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Some Fibonacci-like Sequences

RANDALL J. SWIFT

A random look at Fibonacci sequences

Each term of the familiar Fibonacci sequence

1, 1, 2, 3, 5, 8, . . .

is obtained as the sum of the two previous terms. This

sequence has many beautiful properties and even has a

journal, The Fibonacci Quarterly, devoted to its study. Many

of its fundamental properties are considered in reference 1.

In this article, we consider some sequences related to the

Fibonacci sequence and pose some interesting questions for

further study.

The Fibonacci sequence can be written in the form of

a recurrence relation. Specifically, since the nth term x(n)

relies on only the two previous terms, we can write

x(n) = x(n − 1) + x(n − 2) . (1)

To get the recurrence relation going, we need to specify the

first two terms. Here x(0) = 1 and x(1) = 1.

Recurrence relations such as (1) are useful for describing

a sequence, but are often difficult to use when we wish to

compute a term for a large value of n . For instance, to find

the 100th term of the Fibonacci sequence, we would have

to compute the previous 99 terms. It is thus desirable to

express x(n) in a closed form, that is, a form that depends

only upon n .

Finding a closed form for the recurrence relation (1)

is similar to finding the solution of a homogeneous linear

differential equation with constant coefficients. The details

of the method can be found in reference 2.

We apply the method to the Fibonacci recurrence by

rewriting it as a difference equation

x(n) − x(n − 1) − x(n − 2) = 0 ,

and then substituting x(n) = Cλn , where C is a constant, to

obtain

Cλn − Cλn−1 − Cλn−2 = 0 .

Factoring out Cλn−2 gives the characteristic equation

λ2 − λ − 1 = 0 ,

a quadratic which we can solve easily. The solution gives the

eigenvalues for the recurrence relation. The eigenvalues can

be viewed as ‘growth rates’ of the recurrence relation. For

the Fibonacci sequence, they are

λ1 =
1 +

√
5

2
and λ2 =

1 −
√

5

2
.

Notice that λ1 ≈ 1.618 and λ2 ≈ −0.618, so λ1 > λ2 . We

call λ1 the dominant eigenvalue. In general, the root of a

characteristic equation with largest modulus will be termed

the dominant eigenvalue and denoted λ∗ .

The value

λ1 =
1 +

√
5

2

is also known in geometry as the golden ratio.

The closed form of x(n) is

x(n) = C1

(

1 +
√

5

2

)n

+ C2

(

1 −
√

5

2

)n

,

where we know that the initial values are x(0) = 1 and

x(1) = 1. Using these we have the following simultaneous

equations for the constants C1 and C2 :

C1 + C2 = 1 and C1
1 +

√
5

2
+ C2

1 −
√

5

2
= 1 .

Solving gives C1 = (5+
√

5)/10 and C2 = (5−
√

5)/10.

Thus, the closed-form solution to the Fibonacci recurrence

relation (1) is

x(n) =
5 +

√
5

10

(

1 +
√

5

2

)n

+
5 −

√
5

10

(

1 −
√

5

2

)n

. (2)

One surprising feature of this closed-form solution (2) is

that, despite the fact that all of its factors are irrational, it

produces integer values for every n .

The long-term behaviour of the Fibonacci sequence can

be determined by (2). Considering each of its terms, we see

that, since

1 +
√

5

2
> 1 and

1 −
√

5

2
< 1 ,

the behaviour of the sequence as n increases resembles that

of exponential growth with a base of (1 +
√

5)/2, which is

the value of the dominant eigenvalue. Moreover,

lim
n→∞

n
√

x(n) =
1 +

√
5

2
. (3)

In general, the growth of a recurrence relation will be

determined by its dominant eigenvalue λ∗ with an expression

similar to (3); indeed,

lim
n→∞

n
√

|x(n)| = λ∗ . (4)

Problem 1. Suppose that we generate a sequence using the

Fibonacci recurrence relation

x(n) = x(n − 1) + x(n − 2)


