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Abstract. Let q > 1 and m > 0 be relatively prime integers. We find an
explicit period νm(q) such that for any integers n > 0 and r we have

h

n + νm(q)

r

i

m

(a) ≡
h

n

r

i

m

(a) (mod q)

whenever a is an integer with gcd(1 − (−a)m, q) = 1, or a ≡ −1 (mod q),

or a ≡ 1 (mod q) and 2 | m, where
ˆ

n

r

˜

m
(a) =

P

k≡r (mod m)

`

n

k

´

ak. This

is a further extension of a congruence of Glaisher.

1. Introduction and main results

Let N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}. Following [S95, S02], for
m ∈ Z+, n ∈ N and r ∈ Z we set
[

n

r

]

m

=
∑

06k6n
k≡r (mod m)

(

n

k

)

= |{X ⊆ {1, . . . , n} : |X | ≡ r (mod m)}| (1.1)

and
{

n

r

}

m

=
∑

06k6n
k≡r (mod m)

(−1)
k−r
m

(

n

k

)

=

[

n

r

]

2m

−

[

n

r + m

]

2m

.
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Such sums occur in several topics of number theory or combinatorics. (See,
e.g., [SS, H, GS, S02].)

Let p be an odd prime. In 1899 J. W. L. Glaisher obtained the following
congruence:

[

n + p − 1

r

]

p−1

≡

[

n

r

]

p−1

(mod p) for any n ∈ Z+ and r ∈ Z.

Since an odd integer is not divisible by p− 1, this implies Hermite’s result
that

[

n
0

]

p−1
≡ 1 (mod p) for n = 1, 3, 5, . . . (cf. L. E. Dickson [D, p. 271]).

A sophisticated proof of Glaisher’s congruence can be found in A. Granville
[G97]; the first author observed in 2004 that Glaisher’s congruence can be
proved immediately by induction on n.

Before stating our further extension of Glaisher’s result, let us introduce
some notations.

Let m ∈ Z+, n ∈ N and r ∈ Z. We set

[

n

r

]

m

(a) =
∑

06k6n
k≡r (mod m)

(

n

k

)

ak for a ∈ Z. (1.2)

Obviously
[

n
r

]

m
(1) =

[

n
r

]

m
, and

[

n

r

]

m

(−1) =

{

(−1)r
[

n
r

]

m
if 2 | m,

(−1)r
{

n
r

}

m
if 2 ∤ m.

It is easy to see that

[

n + 1

r

]

m

(a) =

[

n

r

]

m

(a) + a

[

n

r − 1

]

m

(a). (1.3)

Let a, b ∈ Z and q, m, n ∈ Z+. Clearly

(x + a)n ≡ xn + b mod (q, xm − 1)

⇐⇒

m−1
∑

r=0

∑

06k<n
k≡r (mod m)

(

n

k

)

xkan−k ≡ b mod (q, xm − 1)

⇐⇒
∑

06k<n
k≡r (mod m)

(

n

k

)

an−k ≡

{

b (mod q) if r = 0,

0 (mod q) if 0 < r < m

⇐⇒
∑

16k6n
k≡r (mod m)

(

n

k

)

ak ≡

{

b (mod q) if r ≡ n (mod m),

0 (mod q) otherwise.
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(See also [G05].) Now that the congruence condition (x + a)n ≡ xn +
a mod (n, xm−1) plays a central role in the polynomial time primality test
given by Agrawal, Kayal and Saxena [AKS], it is interesting to investigate
periodicity of

[

n
r

]

m
(a) mod q (where r ∈ Z) with respect to n.

Let q > 1 and m > 0 be integers with gcd(q, m) = 1, where gcd(q, m) de-
notes the greatest common divisor of q and m. Write q in the factorization
form

∏t
s=1 pαs

s where p1, . . . , pt are distinct primes and α1, . . . , αt ∈ Z+.
We define

νm(q) = lcm[pα1−1
1 (pβ1

1 − 1), . . . , pαt−1
t (pβt

t − 1)], (1.4)

where lcm[n1, . . . , nt] represents the least common multiple of those ns ∈
Z+ with 1 6 s 6 t, and each βs is the order of ps modulo m (i.e., βs

is the smallest positive integer with pβs
s ≡ 1 (mod m)). Clearly ν1(q) =

lcm[ϕ(pα1

1 ), . . . , ϕ(pαt

t )] divides ϕ(q), where ϕ is Euler’s totient function.
Since ϕ(pαs

s ) | νm(q) for each s = 1, . . . , t, if a ∈ Z is relatively prime to
q, then by Euler’s theorem aνm(q) ≡ 1 (mod pαs

s ) and therefore aνm(q) ≡
1 (mod q). Note also that νp−1(p

α) = ϕ(pα) for any prime p and α ∈ Z+.
Now we present our first theorem.

Theorem 1.1. Let q > 1 and m > 0 be integers with gcd(q, m) = 1. Let

T ∈ Z+ be a multiple of νm(q), and let l ∈ N, n ∈ Z+ and r ∈ Z. Then

n
∑

k=0

(−1)k

(

n

k

)[

kT + l

r

]

m

≡

{

2l(1 − 2T )n/m (mod qn) if 2 ∤ m,

δl,0(−1)r/m (mod qn) if 2 | m,
(1.5)

where the Kronecker symbol δl,0 takes 1 or 0 according as l = 0 or not.

Actually Theorem 1.1 is implied by the following more general result
whose proof will be given in Section 2.

Theorem 1.2. Let q > 1 be an integer relatively prime to both m ∈ Z+

and
∑m−1

j=0 (−a)j where a ∈ Z. Let l ∈ N and r ∈ Z. If n, T ∈ Z+ and

νm(q) | T , then we have

n
∑

k=0

(−1)k

(

n

k

)[

kT + l

r

]

m

(a) ≡
(a + 1)l

m

(

1 − (a + 1)T
)n

(mod qn). (1.6)

Now we explain why Theorem 1.1 follows from Theorem 1.2. In the
case 2 ∤ m, since

∑m−1
j=0 (−1)j = 1 we have (1.5) by applying Theorem 1.2

with a = 1. In the case 2 | m, (1.5) also holds because

(−1)r

[

kT + l

r

]

m

= (−1)r

[

kT + l

r

]

m

(1) =

[

kT + l

r

]

m

(−1)



4 ZHI-WEI SUN AND ROBERTO TAURASO

and therefore

(−1)r
n

∑

k=0

(−1)k

(

n

k

)[

kT + l

r

]

m

=
n

∑

k=0

(−1)k

(

n

k

)[

kT + l

r

]

m

(−1) ≡
δl,0

m
(mod qn)

with the help of Theorem 1.2 in the case a = −1.

Corollary 1.3. Let q > 1 and m > 0 be integers with gcd(q, m) = 1. And

let l ∈ N, n ∈ Z+ and r ∈ Z.

(i) Let a be any integer with gcd(q,
∑m−1

j=0 (−a)j) = 1. Then

[

l + νm(q)

r

]

m

(a) −

[

l

r

]

m

(a) ≡

{

0 (mod q0),

−(a + 1)l/m (mod q/q0),
(1.7)

where q0 is the largest divisor of q relatively prime to a+1. Moreover, for

each k = 1, 2, 3, . . . we have

[

kνm(q) + l

r

]

m

(a) −
n−1
∑

j=0

(−1)n−1−j

(

k − 1 − j

n − 1 − j

)(

k

j

)[

jνm(q) + l

r

]

m

(a)

≡
(a + 1)l

m

∑

n6j6k

(

k

j

)

(

(a + 1)νm(q) − 1
)j

(mod qn).

(1.8)
(ii) Suppose that m is even. For any k ∈ Z+ we have

[

kνm(q) + l

r

]

m

−

n−1
∑

j=0

(−1)n−1−j

(

k − 1 − j

n − 1 − j

)(

k

j

)[

jνm(q) + l

r

]

m

≡ δl,0
(−1)n+r

m

(

k − 1

n − 1

)

(mod qn).

(1.9)

In particular,

[

l + νm(q)

r

]

m

−

[

l

r

]

m

≡ δl,0
(−1)r−1

m
(mod q). (1.10)

Proof. (i) Suppose that pα‖q (i.e., pα | q but pα+1 ∤ q) where p is a prime
and α ∈ Z+. If p | a + 1, then pα|(a + 1)νm(q) since νm(q) > pα−1 > α;
if p ∤ a + 1, then (a + 1)νm(q) ≡ 1 (mod pα) as ϕ(pα) | νm(q). Therefore
(1.7) follows from (1.6) in the case n = 1 and T = νm(q). Note that
(a + 1)l ≡ 0 (mod q/q0) if l is sufficiently large.
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Let k ∈ Z+. By Lemma 2.1 of [Su],

ak−

n−1
∑

j=0

(−1)n−1−j

(

k − 1 − j

n − 1 − j

)(

k

j

)

aj =
∑

n6j6k

(

k

j

)

(−1)j

j
∑

i=0

(

j

i

)

(−1)iai

for any sequence a0, a1, . . . of complex numbers. Applying this we imme-
diately obtain (1.8) by noting that

j
∑

i=0

(

j

i

)

(−1)i

[

iνm(q) + l

r

]

m

(a) ≡
(a + 1)l

m

(

1 − (a + 1)νm(q)
)j

(mod qj)

in view of (1.6).
(ii) Applying (1.8) with a = −1, we find that

[

kνm(q) + l

r

]

m

(−1) −

n−1
∑

j=0

(−1)n−1−j

(

k − 1 − j

n − 1 − j

)(

k

j

)[

jνm(q) + l

r

]

m

(−1)

is congruent to δl,0m
−1

∑

n6j6k

(

k
j

)

(−1)j modulo qn. Observe that

∑

n6j6k

(

k

j

)

(−1)j =
∑

n6j6k

((

k − 1

j

)

(−1)j −

(

k − 1

j − 1

)

(−1)j−1

)

=

(

k − 1

k

)

(−1)k −

(

k − 1

n − 1

)

(−1)n−1 = (−1)n

(

k − 1

n − 1

)

.

As 2 | m, we also have

[

jνm(q) + l

r

]

m

(−1) = (−1)r

[

jνm(q) + l

r

]

m

for j = 0, 1, 2, . . . .

So (1.9) follows. In the case k = n = 1, (1.9) yields (1.10). We are
done. �

Remark 1.1. Let q > 1 and m > 0 be relatively prime integers. Let a
be an integer such that gcd(1 − (−a)m, q) = 1, or a ≡ −1 (mod q), or
a ≡ 1 (mod q) and 2 | m. By Corollary 1.3(i), we have the following
extension of Glaisher’s periodic result:

[

n + νm(q)

r

]

m

(a) ≡

[

n

r

]

m

(a) (mod q) for any n ∈ Z+ and r ∈ Z. (1.11)

(Note that
[

n
r

]

m
(−a) = (−1)r

[

n
r

]

m
(a) if 2 | m.)
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Corollary 1.4. Let q > 1 be an integer relatively prime to m ∈ Z+. And

let k ∈ Z+, l ∈ N and r ∈ Z. Then

[

kνm(q) + l

r

]

m

− k

[

νm(q) + l

r

]

m

+ (k − 1)

[

l

r

]

m

≡

{

δl,0(−1)r(k − 1)/m (mod q2) if 2 | m,

2l(2kνm(q) − 1 − k(2νm(q) − 1))/m (mod q2) if 2 ∤ m.

(1.12)

Proof. In the case 2 | m, we get the desired congruence by applying (1.9)
with n = 2. When 2 ∤ m, putting a = 1 in (1.8) we obtain

[

kνm(q) + l

r

]

m

− k

[

νm(q) + l

r

]

m

+ (k − 1)

[

l

r

]

m

≡
2l

m

∑

26j6k

(

k

j

)

(2νm(q) − 1)j =
2l

m
(2kνm(q) − 1 − k(2νm(q) − 1)) (mod q2).

This completes the proof. �

Remark 1.2. Let p be an odd prime. Let k ∈ Z+ and r ∈ {0, 1, . . . , p− 2}.
As νp−1(p) = p − 1, by Corollary 1.4 we have

[

k(p − 1)

r

]

p−1

≡ k

[

p − 1

r

]

p−1

− (k − 1)

[

0

r

]

p−1

+ (−1)r k − 1

p − 1
(mod p2).

As 0 6 r < p − 1 and 1/(p − 1) ≡ −p − 1 (mod p2), this turns out to be

[

k(p − 1)

r

]

p−1

≡ k

(

p − 1

r

)

− (−1)r(k − 1)(p + 1) + δr,0 (mod p2). (1.13)

In the case r = 0, this solves a problem proposed by V. Dimitrov [Di].

Let p be any odd prime and let α, n ∈ Z+. As νp−1(p
α) = pα − pα−1,

by Remark 1.1 we have

[

pαn

r

]

p−1

≡

[

pα−1n

r

]

p−1

(mod pα) for any r ∈ Z. (1.14)

In 1953, by using some deep properties of Bernoulli numbers, L. Carlitz
[C] extended Hermite’s congruence in the following way:

p + (p − 1)
∑

0<k<pα−1n
p−1|k

(

pα−1n

k

)

≡ 0 (mod pα).
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When p − 1 | n, this follows from (1.10), for, νp−1(p
α) divides pα−1n and

hence

[

pα−1n

0

]

p−1

≡

[

0

0

]

p−1

−
1

p − 1
= 1 −

1

p − 1
(mod pα).

Let q > 1 and m > 0 be integers with gcd(q, m) = 1. Let a be an
integer with gcd(1 − (−a)m, q) = 1, or a ≡ −1 (mod q), or a ≡ 1 (mod q)
and 2 | m. What is the smallest positive integer µm(a, q) such that

[

n + µm(a, q)

r

]

m

(a) ≡

[

n

r

]

m

(a) (mod q) (1.15)

holds for all n ∈ Z+ and r ∈ Z? Clearly µm(0, q) = 1, and µm(a, q)|νm(q)
by (1.11). (If µm(a, q) ∤ νm(q), then the least positive residue of νm(q)
mod µm(a, q) would be a period smaller than µm(a, q).)

Conjecture 1.5. Let q > 1 and m > 0 be integers with gcd(q, m) = 1 and

q 6≡ 0 (mod 3). Then νm(q) is the maximal value of µm(a, q), where a is an

integer with gcd(1− (−a)m, q) = 1, or a ≡ −1 (mod q), or a ≡ 1 (mod q)
and 2 | m.

Now we give an example to illustrate our conjecture.

Example 1.1. (i) Since the order of 3 modulo 7 is 6, we have ν7(9) =
3(36 − 1) = 2184. For any given a ∈ Z, clearly

1 − (−a)7 = 1 + a3a3a ≡ 1 + a3 ≡ 1 + a (mod 3)

since a3 ≡ a (mod 3), thus gcd(1 − (−a)7, 9) = 1 if and only if a 6≡
2 (mod 3). Through computation we obtain that

µ7(−1, 9) = 1092, µ7(1, 9) = µ7(−2, 9) = µ7(4, 9) = 546, µ7(±3, 9) = 3.

(ii) The order of 5 modulo 7 is 6, thus ν7(5) = 56 − 1 = 15624. For
any given a ∈ Z, clearly 1 − (−a)7 = 1 + a5a2 ≡ 1 + a3 (mod 5), thus
5 ∤ 1− (−a)7 if and only if a 6≡ −1 (mod 5). By computation we find that

µ7(1, 5) = 868, µ7(−1, 5) = 1736, µ7(2, 5) = 2232, µ7(−2, 5) = 15624.

(iii) Clearly ν6(11) = 112 − 1 = 120. By computation, µ6(±1, 11) = 60
and µ6(a, 11) = 120 for any integer a 6≡ 0,±1 (mod 11). Note that 4(a4 +
a2 + 1) = (2a2 + 1)2 + 3 6≡ 0 (mod 11) since −3 is a quadratic non-residue
modulo 11. Thus, if a 6≡ ±1 (mod 11) then 1−(−a)6 = (1−a2)(a4+a2+1)
is relatively prime to 11.



8 ZHI-WEI SUN AND ROBERTO TAURASO

2. Proof of Theorem 1.2

In this section we work with congruences in the ring of algebraic inte-
gers. The reader may consult [IR, pp. 66–69] for the basic knowledge of
algebraic integers.

Lemma 2.1. Let a ∈ Z and m ∈ Z+, and let q > 1 be an integer relatively

prime to m
∑m−1

j=0 (−a)j. If ζ 6= 1 is an m-th root of unity, then we have

the congruence

(1 + aζ)νm(q) ≡ 1 (mod q) (2.1)

in the ring of algebraic integers.

Proof. Let p be any prime divisor of q, and let β be the order of p modulo
m. Below we use induction to show that

(1 + aζ)pα−1(pβ−1) ≡ 1 (mod pα) (2.2)

for every α = 1, 2, 3, . . . .
Since p |

(

p
k

)

for k = 1, . . . , p− 1 and ap ≡ a (mod p) by Fermat’s little
theorem, we have

(1 + aζ)p = 1 + apζp +

p−1
∑

k=1

(

p

k

)

(aζ)k ≡ 1 + aζp (mod p),

hence
(1 + aζ)p2

≡ (1 + aζp)p ≡ 1 + aζp2

(mod p)

and so on. Thus

(1 + aζ)pβ

≡ 1 + aζpβ

= 1 + aζ (mod p).

(Recall that pβ ≡ 1 (mod m) and ζm = 1.) Clearly

∏

0<j<m

1 + ae2πij/m

−e2πij/m
=

∏

0<j<m

(x − e−2πij/m)

∣

∣

∣

∣

x=−a

= lim
x→−a

xm − 1

x − 1
=

m−1
∑

j=0

(−a)j

and so z = 1+aζ divides c =
∑m−1

j=0 (−a)j in the ring of algebraic integers.
Therefore

czpβ−1 ≡
c

z
zpβ

≡
c

z
z ≡ c (mod p)

and hence zpβ−1 ≡ 1 (mod p) since p ∤ c. This proves (2.2) in the case
α = 1.



CONGRUENCES FOR SUMS OF BINOMIAL COEFFICIENTS 9

Now let α ∈ Z+ and suppose that (2.2) holds. Then zpα−1(pβ−1) =
1 + pαω for some algebraic integer ω. It follows that

zpα(pβ−1) = (1 + pαω)p ≡ 1 +

(

p

1

)

pαω ≡ 1 (mod pα+1).

This concludes the induction step.

For any q1, q2 ∈ Z with gcd(q1, q2) = 1, there are x1, x2 ∈ Z such that
q1x1 + q2x2 = 1, If an algebraic integer ω is divisible by both q1 and q2,
then ω = q1(ωx1) + q2(ωx2) is divisible by q1q2 in the ring of algebraic
integers. Therefore (2.1) is valid in view of what we have proved. �

Remark 2.1. Write an integer q > 1 in the form pα1

1 · · · pαt

t , where p1, . . . , pt

are distinct primes and α1, . . . , αt ∈ Z+. Let m be a positive integer
dividing ps − 1 for all s = 1, . . . , t. And let g be an integer with g ≡

g
ϕ(pαs

s )/m
s (mod pαs

s ) for s = 1, . . . , t, where gs is a primitive root modulo
ps. Clearly gm ≡ 1 (mod q). Suppose that j ∈ Z+ and j < m. Then
ps−1 ∤ jϕ(pαs

s )/m and hence gj 6≡ 1 (mod ps). Therefore gcd(gj−1, q) = 1.

If ps | 1 + agj, then −a ≡ gm−j 6≡ 1 (mod ps) but (a + 1)
∑m−1

i=0 (−a)i =

1− (−a)m ≡ 1− g(m−j)m ≡ 0 (mod ps). Thus, if gcd(
∑m−1

i=0 (−a)i, q) = 1,
then gcd(1 + agj, q) = 1, and hence

(1 + agj)νm(q) ≡ 1 (mod q) (2.3)

which is an analogue of (2.1).

Proof of Theorem 1.2. Set ζ = e2πi/m. For any h ∈ Z, we clearly have

m−1
∑

j=0

ζjh =

{

m if m | h,

0 otherwise.

If n ∈ N then

m

[

n

r

]

m

(a) =
n

∑

k=0

(

n

k

)

ak
m−1
∑

j=0

ζj(k−r)

=

m−1
∑

j=0

ζ−jr
n

∑

k=0

(

n

k

)

akζjk =

m−1
∑

j=0

ζ−jr(1 + aζj)n.

Now let T ∈ Z+ be a multiple of νm(q), and fix a positive integer n. By
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the above,

m

n
∑

k=0

(−1)k

(

n

k

)[

kT + l

r

]

m

(a)

=

m−1
∑

j=0

ζ−jr
n

∑

k=0

(

n

k

)

(−1)k(1 + aζj)kT+l

=
m−1
∑

j=0

ζ−jr(1 + aζj)l
(

1 − (1 + aζj)T
)n

≡(1 + a)l
(

1 − (1 + a)T
)n

(mod qn)

where we have applied Lemma 2.1. This concludes our proof. �

Remark 2.2. Let a, r ∈ Z and m ∈ Z+, and let q > 1 be an integer
relatively prime to

∑m−1
j=0 (−a)j . Suppose that m | p − 1 for any prime

divisor p of q. Obviously gcd(m, q) = 1. Choose g ∈ Z as in Remark 2.1.
Then gm ≡ 1 (mod q), and for each 0 < j < m we have gcd(gj − 1, q) = 1
as well as (2.3). By modifying the proof of Theorem 1.2 slightly, we find
that

m

[

n

r

]

m

(a) ≡
m−1
∑

j=0

g−jr(1 + agj)n = (a + 1)n +
∑

0<j<m

g−jran
j (mod q)

for every n ∈ N, where aj = 1 + agj (0 < j < m) are relatively prime to
q. If q | a + 1 or gcd(a + 1, q) = 1, then the function f : Z+ → Z given by
f(n) =

[

n
r

]

m
(a) is q-normal in the sense that

f(n) ≡
∑

16j<q
gcd(j,q)=1

cjj
n (mod q) for all n ∈ Z+, (2.4)

where cj (1 6 j < q and gcd(j, q) = 1) are suitable integers. The concept
of q-normal function was first introduced by Sun [S03] where the reader
can find some q-normal functions involving Bernoulli polynomials.

Acknowledgments. The joint work was done during the first author’s
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