT” OPERATION ON UMBRAE 

Suppose that X is a random variable. If n is a positive integer, one can of course run n trials 

of X and sum the results. Denote the sum by a new random variable n;U. Thus, n.X has 

the same distribution as Xi + X2 + . . . + X, where the Xi are all independent and identically 
distributed to X. In [1,2], the corresponding notion n.a was defined for an arbitrary umbra LY. 
In particular, np is itself an umbra and it is defined to be exchangeable with ~1 + (~2 + . . . + a, 

where Q, = Q for each i. Similarly, for any umbra1 polynomial p E F[d], we define a new 
umbra n.p which is exchangeable with n.y where y is any umbra satisfying y c p. It is worth 

emphasizing that n.p is itself an umbra. Thus, cy 5.(r, 3.cr, and 5.(a: + p) are all distinct (hence, 
all independent). It is, however, clear from the definitions that 5.(o + p) = 5.0 + 58. 

We recall a technical consideration from [1,2]. The set of all umbrae A will be decomposed as 
a disjoint union A = do k~ Al; umbrae in di are called auxiliary umbrae. Umbrae of the form 

n.p are auxiliary umbrae. This detail will be given more attention below. 

It is an easy observation that if g(z) N eaz (this object is analogous to the moment generating 
function of a random variable), then 

where the last equivalence uses the independence of the eglts. 

Even more directly, we see that 

where cr’ = a. As a consequence, if for each positive integer n we define a sequence fa(n), fi(n), 

fz(n), . ) by fi(72) 21 (n.a!)“, t1 ren equation (6) implies that 

((m + n)dx)k N (m.ct + nd2’)k = C F (~.cK)~ (n.a!)k-i, 
i 0 

and hence, 

This kind of generalized binomial theorem will be explored further in the next section. 
By way of introduction to the first new definition of this paper, we consider the following 

generalization of 7x.X. Let X be some random variable and let Y be a random variable which 
only takes positive integer values. Run one trial of Y, then run Y trials of X and sum the 
results. We define Y,X to be a new random variable whose distribution is identical to Xi + 
x2 + . . . + Xy; for convenience, we are defining the Xis to be independent random variables 
identically distributed to X. Observe that if 2 is another random variable taking only positive 
integer values, then according to the preceding definition, (Y + 2).X has the same distribution 
as xi + xz + . . + Xy + Xy+i +. + Xy+z, and hence as Y.Xi + 2.X2. On the other hand, 
X,(Y + 2) does not in general have the same distribution as XiY + X2.2; in the first expression, 
only one trial of X is made, and in the second two trials of X are made. Of course, if X always 
returns the same value, say X = n, this causes no trouble and n.(X +Y) is identically distributed 
to I13 + 7z.Y. 

Just as the definition 7x.X for random variables generalizes to n.y for umbrae, we would like a 
generalization of the random variable X.Y to umbrae. This generalization should satisfy results 
analogous to those recalled above for random variables. 

The generalization relies on a simple observation first applied to the umbra1 calculus by Ray 
in [9]. 
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PROPOSITION 3. If y E dc is an umbra, and n is a positive integer, then E[(n.y)“] is a polynomial 

in 12. 

PROOF. This is equivalent to the observation that if g(z) is in k[[x]], the ring of formal power 
series in z, and if g(z) 2 e7*, then en*?* N g(z), = enl’s(g(*)) and the coefficient of zk/L! in the 

last is a polynomial in n. I 

Alternately, we could have observed that if yi 21 ai, and each Ti = y for i = 1,. . . , n then 
qa: . ..a k appears inE[(yr+...+y,)“] as many times as there are monomials in the expansion 
of (yr+. . .+^ln)” containing exactly ij jth powers. But this says that (n.7)” is umbrally equivalent 

to 

(8) 

il times ik times 

where ic = n - (ii + . + . + ik) and (n_(il+..,~~~),il,.,,,ir,) iS a pOlynOnd of degree (ii + . . . + ik) 

in 72. 

But this is precisely what we need to make sense of replacing n with CY in n.y. 

DEFINITION 4. Let a,y E do be umbrae, and define g(z) E F[[z]] by g(z) N eYz. Let qr,k(n) be 

the coefficient of z”/k! in en’os(g(z)). D fl e ne cr.7 E -41 to be a new auxiliary umbra, such that 

(o.?‘)’ = C&k(a). 

In general, if p, q E F[dc] are umbra1 polynomials, we define an auxiliary umbra p.q E .A1 by 
p.q=@, wherecrzpandpzq. 

Equivalently, we could have defined (cr.?) by replacing n with cx on the right-hand side of 

equation (8). 
The definition immediately implies that ea.7 ’ N ealos(g@)) = (g(z))“. Similarly, if a(z) E k[[z]] 

is defined by u(z) N ecuz, then e”*7’ 21 a(log(g(x))). It is a straightforward exercise in probability 
theory to show that if a(z) is the moment generating function of a random variable A taking only 

positive integer values, and if g(z) is the moment generating function of a random variable B, 

then B1 + . . . + BA also has moment generating function a(log(g(z))). 
It follows that under this definition 0.7 z E s 0, which is what one would expect from the 

analogy to random variables. We now state the promised analogues to the standard results on 
random variables. 

PROPOSITION 5. Let p, q, T E F[ds] be umbra1 polynomials. If p, q are independent, then 

PROOF. By definition and the substitution lemma (Lemma l), it suffices to prove that 

for any distinct umbrae cr,p,y, i.e., that the kth powers of each side of the displayed equation 

are umbrally equivalent for all k 2 0. Letting q-,,k(n) be the polynomials from Definition 4, it 
suffices to show, for all k 1 0, that the identity qr,k(o +,@ = xi (~)~~,i((~)q~,k-i(fl) holds purely 
on the level of polynomials in variables cr, P. But this follows since equation (7) says this identity 
holds with Q, p replaced by any pair of positive integers. I 

As remarked above, we cannot expect that p.(q + T) E pq + p.r will hold in general. However, 
we record the special case where p involves no umbrae. 

PROPOSITION 6. Let a be an element of F. Let q,r E F[da] be umbra1 polynomials. If q, T are 
independent, then a.(q + T) E a.q + a.~. 

PROOF. The result holds when a is any integer. Repeating the argument in the proof of Propo- 
sition 5 shows the identity holds when interpreted in terms of polynomials in a. I 
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The importance of independence is illuminated if we examine what fails on replacing a with Q 

and trying to prove that LY.(P + y) - CL.@ + a.?. Staying with the notation introduced in 

Definition 4, we would need to show that 

where CJ 3 (Y. This relation fails to hold. It only worked when Q E a for a E F be- 

cause the substitution lemma yielded qp+y,k(cx) 2~ qp+-,,k(a) giving xi (!)qo,i(cx)qr,k-i(cx’) N 

C, (t)qo,z(a)q,,!+i(a) which is equal to qP+r,lc(a). 
The special case of a.7 for Q G -n where n is a positive integer is Ray’s definition in [9] of a 

“negative umbra1 integer”. Let n be a positive integer. Since -n.y + n.y = (-n + n).~ = E, the 

umbra -n.y defined as above is the same as the umbra1 -n.y defined in [2]. 

The same techniques used in the preceding propositions prove the following. 

PROPOSITION 7. Let a, c be in F. Ifp E F[d], then u.(cp) z c(u.p). I 

We observe that -la is not in general exchangeable with -a. The latter is exchangeable with 

-l(i&). 
Our definition of p.q does not allow for p or q to contain auxiliary umbrae. Nevertheless, 

we would like to be able to manipulate expressions that resemble a@.~). Before we extend the 

notion of an auxiliary umbra to handle this kind of construct, we prove the following associativity 

result. 

PROPOSITION 8. Let Q, p, y be umbrae. Define an umbra p by p E a$ and an umbra 0 by 

g f p.7. We have p.7 E a.a. 

Before presenting the proof, which is a quick calculation with generating functions, we interpret 

the result probabilistically. A.(B.C) can be viewed as finding A, then running A trials of B.C; 
i.e., A times we run a trial of B, and following each trial of B, we run that many trials of C. 

Then we add up all the trials of C. In this interpretation, (A.B).C differs only in that we run A 
trials of B and then run all the trials of C at once. We could extend this identity to umbrae a, 

p, y by viewing each side as a polynomial in the variables E[aZ], E[,@], E[yi]. 

Alternately, we argue as follows. 

PROOF. It suffices to check that eJ’*yz N eaooz. If u(a), b(z), C(Z) E k[[z]] are given by U(Z) = e”lZ, 

b(z) N eBZ, and c(z) N e 7 z then this amounts to observing that each side is umbrally equivalent , 

to the composition U(Z) 0 log(z) 0 b(z) 0 log(z) 0 C(Z). I 

With this lemma in hand, the following definition makes sense. 

DEFINITION 9. Given umbra1 polynomials pl, . . . , p, E k[do], inductively define the auxiliary 

umbra ~1.~2.. . ..p,, E ,A1 by ~1.~2.. . ..p, =: plop, wlwe p = ~2~‘. ..P,,. 

5. PRESENTATIONS FOR SEQUENCES OF BINOMIAL TYPE 

5.1. Sequences of Binomial Type and Sums of Umbrae 

The notion of a sequence of binomial type is a direct generalization of equation (7). 

DEFINITION 10. A sequence of polynomials po(z),pl(z),p2(z), . . with plL(z) of degree n is of 

binomial type when it satisfies 

Such a sequence is rlormulized when pi(s) is manic (equivalently PI(Z) = x). 

Equation (7) arose directly as the umbra1 expansion of the identity (equation (6)) that (m + 

n).a: = nz.cu+n.o’. Recall that, for any umbra y and any element x E F, E[(x.~)~] is a polynomial 
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in z and that, (x + y).y z x.7 + y.7 where y is also in F. As in the proof of Proposition 5, raising 

both sides of the preceding equality to the nth power and applying E implies the if direction of 

the following. 

THEOREM 11. Letpo(s),pl(z),pz(z), . . . be a sequence ofpolynomials where pn(x) has degree n. 
This is a sequence of binomial type iff it is umbrally represented by x.7 for some umbra y. 

PROOF. By the remarks preceding the theorem, it suffices to show that any sequence of bi- 

nomial type can be so represented. By standard results, which are briefly sketched below, it 

suffices to show that choosing y appropriately allows us to choose the sequence D,E[(~.y)~]l.=o, 

&E[(x.~)~][~=o, D,E[(x.~)~]~~=o, . . . arbitrarily. 
It is enough to observe that equation (8) tells us that the coefficient of z in (z.y)” is y” + R 

where R is depends only on k and E[y], . . . , E[#+‘]. I 

For completeness, we sketch the fact that knowing pi (0), p;(O), . . . determines a sequence 

PO(X), Pl(ZL P2(X), . . . of binomial type. Replace y with 0 in equation (9) and recall that, by 

degree considerations, the pi(x) are linearly independent, which tells us that PO(O) = 1 and that 

pi(O) = 0 for i > 0. Taking the derivative of equation (9) with respect to y and setting y to 0 

gives p;(z) = CF1: (~)pi(x)p~_i(0). S’ mce pk(O) = dk,o, this determines pk(x). 
Following [4], the umbral composition a(b(z)), of two polynomial sequences ao(z),al(z), . . . 

and ho(s), bl(z), . . . is the sequence T(ao(x)), T(al(z)), . . . , where T : k[x] + k[x] is the linear 

operator defined by T(zi) = hi(x) f or all i. An umbra1 operator is defined to be a linear operator 

U : k[x] + k[z] such that the sequence U(l), U(X), U(z’), . . . is of binomial type. The following 

corollaries are immediate. 

COROLLARY 12. A linear operator U : k[x] + k[x] is an umbra1 operator iff there exists an 
umbra y such that U(r(z)) = E[(r(s)).y] for all r(x) E Q[x]. I 

COROLLARY 13. Let po,pl, . . . and qo,ql, . . . be sequences of binomial type represented by X.Q 
and x./3, respectively The umbra1 composition of these sequences, PO(q), pl (.q), . . . is represented 

by x@fi. I 

This makes obvious the fact from [4] that the umbra1 composition of two sequences of binomial 

type is also of binomial type. 

5.2. Generalized Abel Polynomials 

One of the best known sequences of binomial type has as its degree n polynomial the Abel 
polynomial X(X + na)+’ where a is a constant. Generalizing a to be an arbitrary umbra cr and 

replacing na with n& yields the following. 

THEOREM 14. (See /7,/.) Let p,(x) E k[x] b e a sequence of polynomials with PI(X) = x and 
p, (x) of degree n. 

The sequence p,(x) is if binomial type iff there exists an umbra Q such that 

p,(x) z x(x + n.ct)+‘. 

The proof in [7] closely parallels the proof that the original Abel polynomials are of binomial 

type. Here we provide a combinatorial proof. 

PROOF. To start with, assume that E[&] is always an integer and that ~1,. . . , a, are distinct 

umbrae all exchangeable with CL We start by interpreting (z + (YI+ . . . + an)n-l as an ordinary 

generating function for sequences of length n - 1 on n + 1 symbols. By the Priifer correspondence 

(see, for example, [lo]) this is a generating function for the number of labeled free trees on n + 1 

vertices where each tree is counted with weight xdo n, CY~ where vertex 1 has degree dl + 1. 
so x(x + Ql + ... + CY~)“-~ is the generating function for labeled trees with specified root, on 
n + 1 vertices where the same weight indicates that vertex 1 has outdegree dl. This says that 
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E[x(x + a1 + . . . + a,)-‘] is the generating function where the coefficient of xk counts the 
number of labeled trees on n + 1 vertices where the root has degree k and each nonroot vertex 
with outdegree i can be colored in any of ai ways. Equivalently, E[x(x + a1 +. . . + CX,~)~-~] counts 

the number of planted forests on n vertices where each vertex with outdegree i can be colored in 
any of ai ways and where each tree in the forest can itself be colored in any of x ways. Let us 

call this structure a (x, a) degree-colored forest on n vertices. 
So, counting the number of ways to form a (x + y, cy) degree-colored forest on 1% vertex by the 

number of vertices, i, in the trees which were colored in one of the first x ways gives 

(x + y) (x + y + n.cp 21 co 1 (x) (x + i.cYy . (y) (y + (n - q.q-+l 
i 

This fact for all positive integers x, y, al, a~, . . implies equation (9) as a polynomial identity. 
To see that indeed all normalized sequences of binomial type arise in this fashion, it suffices, 

by the remarks after Theorem 11, to observe that the sequence pi(O), pi(O), . . . can be chosen 
arbitrarily. Indeed, pk(O) = (no)“-’ 21 ~zcY~-~ + R where R is a function of al,. . . , CI+-~. fl 

The interpretation of X(X + ,.c~)~-’ as a generating function for colored forests was suggested 
to the author by Ray. It generalizes the notion of reluctant functions developed by Mullin and 

Rota in [3] and is closely related to the chromatic polynomials in [ll]. 
The calculations used in [7] to prove Theorem 14 show the following. 

PROPOSITION 15. For any umbra cx and any n > 1, we find that 

D .z e-l’” Dz (x(x + n.c~)~-’ ) cv 71x (x + (n - 1).cqL-2. I 

COROLLARY 16. A sequence p~(x),p~(x), . . . of polynomial& p,(x) of degree n is a sequence of 

binomial type ifi there exists a formal power series g(t) E k[[t]] with g(0) = 0 and g’(0) # 0 SUC~I 

that g(D,)(p,(z)) = ILP,,_I(X) for all n > 1. 

PROOF. If PI(X) is manic or g’(0) = 1, the result follows immediately from the preceding propo- 
sition and the remarks after Theorem 11. 

If the sequence is of binomial type and PI(X) = ax, then so is the sequence whose ntt’ term is 

lAZ(X)/G if .9(t) is the series associated to this new sequence, then g(t)/a works for the original. 

The converse follows similarly. I 

Formal power series of the sort described above are called delta operators and the correspon- 
dence between them and their associated sequences of binomial type was established in [4]. 

The transfer formula also arises as an immediate corollary. Since we now know that the operator 
Q E ~~-l.“D.r is associated to the sequence presented as p,(x) N x(x + c~l + ... + an)+‘, it 

follows that 

plL(x:) N xe(w+-.+~,tP, (xn-l) = xe”lDfi c u,,D.r (xn-l) N x 

With the definition of a delta operator in hand, we recall the first expansion theorem from [4]. 
If Q is a delta operator associated to a sequence PO(X), pl (x), . . of binomial type and if T = f( Dr.) 

for some formal power series f(t) E k[[t]], then 

T = c Tpk(O$. 
k>O 

(10) 

The usual proof employs the binomial expansion for pn(x + y) to verify the identity f( DY)pn(x + 

Y) = &o J-(D,)P~(Y)(Q~P)P&) f or all n > 0. Setting y = 0 gives the desired result. 
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We have recalled the expansion theorem in order to derive the identity 

, Qk 
D x = E p k ( 0 ) - ~ .  v , (11) 

k~0 

where p0 (x ) , p l ( x ) , . . ,  is the sequence of binomial type associated to a delta operator, Q. Thus 
I if Q = f ( D ) ,  we recover the fact that  Pk(O) is the coefficient of t k / k !  in f ( - 1 ) ( t )  the power series 

inverse, under composition, to f ( t ) .  This relationship together with the transfer formula is used 
to prove the Lagrange inversion formula. See [3,7] for such derivations. 

5.3. Generalized Rising Factorials 

Our next presentation generalizes the binomial type sequence of rising factorials, x ( x +  1) . .  • (x+ 
n - 1). More generally, it is well known that  the sequence p~(x)  = x ( x  + a ) . . .  (x + (n - 1)a) is of 
binomial type for all constants and that  its associated delta operator for a ~ 0 is ( I  - e - " D ) / a .  

For the rising factorials, this is the backwards difference operator f ( x )  ~-~ f ( x )  - f ( x  - 1). Our 
proofs closely follow those for the usual rising factorials. 

THEOREM 17. Let  pn(x)  • k[x] be a sequence of  polynomials  wi th  p1(x) = x and pn(x)  o[ 
degree n. 

The  sequence pn(X) is o f  binomial type  iff  there exists an umbra # such that  

pn(X) "" X (X ÷ ~1) (X ÷ ~t I ÷ ]~2) (X ÷ ~t I ÷ Ft2 ÷ ~ 3 ) " " '  (X ÷ ~1 ÷ ' ' "  ÷ ~ n - 1 )  , 

where # 1 , . . . ,  #n-1  axe distinct umbrae exchangeable with #. 

PROOF. We start  by showing that  all such presentations are of binomial type. 

By induction, we have that  

(x + y) (x + y + #1) (x + y + ~1 ÷ ~ 2 )  " " " (X ÷ y ÷ ~1 + ' ' "  + ~ n - 1 )  

~-- Y(Y + X + #) (Y + X + # + # l )  (y + x + # + # l  + #2) " " (y + x + # + # 1 +  " . . + #n_2) 

+ x ( x + y + # ) ( x + y + # + # l ) ( x + y + # + # l  + # 2 ) ' " ( x + y + # + # 1  + . . .  + # n - 2 )  

~- YPn-1 (x + (y + ~)) + xpn-1 ((X + ~) + y) 

( n - l ) i  _ _  ( n - 1 ) i  = y E pn_l_ (x)p (y + , )  + • + 
i 

- . i p n - l - i ( x ) y ( y  + #) (y + # + # 1 ) " "  (Y + # + #1 + " "  + #~-1) 

+ i 

~ ~ . i 

As before, all normalized sequences of binomial type arise in this fashion, since the sequence 
! ! 

p2(0) ,P3(0) , . . ,  can be chosen arbitrarily. Observe that  p'n(0) -~ # 1 ( # 1 ÷ # 2 ) " "  (#1÷ ' "  " + # n - l )  -~ 
#7-1 + R where each term of R has degree less than n - 1 in each #i. | 
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PROPOSITION 18. Let p be an umbra and let ~1, ~2,. . . be distinct umbrae exchangeable with p. 

Collsider the sequence of binomial type pn(x) N Z(Z + cl) . . . (x + p1 + . . + ~~-1) presented by 

the generalized rising factorials. The corresponding delta operator is q(D,) where q(t) E k[[t]] is 

given by 

q(t) 52 e 
--1&t - 1 

-1 ~ . 
. 

PROOF. Evaluating q(D,) on p,(z), we find 

,-l.~D.r _ I 

P7l(X) = 

p, (x + -1.P) - Pn(X> 

-1.1.1 -l.p 
n = c() Pi (--1.P) 

i>l 

i Pn-i(X) 
-1.p 

n -c() - 

i>l 

i p~-i(x)(-l.l.L+~l)(-1.~+/11+~2)“’(-1./1++l+’~’+~Ui-l) 

n 
= 1 Pn-1(x).1. 0 

Here, the last line follows from the substitution lemma by replacing -1.~ + ~1 with E = 0. 1 

Just as the transfer formula arose from the generalized Abel presentation, the Rodrigues for- 

mula arises from the presentation by generalized rising factorials. Preserve the notation from the 

preceding proposition. We have 

p,(x) N x (x + /Ll) + *. . (x + 111 + . . . + h-1) 

1: 5 . efi DJ (x (x + p2) . . . (x + p2 + . . . + h-2)) 

N x . eP D,rp,-l(x) 

= x. (&q-l Pn-l(X), 

where the last line follows since q’(t) N eml*pt. 

We close our consideration of generalized rising factorials by observing that the presentation 

p,(x) N x(x + p1). . . (x + p1 + . . . + pL,_ 1) immediately suggests a combinatorial interpretation 

along the lines of reluctant functions. 

PROPOSITION 19. Let x be a nonnegative integer and let I_L be an umbra such that ~~~ N mi 

where each rni is a nonnegative integer. The value of p,(x) 21 x(x + ,UI) . . . (x + p1 + . . . + pn_l) 
is the number of labeled forests on n vertices where each tree is assigned one of .x colors, each 

vertex of outdegree j is assigned one of rnj colors, and where each parent vertex has a smaller 

label than each of its children. 

PROOF. It suffices to observe that we can construct such a tree by specifying a function map- 

ping each vertex to its parent and then choosing colors. Choosing p~j from the ith multiplicand 
corresponds to requiring the function to map vertex i to vertex j. Choosing z of course indicates 

that vertex i is a root. I 

6. PRESENTATIONS FOR SHEFFER SEQUENCES 

Recall that a sequence of polynomials se(x), si(~), sz(z), . . . with S,(X) of degree 72 is said 
to be a Sheffer sequence with respect to a delta operator Q (or with respect to the associated 

sequence of binomial type) when Qsn(x) = ns,_i(x) for all n > 0. We will call a Sheffer sequence 

normalized when si(x) is manic. 

Let Q = f(oZ) be a delta operator. Let po(x),p~(x), . . . be the associated sequence of binomial 

type. Since Q and eoDs commute, we have Qpn(x + /3) Y np,-1(x + P), and thus, pn(s + P) is 
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a Sheffer sequence for Q. Since Q/D is invertible, sn (O), and Qs,(z) determine srL (x). Hence, 

a(O), s2(0), . . . determines any Sheffer sequence with respect to Q. But because the pi(~) have 

different degrees, any such sequence arises from the umbra1 presentation S,(X) N pn(a: + p) for 

suitable choice of umbra p. we have proved the following. 

PROPOSITION 20. Ifpo(z),pl(z), . . . is a sequence of binomial type, then all associated Sheffer 

sequences are umbrally presented by the sequence po(z + P), pl(z + P), pz(z + P), . . . for some 

a E k and some umbra 0. I 

The following is immediate from the preceding and the presentation results in the preceding 

section. 

COROLLARY 21. Let SO(X), SI(Z), . . . be a sequence of polynomials in k[z], and let PO(X), pl (z), 

Pz(Z),..- in k[z] be a sequence of binomial type. The following are equivalent. 

1. The sequence SO(Z), SI(Z), . . . is Sheffer with respect to po(z),pl(~), . . . . 

2. There exist umbrae /I, y such that pn(x) N (z.y)% and S,(X) 2~ ((x + ,8).~)“. 

3. There exist umbrae p, a such that p,(x) N ~(a: + IZ.CX)~-’ and s,(z) 21 (X + P)(z + p + 

n&X)+ 

4. There exist umbrae /3, p such that pn(x) N Z(Z + ~1). . . (3 + pl + . . . + ~~-1) and 

sn(z) N (z+p)(z+p+pl)‘~-(Ic+P+pl +‘**+pL,-1). I 

Since (X + y + p).~ = x.7 + (y + P.-y), the standard expansion result for Sheffer sequences, 

follows immediately from 

7. MULTIPLICATIVE SEQUENCES 

sn(x+y) =e y 0 Pi(X)%-i(Y), 
i=l 

Part 2 of this corollary. 

We present our final results as easy applications of the preceding constructions. We have relied 

on the umbra1 relation (X + y).y = 3.7 + y.7 to find a presentation for sequences of binomial type. 

It is natural to ask what happens if we replace x and y themselves by umbrae. Fix umbrae a, p 

such that an N a, and p” N b,. We will consider sequences of polynomials in multiple variables 

al, a2,. . . and bl, b2,. . . 

Fix an umbra y and define K,(al, a2,. . N (a.~)“. 

k[al, . . . , a,] by K,(al, a2,. . . , a,) N (a.~)“. If 

then 

cK&,... ,ck)$= I 

k>O 
. ( 

We formalize this “nice” behavior of generating functions under multiplication as follows. 

Suppose that Ko, K1, . . is a sequence of polynomials in the variables tl, tz, . . . . For T E k[d], 
denote by K,(r) the evaluation, K,(E[r], E[r2], E[r3], . . .), of the polynomial K,. Define the 

sequence KC,, K1 , . . . to be multiplicative if whenever CL!, p, x are umbrae such that (Y + fi = x, 

we have p + c = T where pm N K,(a), CT~ N K,(P), and 7”’ N K,(y). 
Since n.(c~ + p) = n.c~ + n$, the sequence of polynomials K, in al, a2,. . . defined by 

K,(al,. . . , a,) N (n,c2)m is multiplicative. 
These constructions can be generalized as follows. 
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PROPOSITION 23. Let CY be an umbra with cxi N ai. Let 1 be a positive integer and y an umbra. 

For cl,. . . ,cl E k, define the polynomial I(m(al,. . . ,a,) in k[al,. . . ,a,] by Km(al,. . ,a,,) N 

cc;=, i.(W).?)“. The sequence 1, K1, Kz,. . is multiplicative and K, has total degree m 

when a, is given degree i. 

If y s 1, then K, is homogeneous in the above grading. I 

If Ko,K1,... is multiplicative and homogeneous, then Lo, L1, . . . where Li(al, a2,. . . ) = 

K,(al, 2a2,3!as,. . . )/i! is an m-sequence or multiplicative sequence in the sense of Hirzebruch [12]; 

namely, if 

then 

~L~(c~,cz ,..., ck)z’= xL~(a~,az ,..., ai)zi xLj(b~,bz ,..., bj)zJ 
k>O i i>O )( j>O 

8. OPEN PROBLEMS 

We close with a brief list of open problems and areas for future work. 

Generalize Theorems 14 and 17 and their corollaries by finding umbra1 presentations 

corresponding to other well-known sequences of binomial type. 

Determine which sequences of binomial type over the integers and which sequences of 

integral type (see [13]) may be presented in the above fashions. Find general presentation 

formulae for these situations. 

Find umbra1 presentation theorems for the various generalizations of the umbra1 calculus 

(see, for instance, [14,15]). 

Give conditions for a sequence of binomial type to be presentable as x.G where G is a 

random variable rather than an arbitrary umbra. 
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