Some Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers

Roberto Tauraso
Dipartimento di Matematica
Università di Roma "Tor Vergata"
00133 Rome
Italy
tauraso@mat.uniroma2.it

Abstract

We present several polynomial congruences about sums with central binomial coefficients and harmonic numbers. In the final section we collect some new congruences involving Fibonacci and Lucas numbers.

1 Introduction

Recently, the following identity was proposed by Knuth in the problem section of the American Mathematical Monthly [3]:

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty}\binom{2 k}{k} \frac{x^{k}}{k}\right)^{2}=4 \sum_{k=1}^{\infty}\binom{2 k}{k}\left(H_{2 k-1}-H_{k}\right) \frac{x^{k}}{k}, \tag{1}
\end{equation*}
$$

where $H_{n}=\sum_{k=1}^{n} 1 / k$ is the n-th harmonic number. Playing around with this formula, we realized that there is a corresponding polynomial congruence, namely, for all prime numbers p,

$$
\begin{equation*}
\left(\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k}\right)^{2} \equiv 4 \sum_{k=1}^{p-1}\binom{2 k}{k}\left(H_{2 k-1}-H_{k}\right) \frac{x^{k}}{k} \quad(\bmod p) . \tag{2}
\end{equation*}
$$

By using this congruence together with some previous results given in [5, 6], we find that for all prime numbers $p>3$,

$$
\begin{equation*}
\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{2 k} x^{k}}{k} \equiv(2 x-\alpha)^{p} £_{2}(-\beta / \alpha)+2 \alpha^{p} £_{2}(\beta / \alpha) \quad(\bmod p) \tag{3}
\end{equation*}
$$

where $£_{2}(x)=\sum_{k=1}^{p-1} \frac{x^{k}}{k^{2}}$ is the finite dilogarithm and

$$
\alpha=\frac{1}{2}(1+\sqrt{1-4 x}) \quad \text { and } \quad \beta=\frac{1}{2}(1-\sqrt{1-4 x}) .
$$

These kind of congruences have been actively investigated and many interesting formulas have been discovered (see the references in $[5,6]$). For example, by letting $x=1$ in (3), we recover the congruence

$$
\begin{equation*}
\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{2 k}}{k} \equiv \frac{7}{12}\left(\frac{p}{3}\right) B_{p-2}(1 / 3) \quad(\bmod p) \tag{4}
\end{equation*}
$$

which appeared in [4], where $\left(\frac{x}{y}\right)$ denotes the Legendre symbol, and $B_{n}(x)$ is the n-th Bernoulli polynomial. Moreover, we show several congruences involving Fibonacci numbers F_{n} and Lucas numbers L_{n}. Two of them are as follows: for all prime numbers $p>5$,

$$
\begin{align*}
& \sum_{k=1}^{p-1} \frac{(-1)^{k}}{k}\binom{2 k}{k} H_{2 k} F_{3 k} \equiv \frac{13}{10}\left(\frac{p}{5}\right) q_{L}^{2} \quad(\bmod p) \tag{5}\\
& \sum_{k=1}^{p-1} \frac{(-1)^{k}}{k}\binom{2 k}{k} H_{2 k} L_{3 k} \equiv \frac{5}{2} q_{L}^{2} \quad(\bmod p) \tag{6}
\end{align*}
$$

where $q_{L}=\left(L_{p}-1\right) / p$ is the so-called Lucas quotient.
The paper is organized into four sections. The next section is devoted to a brief introduction to the finite polylogarithm. In Section 3 we present the proofs of the main theorems about the polynomial congruences and in the final section we establish various congruences involving Fibonacci numbers.

2 The finite polylogarithm

The classical polylogarithm function is defined for complex $|z|<1$ and all positive integers d by the power series

$$
\operatorname{Li}_{d}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{d}} .
$$

It is well known that the polylogarithm can be extended analytically to a wider range of z and it satisfies several remarkable identities such as the two reflection properties,

$$
\mathrm{Li}_{2}(z)+\mathrm{Li}_{2}(1 / z)=-\frac{\pi^{2}}{6}-\frac{\ln ^{2}(-z)}{2} \quad \text { and } \quad \mathrm{Li}_{2}(z)+\mathrm{Li}_{2}(1-z)=\frac{\pi^{2}}{6}-\ln (z) \ln (1-z)
$$

These identities allow the explicit evaluation of the polylogarithm at some special values, such as

$$
\mathrm{Li}_{2}(1)=\zeta(2)=\frac{\pi^{2}}{6}, \quad \mathrm{Li}_{2}(1 / 2)=\frac{\pi^{2}}{12}-\frac{\ln ^{2}(2)}{2}, \quad \mathrm{Li}_{2}\left(\phi_{-}\right)=-\frac{\pi^{2}}{15}+\frac{\ln ^{2}\left(\phi_{+}\right)}{2} .
$$

where $\phi_{ \pm}=(1 \pm \sqrt{5}) / 2$.
The finite polylogarithm function is the partial sum of the above series over the range $0<k<p$ where p is a prime

$$
£_{d}(x)=\sum_{k=1}^{p-1} \frac{x^{k}}{k^{d}} .
$$

It satisfies some nice properties that resemble the ones satisfied by the classical polylogarithm.
Here we restrict our attention to $£_{2}(x)$ (see [5] for more details): for all prime numbers $p>3$,

$$
\begin{aligned}
£_{2}(x) & \equiv x^{p} £_{2}(1 / x) \quad(\bmod p), \\
£_{1}(1-x) & \equiv-Q_{p}(x)-p £_{2}(x) \quad\left(\bmod p^{2}\right), \\
£_{2}(x) & \equiv £_{2}(1-x)+x^{p} £_{2}(1-1 / x) \quad(\bmod p), \\
x^{p} £_{2}(x)+(1-x)^{p} £_{2}(1-x) & \equiv \frac{1}{2} Q_{p}^{2}(x) \quad(\bmod p) .
\end{aligned}
$$

where

$$
Q_{p}(x)=x q_{p}(x)+(1-x) q_{p}(1-x), \quad \text { with } \quad q_{p}(x)=\frac{x^{p-1}-1}{p}
$$

Several congruences for special values of $£_{2}(x)$ are known:

$$
£_{2}(1) \equiv £_{2}(-1) \equiv 0, \quad £_{2}(2) \equiv 2 £_{2}(1 / 2) \equiv-q_{p}^{2}(2) \quad(\bmod p) .
$$

Moreover

$$
\begin{aligned}
& £_{2}((1 \pm i) / 2) \equiv-\frac{q_{p}^{2}(2)}{8}+\frac{1}{4}\left(\left(\frac{-1}{p}\right) \pm i\right) E_{p-3} \quad(\bmod p), \\
& £_{2}\left(\omega_{6}^{ \pm 1}\right) \equiv \frac{1}{8}\left(\left(\frac{p}{3}\right) \pm i \frac{\sqrt{3}}{3}\right) B_{p-2}(1 / 3), \quad(\bmod p)
\end{aligned}
$$

where $\omega_{6}=(1 \pm i \sqrt{3}) / 2$ and E_{n} is n-th Euler number. Finally, for all prime numbers $p>5$ we have

$$
\begin{aligned}
£_{2}\left(\phi_{ \pm}\right) & \equiv \mp \frac{\sqrt{5}}{10}\left(\frac{p}{5}\right) q_{L}^{2} \quad(\bmod p), \\
£_{2}\left(\phi_{ \pm}^{2}\right) & \equiv-\frac{1}{2}\left(1 \pm \frac{\sqrt{5}}{5}\left(\frac{p}{5}\right)\right) q_{L}^{2} \quad(\bmod p), \\
£_{2}\left(-\phi_{ \pm}\right) & \equiv-\frac{1}{4}\left(1 \pm \frac{\sqrt{5}}{5}\left(\frac{p}{5}\right)\right) q_{L}^{2} \quad(\bmod p) .
\end{aligned}
$$

Notice that the Lucas quotient satisfies (see [7]),

$$
q_{L}=Q\left(\phi_{ \pm}\right) \equiv \frac{5 F_{p-\left(\frac{p}{5}\right)}}{2 p} \quad(\bmod p)
$$

3 Polynomial congruences for central binomial sums

In [5, 6], we studied various sum involving the central binomial coefficients. In particular, it has been shown that for all prime numbers $p>3$,

$$
\begin{align*}
& \sum_{k=1}^{p-1}\binom{2 k}{k} x^{k} \equiv \sum_{k=1}^{p-1}\binom{\frac{p-1}{2}}{k}(-4 x)^{k} \equiv(1-4 x)^{(p-1) / 2} \quad(\bmod p), \tag{7}\\
& \sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k} \equiv £_{1}(\alpha)+£_{1}(\beta) \quad(\bmod p) \tag{8}\\
& \sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k^{2}} \equiv 2 £_{2}(\alpha)+2 £_{2}(\beta) \quad(\bmod p), \tag{9}\\
& \sum_{k=1}^{p-1}\binom{2 k}{k} H_{k}^{(2)} x^{k} \equiv \frac{2\left(£_{2}(\beta)-£_{2}(\alpha)\right)}{\sqrt{1-4 x}} \quad(\bmod p) . \tag{10}
\end{align*}
$$

where $H_{n}^{(2)}=\sum_{k=1}^{n} 1 / k^{2}$.
In [1, Proposition 5], Boyadzhiev used the following Euler-type series transformation formula to handle series with central binomial coefficients: if $a_{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k} b_{k}$ then in a neighborhood of $x=0$,

$$
\sum_{k=0}^{\infty}\binom{2 k}{k} a_{k} x^{k}=\frac{1}{\sqrt{1-4 x}} \sum_{j=0}^{\infty}\binom{2 j}{j} b_{j}\left(\frac{-x}{1-4 x}\right)^{j}
$$

It turns out that something similar holds for finite sum congruences:

$$
\begin{align*}
\sum_{k=0}^{p-1}\binom{2 k}{k} a_{k} x^{k} & \equiv \sum_{k=0}^{(p-1) / 2}\binom{\frac{p-1}{2}}{k} a_{k}(-4 x)^{k}=\sum_{k=0}^{(p-1) / 2}\binom{\frac{p-1}{2}}{k}(-4 x)^{k} \sum_{j=0}^{k}\binom{k}{j}(-1)^{j} b_{j} \\
& =\sum_{j=0}^{(p-1) / 2}(-1)^{j} b_{j} \sum_{k=j}^{(p-1) / 2}\binom{\frac{p-1}{2}}{k}\binom{k}{j}(-4 x)^{k} \\
& =\sum_{j=0}^{(p-1) / 2}(-1)^{j} b_{j}\binom{\frac{p-1}{2}}{j}(-4 x)^{j}(1-4 x)^{\frac{p-1}{2}-j} \\
& \equiv(1-4 x)^{\frac{p-1}{2}} \sum_{j=0}^{p-1}\binom{2 j}{j} b_{j}\left(\frac{-x}{1-4 x}\right)^{j}(\bmod p) . \tag{11}
\end{align*}
$$

In the next theorem we apply the above transformation.
Theorem 1. For all prime numbers $p>3$,

$$
\begin{align*}
& \sum_{k=1}^{p-1}\binom{2 k}{k} H_{k} x^{k} \equiv-2(1-4 x)^{\frac{p-1}{2}} £_{1}\left(-\frac{\beta}{\sqrt{1-4 x}}\right) \quad(\bmod p) \tag{12}\\
& \sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{k} x^{k}}{k} \equiv 2(1-4 x)^{\frac{p}{2}}\left(£_{2}\left(\frac{\alpha}{\sqrt{1-4 x}}\right)-£_{2}\left(-\frac{\beta}{\sqrt{1-4 x}}\right)\right) \quad(\bmod p) \tag{13}
\end{align*}
$$

Proof. It is easy to verify by induction that

$$
\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} H_{k}(1)=-\frac{1}{n} \quad \text { and } \quad \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} H_{k}(2)=-\frac{H_{n}}{n} .
$$

Moreover

$$
\alpha\left(\frac{-x}{1-4 x}\right)=\frac{\alpha}{\sqrt{1-4 x}} \quad \text { and } \quad \beta\left(\frac{-x}{1-4 x}\right)=-\frac{\beta}{\sqrt{1-4 x}} .
$$

Hence, by (11) and (8),

$$
\begin{aligned}
\sum_{k=1}^{p-1}\binom{2 k}{k} H_{k} x^{k} & \equiv-(1-4 x)^{\frac{p-1}{2}} \sum_{j=1}^{p-1}\binom{2 k}{k} \frac{1}{k}\left(\frac{-x}{1-4 x}\right)^{k} \\
& \equiv-(1-4 x)^{\frac{p-1}{2}}\left(£_{1}\left(\frac{\alpha}{\sqrt{1-4 x}}\right)+£_{1}\left(-\frac{\beta}{\sqrt{1-4 x}}\right)\right) \\
& \equiv-(1-4 x)^{\frac{p-1}{2}}\left(£_{1}\left(1-\frac{\alpha}{\sqrt{1-4 x}}\right)+£_{1}\left(-\frac{\beta}{\sqrt{1-4 x}}\right)\right) \\
& \equiv-2(1-4 x)^{\frac{p-1}{2}} £_{1}\left(-\frac{\beta}{\sqrt{1-4 x}}\right) \quad(\bmod p)
\end{aligned}
$$

where we also used $£_{1}(x) \equiv £_{1}(1-x)$. Thus the proof of (12) is complete.
As regards (13), Eqns. (11) and (10) imply

$$
\begin{aligned}
\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{k} x^{k}}{k} & \equiv-(1-4 x)^{\frac{p-1}{2}} \sum_{j=1}^{p-1}\binom{2 k}{k} H_{k}^{(2)}\left(\frac{-x}{1-4 x}\right)^{k} \\
& \equiv 2(1-4 x)^{\frac{p}{2}}\left(£_{2}\left(\frac{\alpha}{\sqrt{1-4 x}}\right)-£_{2}\left(-\frac{\beta}{\sqrt{1-4 x}}\right)\right) \quad(\bmod p)
\end{aligned}
$$

In the next theorem, we establish (2), the analogous congruence for the series (1).
Theorem 2. For all prime numbers $p>3$,

$$
\begin{align*}
& \left(\sum_{k=1}^{p-1}\binom{2 k}{k} x^{k}\right) \cdot\left(\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k}\right) \equiv 2 \sum_{k=1}^{p-1}\binom{2 k}{k}\left(H_{2 k-1}-H_{k}\right) x^{k} \quad(\bmod p) \tag{14}\\
& \left(\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k}\right)^{2} \equiv 4 \sum_{k=1}^{p-1}\binom{2 k}{k}\left(H_{2 k-1}-H_{k}\right) \frac{x^{k}}{k} \quad(\bmod p) \tag{15}
\end{align*}
$$

Proof. Since p divides $\binom{2 k}{k}$ for $(p-1) / 2<k<p$, it follows that

$$
\left(\sum_{k=1}^{p-1}\binom{2 k}{k} x^{k}\right) \cdot\left(\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k}\right) \equiv \sum_{n=1}^{p-1} x^{n} \sum_{k=1}^{n-1}\left(\frac{1}{k}\binom{2 k}{k}\binom{2(n-k)}{n-k}\right) \quad(\bmod p)
$$

In a similar way,

$$
\begin{aligned}
\left(\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k}\right)^{2} & \equiv \sum_{n=1}^{p-1} x^{n} \sum_{k=1}^{n-1}\left(\frac{1}{k(n-k)}\binom{2 k}{k}\binom{2(n-k)}{n-k}\right) \\
& \equiv \sum_{n=1}^{p-1} \frac{x^{n}}{n} \sum_{k=1}^{n-1}\left(\left(\frac{1}{k}+\frac{1}{n-k}\right)\binom{2 k}{k}\binom{2(n-k)}{n-k}\right) \\
& \equiv 2 \sum_{n=1}^{p-1} \frac{x^{n}}{n} \sum_{k=1}^{n-1}\left(\frac{1}{k}\binom{2 k}{k}\binom{2(n-k)}{n-k}\right)(\bmod p)
\end{aligned}
$$

Therefore, it suffices to show by induction that

$$
\sum_{k=1}^{n-1} F(n, k)=2\left(H_{2 n-1}-H_{n}\right) \quad \text { where } \quad F(n, k)=\frac{1}{k}\binom{2 k}{k}\binom{2(n-k)}{n-k}\binom{2 n}{n}^{-1}
$$

It holds for $n=1$, and it is straightforward to verify that
$F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k)$ with $G(n, k)=-\frac{k^{2}(2 n-2 k+1) F(n, k)}{(n+1)(2 n+1)(n+1-k)}$.

Hence, by the inductive assumption,

$$
\begin{aligned}
\sum_{k=1}^{n} F(n+1, k) & =\sum_{k=1}^{n} F(n, k)+\sum_{k=1}^{n}(G(n, k+1)-G(n, k)) \\
& =2\left(H_{2 n-1}-H_{n}\right)+F(n, n)+G(n, n+1)-G(n, 1) \\
& =2\left(H_{2 n-1}-H_{n}\right)+\frac{1}{n}+0+\frac{(2 n-1) F(n, 1)}{(n+1)(2 n+1) n} \\
& =2\left(H_{2 n-1}-H_{n}\right)+\frac{1}{n}+\frac{1}{(n+1)(2 n+1)}=2\left(H_{2 n+1}-H_{n+1}\right)
\end{aligned}
$$

Now we are ready to show that our main result (3) and the congruence corresponding to the series [2, Theorem 6]: for $|x|<1 / 4$,

$$
\begin{equation*}
\sum_{k=1}^{\infty}\binom{2 k}{k} H_{2 k} x^{k}=\frac{1}{\sqrt{1-4 x}}\left(\ln \left(\frac{1+\sqrt{1-4 x}}{2}\right)-2 \ln (\sqrt{1-4 x})\right) \tag{16}
\end{equation*}
$$

Theorem 3. For all prime numbers $p>3$,

$$
\begin{align*}
& \sum_{k=1}^{p-1}\binom{2 k}{k} H_{2 k} x^{k} \equiv(1-4 x)^{(p-1) / 2}\left(£_{1}(\beta)-2 £_{1}\left(-\frac{\beta}{\sqrt{1-4 x}}\right)\right) \quad(\bmod p) \tag{17}\\
& \sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{2 k} x^{k}}{k} \equiv(2 x-\alpha)^{p} £_{2}(-\beta / \alpha)+2 \alpha^{p} £_{2}(\beta / \alpha) \quad(\bmod p) \tag{18}
\end{align*}
$$

Proof. As regards (17), since $H_{2 k}=\frac{1}{2 k}+\left(H_{2 k-1}-H_{k}\right)+H_{k}$, it follows immediately that,

$$
\sum_{k=1}^{p-1}\binom{2 k}{k} H_{2 k} x^{k}=\frac{1}{2} \sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k}+\sum_{k=1}^{p-1}\binom{2 k}{k}\left(H_{2 k-1}-H_{k}\right) x^{k}+\sum_{k=1}^{p-1}\binom{2 k}{k} H_{k} x^{k}
$$

and we apply (7), (14), and (12). In a similar way, for (18),

$$
\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{2 k} x^{k}}{k}=\frac{1}{2} \sum_{k=1}^{p-1}\binom{2 k}{k} \frac{x^{k}}{k^{2}}+\sum_{k=1}^{p-1}\binom{2 k}{k}\left(H_{2 k-1}-H_{k}\right) \frac{x^{k}}{k}+\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{k} x^{k}}{k}
$$

and then we use (9), (15), and (13).
As a remark, we point out that although the series (16) does not converge for $x=1 / 4$, by letting $f(x)$ be the left-hand side of (16) then

$$
\sum_{k=1}^{\infty}\binom{2 k}{k} \frac{H_{2 k}}{4^{k} k}=\int_{0}^{\frac{1}{4}} \frac{f(x)}{x} d x=\frac{5 \pi^{2}}{12}
$$

On the other hand, it can be verified that the congruence (18) holds even for $x=1 / 4$, and for all prime numbers $p>3$,

$$
\sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{2 k}}{4^{k} k} \equiv £_{2}(1) \equiv 0 \quad(\bmod p)
$$

4 Congruences with Fibonacci and Lucas numbers

By looking at this table and by using the values of $£_{1}$ and $£_{2}$, we can easily obtain the explicit values of the congruences established in the previous section.

x	α	β
1	ω_{6}	ω_{6}^{-1}
-1	ϕ_{+}	ϕ_{-}
-2	2	-1
$1 / 2$	$(1+i) / 2$	$(1-i) / 2$
$1 / 3$	$\left(1+\omega_{6}\right) / 3$	$\left(1+\omega_{6}^{-1}\right) / 3$
$1+i$	$1-i$	i
$1-i$	$1+i$	$-i$
$\pm i \sqrt{3}$	$1+\omega_{6}^{\mp 1}$	$-\omega_{6}^{\mp 1}$
$-\phi_{-}^{3}$	$-\phi_{-}$	ϕ_{-}^{2}
$-\phi_{+}^{3}$	ϕ_{+}^{2}	$-\phi_{+}$

For example, for all prime numbers $p>3$, by taking $x=1,1 / 2,1 / 3$ in (18), we get respectively (4), and the next two congruences,

$$
\begin{aligned}
& \sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{2 k}}{2^{k} k} \equiv \frac{3}{16}\left(\frac{-1}{p}\right) B_{p-2}(1 / 4) \quad(\bmod p) \\
& \sum_{k=1}^{p-1}\binom{2 k}{k} \frac{H_{2 k}}{3^{k} k} \equiv \frac{2}{9}\left(\frac{p}{3}\right) B_{p-2}(1 / 3) \quad(\bmod p)
\end{aligned}
$$

To order to get the congruences with F_{n} and L_{n} we need consider the cases $x=-\phi_{ \pm}^{3}$. If $x=-\phi_{-}^{3}$ then $2 x-\alpha=-\phi_{-}^{4}$ and

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{(-1)^{k}}{k}\binom{2 k}{k} H_{2 k} \phi_{-}^{3 k} & \equiv\left(-\phi_{-}^{4}\right)^{p} £_{2}\left(\phi_{-}\right)+2\left(-\phi_{-}\right)^{p} £_{2}\left(-\phi_{-}\right) \\
& \equiv \frac{1}{2}\left(-7+3\left(\frac{p}{5}\right) \sqrt{5}\right) £_{2}\left(\phi_{-}\right)+\left(-1+\left(\frac{p}{5}\right) \sqrt{5}\right) £_{2}\left(-\phi_{-}\right) \\
& \equiv\left(\frac{5}{4}-\frac{13}{20}\left(\frac{p}{5}\right) \sqrt{5}\right) q_{L}^{2} \quad(\bmod p)
\end{aligned}
$$

where we used the fact that $2 \phi_{ \pm}^{p} \equiv 1 \pm\left(\frac{p}{5}\right) \sqrt{5}(\bmod p)$. In a similar way, we find that

$$
\begin{aligned}
& \sum_{k=1}^{p-1} \frac{(-1)^{k}}{k}\binom{2 k}{k} H_{2 k} \phi_{ \pm}^{3 k} \equiv\left(\begin{array}{c}
5 \\
4 \\
\hline
\end{array} \frac{13}{20}\left(\frac{p}{5}\right) \sqrt{5}\right) q_{L}^{2} \quad(\bmod p), \\
& \sum_{k=1}^{p-1} \frac{(-1)^{k}}{k}\binom{2 k}{k} H_{k} \phi_{ \pm}^{3 k} \equiv\left(\frac{1}{2} \pm \frac{3}{10}\left(\frac{p}{5}\right) \sqrt{5}\right) q_{L}^{2} \quad(\bmod p) .
\end{aligned}
$$

Since $\sqrt{5} F_{3 k}=\phi_{+}^{3 k}-\phi_{-}^{3 k}$ and $L_{3 k}=\phi_{+}^{3 k}+\phi_{-}^{3 k}$, it follows that for $p>5,(5)$ and (6) hold and also we find that

$$
\begin{aligned}
& \sum_{k=1}^{p-1} \frac{(-1)^{k}}{k}\binom{2 k}{k} H_{k} F_{3 k} \equiv \frac{3}{5}\left(\frac{p}{5}\right) q_{L}^{2} \quad(\bmod p), \\
& \sum_{k=1}^{p-1} \frac{(-1)^{k}}{k}\binom{2 k}{k} H_{k} L_{3 k} \equiv q_{L}^{2} \quad(\bmod p)
\end{aligned}
$$

References

[1] K. N. Boyadzhiev, Series with central binomial coefficients, Catalan numbers, and harmonic numbers, J. Integer Sequences 15 (2012), Article 12.1.7.
[2] H. Chen, Interesting series associated with central binomial coefficients, Catalan numbers and harmonic numbers, J. Integer Sequences 19 (2016), Article 16.1.5.
[3] D. E. Knuth, Problem 11832, Amer. Math. Monthly 122 (2015), 390.
[4] G.-S. Mao and Z.-W. Sun, Two congruences involving harmonic numbers with applications, Int. J. Number Theory 12 (2016), 527-539.
[5] S. Mattarei and R. Tauraso, Congruences for central binomial sums and finite polylogarithms, J. Number Theory 133 (2013), 131-157.
[6] S. Mattarei and R. Tauraso, From generating series to polynomial congruences, in preparation.
[7] H. C. Williams, A note on the Fibonacci quotient $F_{p-\varepsilon} / p$, Can. Math. Bull. 25 (1982), 366-370.

2010 Mathematics Subject Classification: Primary 11A07; Secondary 05A10.

Keywords: congruences, central binomial coefficient, harmonic number, Fibonacci number, Lucas number.
(Concerned with sequences $\underline{A 000045}, \underline{A 000984}, \underline{A 001008}, \underline{A 014445}$, and $\underline{A 014448}$.)

Received April 14 2016; revised version received May 10 2016. Published in Journal of Integer Sequences, June 22016.

Return to Journal of Integer Sequences home page.

