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In this paper a generalization is given for the classical problem of “m&ages”. 

1. Introduction 

In this paper we are concerned with the following problem: At a dinner party n 

married couples are seated in 2n seats at a round table according to the following 

pattern: the women take alternate seats and the men choose the remaining seats 
at random. Let us suppose that all the n! possible sitting arrangements of the n 

men are equally probable. Denote by 5, the number of men sitting next to their 
wives on their wives’ right and q,, the number of men sitting next to their wives on 
their wives’ left. The problem is to determine the joint distribution of 5, and 7, 

for every n = 1,2, . . . . 

2. The joint distribution of .$, and q,, 

The case of n = 1 is trivial. We have P{[, = 1) = P{v, = l} = 1. For n 2 2 we shall 

prove the following result. 

Theorem 1. If n 2 2 and j + k G n, we have 

Pi&,, = i, v,, = k) = 
1 

c 
(-l)“-J-k-‘-l(n + t)! (j+ t)! (k + t)! 

I! k! (n - l)! OGr~,,-i-k-l t!(n-j-k-t-l)!(j+k+2t+l)! 

+(-l)“-‘s,.,+(-l)“-L6,,, 

j!(n-j)! k!(n-k)! 
(1) 

where Sk.0 = 1 for k = 0 and 6k.O = 0 for k f 0. 

Proof. Let us define 

B,,(n) =E[ (t)(T)) (2) 
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forr=0,1,2 ,... ands=0,1,2 ,.... Obviously, B,.,(n) = 0 if r + s > n. If r + s s n, 

then 

and by inversion we obtain that 

4, (n 1 
r=i s=k 

(3) 

(4) 

for j+ k < n. The proof of (4) is easy. If in (4) we replace B,,(n) by (3), then the 
right-hand side of (4) reduces to the left-hand side. 

It remains to determine B,,(n) for r+s zz 11. We can write that 

B,,(n) = c P{Ai,Ai2. . . A,A;A; . . . A;} (5) 
lSi,<i2<...<i,Sn 
ISj,<i2<...<jsSn 

where Ai is the event that the ith husband is sitting next to his wife on his wife’s 

right and A” is the event that the ith husband is sitting next to his wife on his 
wife’s left. Of course the simultaneous occurrence of Ai and A* is the impossible 
event. To prove (5) let us define xi as 1 if A, occurs and 0 otherwise, and x” as 1 

if AT occurs and 0 otherwise. Since (*;.)(>) is the coefficient of xrys in the 
expansion of 

(l+x)Vl+yP=fi (l+x)“~(l+y)x;=fi (l+xix)(l+xTy), (6) 
i=l i=l 

we have 

(7) 

By forming the expectation of (7) we get (5). 
Thecaseof r+s=n istrivial. We haveB,,.,(n)=B,,(n)=l/n! and B,.“-,(n)= 

0 for 0 < r < n. If r +s < n, then we use (5) in determining B,,(n). 
To find (5) let us suppose that all the n women are already seated. Let us select 

w = r + s women. They form n - w blocks (empty or nonempty) such that any two 

adjacent blocks are separated by one of the remaining n - w women. Let ri + Si 

(i=1,2 . f 7 n-w) be the size of the ith block. Suppose that in the ith block ri 
husbands will be seated next to their wives on their wives’ right and si husbands 

will be seated next to their wives on their wives’ left. For each block (i = 
1,2,..., n -w) this can be done in only one way. The remaining n - w husbands 

can be seated in (n -w)! ways in the remaining n-w seats. Now let us form n 
cyclic permutations of each sitting arrangement described above in such a way 
that a given seat will be occupied by all the n women in succession. Then all the 

distinct sitting arrangements of the n men will appear precisely n - w times. Thus 
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we obtain that 

Brs(n) = (n - w) n (n-W)! c 1 n! r,+.,.+r”_,=, s,+“.+.s., .v =z 
=(n-r-s-l)! n-r-l 

(n-l)! ( s Kr-?) (8) 

for r + s < n. If we take into consideration that 

for t=O,l,..., n -j-k - 1, then by (4) we get (1) which was to be proved. 

From Theorem 1 we can deduce the following limit theorem. 

Theorem 2. We have 

,!lm P{&, = j, q,, = k} = ep2/j! k! (10) 

for j = 0, 1,2, . . . and k = 0, 1,2, . . . . 

Proof. We shall prove that there exist two independent random variables 5 and n 
each having a Poisson distribution with expectation 1, that is, 

P{t=j}=P{n=j}=e-‘/j! (11) 

for j = 0, 1,2, . . . , such that 

lim PI&, = j, q,, = k) = P{( = j}P{v = k} 
n-m 

(12) 

for j = 0, 1,2,. . . and k = 0, 1,2,. . . . 
The rth binominal moments of 5 and q are 

E( (F))=E{ (:)}= l/r! (13) 

for r=0,1,2 ,.... Since the Poisson distribution is uniquely determined by its 
binomial moments, therefore (12) holds if 

lim B,,(n) = l/r! s! n-Pm . (14) 

for r = 0, 1,2,. . . and s = 0, 1,2,. . . . From (8) we can conclude that (14) is indeed 
true and consequently (12) also holds. This completes the proof of the theorem. 

By (12) it follows that 

,I~I P{& = j} = P{( = j} = e-‘/j! (15) 
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for j = 0, 1,2,. . . and 

lim P(n,=k}=P{n=k)=e-l/k! 
II -co (16) 

for k = 0, 1,2, . . . . Thus 

forj=0,1,2 ,..., andk=0,1,2 ,..., that is 5, and n,, are asymptotically indepen- 

dent if n += 00. 

3. The distribution of [,, + q,, 

The random variable [,, + n,, denotes the number of husbands sitting next to 
their wives in the sitting arrangement described in the Introduction. The problem 
of finding the probability P(& + q,, = 0) was proposed in 1891 by E. Lucas [22, p. 

2151 and solved by CA. Laisant and C. Moreau [22, pp. 491-4951. This problem 

is known as the “probltme des menages”. An equivalent problem was proposed in 

1877 by P.G. Tait 134, p. 1591, [35, p. 2871 and solved by Th. Muir [26], [27] and 
A. Cayley [4], [5]. By the results of Th. Muir, A Cayley, C.A. Laisant and C. 
Moreau we have 

Pit,, + rl,, = 0) = W/n ! (18) 

where M, = M2 = 0, M3 = 1 and for n 2 4 we can determine M,, by the recurrence 

formula 

(II- ~)M,,+I =(n’- l)M, +(n + l)M, +4(-l)” (19) 

which is valid for II >3. The explicit form of M,, was found in 1934 by J. 

Touchard [38], in 1942 by W. Schobe [33] and in 1943 by I. Kaplansky [15]. See 
also J. Riordan [32,pp. 195-2011. 

For it 5 2 we have 

M, = rz! i (-l)‘C,(n) 
r=O 

where 

is the rth binomial moment of 5, +n,,. Since 

for 0s r G n, we obtain by inversion that 

P(& +rjn = k}= t (-l)‘-k(~)C.(n) 
r=k 

(20) 

(21) 

(22) 

(23) 
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for k =O, 1,. . . , n where C,.(n) is given by (21). This result was found by I. 

Kaplansky [17] in 1945. See also J. Riordan [32, pp. 195-2011 and L. Takacs 

[361. 
In 1942 W. Schobe [33] and in 1943 I. Kaplansky [15] proved that 

lim M,/n ! = ed2. I, -cc (24) 

In 1944 J. Wolfowitz [42] proved that 

lim Pie,, + n,, = k} = e-22k/k! 
n -= (25) 

for k=0,1,2 ,.... This result can also be derived from (23). If we add less than 
n - k terms in (23), then the error is of the same sign as, and has absolute value 

smaller (or equal) than the first term neglected. From (23) it follows that 

c,+c(~~)~P{&, +q,, = k}c E (-l)i(k +3ck+i(n) (26) 
i=O 

if 1 G 2m + 1 C n. If we let n += 00 in (21) we obtain that 

s IiTS inf Pi&, + q,, = k} 

< lim supp{,$ +.q = k]<2” ‘2 (-tJi2’ ,I ” ,I -02 -k!+,, I! 
(27) 

for m =O, 1,2,. . . . If m + m in the above inequalities, we get (25). The limit 
theorem (25) can also be deduced from (12). By (12) we have 

lim P(.$, + q,, = k} = P{t + q = k} = e-22k/k! 
n-m (28) 

for k = 0, 1,2,. . . . 
In 1945 I. Kaplansky [17] refined (25) and demonstrated that 

k’-3k+k”-8k3+9k2+22k-16 

Bn(n - 1) 
+O(n-3) 

(29) 

The “probleme des menages” is the subject of several papers and is studied in 

several books. In 1903 H.M. Taylor [37] derived (19) again. In 1946 I. Kaplansky 

and J. Riordan [18] gave a historical account of the problem. The problem is 
discussed also by W.A. Whitworth [40, p. 2711, E. Netto [28, pp. 75-781, [29, pp. 

75-781, P.A. MacMahon [23, pp. 253-2541, J. Wolfowitz [41], I. Kaplansky [16], 
J. Touchard [39], and others. 

The related topic of three-line Latin rectangles is discussed by S.M. Jacob [13], 

S.M. Kerawala [19], L. Dulmage [9], J. Riordan [30], [31] and F.W. Light, Jr. 
[21]. See also C.W. Baur [l], M. Cantor [2] and C.A. Laisant [20]. 

The probabilities (23) are given in Table 1 for n =Z 10. 
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Table 1. n!P{&+rl,, =kI 
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\ k 
n 0 1 2 3 4 5 6 7 8 9 10 

1 0 1 
2 0 0 2 

3 1 0 3 2 

4 2 8 4 8 2 
5 13 30 40 20 15 2 

6 80 192 210 152 60 24 2 

7 579 1344 1477 994 469 140 35 2 
8 4738 10800 11672 7888 3660 1232 280 48 2 

9 43387 97434 104256 70152 32958 11268 2856 504 63 2 

10 439792 976000 1036050 695760 328920 115056 30300 6000 840 80 2 

4. The distributions of 5, and q, 

By symmetry the random variables &, and nn are identically distributed. We 
have 

p{( ” = k}=p{rl ” = /+~“~ko’ 
k! i-0 I! (30) 

for k = 0, 1, . . . , n. Obviously, 

P{&=k}=P{n.,=k}=(;)Q(n-k)/n! 

for OS ksn where Q(O)= 1 and Q(n) (n = 1,2,. . .) denotes the number of 
permutations of 1,2, . . . , n in which no coincidence occurs. If in a permutation of 
1,2,. . . , n the ith element is i, we say that a coincidence occurs at the ith place. 
In 1708 P.R. Montmort [24, pp. 58-591 stated without proof that 

Q(n)=(n-l)[Q(n-l)+Q(n -211 

for n 3 2 where Q(0) = 1 and Q(1) = 0, and concluded that 

(32) 

Q(n)=n! i(-1)’ 

i=O I! 
(33) 

for n 5 0. In a letter to Montmort, dated March 17, 1710, Nikolaus Bernoulli [25, 
pp. 299-3031 gave two proofs for (33). In the first proof he used the method of 
inclusion and exclusion and proved (33) directly. In the second proof he demon- 
strated (32) and indicated how (32) implies (33). If we write (32) in the form of 

Q(n) Q(n - 1) -- 
n! 1 (34) 
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where n 3 2, and apply (34) repeatedly, then we obtain that 

Q(n) Q(n- 1) (-1)” -- =- 
n. I (n-l)! n! 

(35) 

for n 3 1 which proves (33). 
Equation (32) was proved also by L. Euler [ll] in 1779, E. Catalan [3] in 1837, 

and I.B. Haaz [12] in 1942. 
By using the method of inclusion and exclusion, in 1718 A. De Moivre [6, pp. 

59-661, [7, pp. 95-1031, [8, pp. 109-1171 proved (30) directly. 
We note that it is easy to prove that 

Br=E{(y}=E{(y))= l,r! 

for r = 0, 1,. . . , n, and since 

B, = 2 (k)P{tn = kl = ;, (5)ph = kl 
k=r r 

(36) 

(37) 

for r = 0, 1, . . . , IZ we obtain (30) from (37) by inversion. See also C. Jordan [14], 
and L. Takics [36]. 

From (33) it follows immediately that 

lim 
It-” 

Q(n) 
n. I 

-1 =e . (38) 

This result was found by P.R. Montmort [24, pp. 58-591 in 1708 and was known 
to L. Euler [lo] in 1751 and to A. De Moivre [8, pp. 116-1171 in 1754. From 
(31) and (38) it follows that 

lim P{&, = k} = lim P(n,, = k} = e-‘/k! (39) ,1-m II -cc 

for k =O, 1,2,. . . . This is the first appearance of the Poisson distribution as a 
limit distribution. 

The probabilities (30) are given in Table 2 for n s 10. 

Table 2. n ! P{&, = kj 

0 1 2 3 4 5 6 7 9 9 10 

1 0 1 
2 1 0 1 
3 2 3 0 1 
4 9 8 6 0 1 
5 44 45 20 10 0 1 
6 265 264 135 40 15 0 1 
7 1854 1855 924 315 70 21 0 1 
8 14833 14832 7420 2464 630 112 28 0 1 
9 133496 133497 66744 22260 5544 1134 168 36 0 1 

10 1334961 1334960 667485 222480 55650 11088 1890 240 45 0 1 
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