Publ. Math. Debrecen 80(2012), no. 1-2, 25-41.

ON HARMONIC NUMBERS AND LUCAS SEQUENCES

Zhi-Wei Sun
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

$$
\begin{aligned}
& \text { Abstract. Harmonic numbers } H_{k}=\sum_{0<j \leqslant k} 1 / j(k=0,1,2, \ldots) \text { arise } \\
& \text { naturally in many fields of mathematics. In this paper we initiate the study } \\
& \text { of congruences involving both harmonic numbers and Lucas sequences. } \\
& \text { One of our three theorems is as follows: Let } u_{0}=0, u_{1}=1 \text {, and } u_{n+1}= \\
& u_{n}-4 u_{n-1} \text { for } n=1,2,3, \ldots \text { Then, for any prime } p>5 \text { we have } \\
& \qquad \sum_{k=0}^{p-1} \frac{H_{k}}{2^{k}} u_{k+\delta} \equiv 0(\bmod p),
\end{aligned}
$$

where $\delta=0$ if $p \equiv 1,2,4,8(\bmod 15)$, and $\delta=1$ otherwise.

1. Introduction

Harmonic numbers are those rational numbers given by

$$
H_{n}=\sum_{0<k \leqslant n} \frac{1}{k} \quad(n \in \mathbb{N}=\{0,1,2, \ldots\})
$$

They play important roles in mathematics; see, e.g., $[\mathrm{BPQ}]$ and $[\mathrm{BB}]$.
In 1862 J . Wolstenholme [W] (see also [HT]) discovered that for any prime $p>3$ we have

$$
H_{p-1}=\sum_{k=1}^{p-1} \frac{1}{k} \equiv 0\left(\bmod p^{2}\right)
$$

[^0]In a previous paper $[\mathrm{Su}]$ the author developed the arithmetic theory of harmonic numbers by proving the following fundamental congruences for primes $p>3$:

$$
\sum_{k=1}^{p-1} H_{k}^{2} \equiv 2 p-2\left(\bmod p^{2}\right), \quad \sum_{k=1}^{p-1} H_{k}^{3} \equiv 6(\bmod p),
$$

and

$$
\sum_{k=1}^{p-1} \frac{H_{k}^{2}}{k^{2}} \equiv 0(\bmod p) \quad \text { provided } p>5
$$

In this paper we initiate the investigation of congruences involving both harmonic numbers and Lucas sequences.

For $A, B \in \mathbb{Z}$ the Lucas sequences $u_{n}=u_{n}(A, B)(n \in \mathbb{N})$ and $v_{n}=$ $v_{n}(A, B)(n \in \mathbb{N})$ are defined as follows:

$$
\begin{aligned}
& u_{0}=0, u_{1}=1, \text { and } u_{n+1}=A u_{n}-B u_{n-1}(n=1,2,3, \ldots) \\
& v_{0}=2, v_{1}=A, \text { and } v_{n+1}=A v_{n}-B v_{n-1}(n=1,2,3, \ldots)
\end{aligned}
$$

The sequence $\left\{v_{n}\right\}_{n \geqslant 0}$ is called the companion sequence of $\left\{u_{n}\right\}_{n \geqslant 0}$. The characteristic equation $x^{2}-A x+B=0$ of the sequences $\left\{u_{n}\right\}_{n \geqslant 0}$ and $\left\{v_{n}\right\}_{n \geqslant 0}$ has two roots

$$
\alpha=\frac{A+\sqrt{\Delta}}{2} \quad \text { and } \quad \beta=\frac{A-\sqrt{\Delta}}{2}
$$

where $\Delta=A^{2}-4 B$. It is well known that for any $n \in \mathbb{N}$ we have

$$
A u_{n}+v_{n}=2 u_{n+1},(\alpha-\beta) u_{n}=\alpha^{n}-\beta^{n}, \quad \text { and } \quad v_{n}=\alpha^{n}+\beta^{n}
$$

(See, e.g., $[\mathrm{R}, \mathrm{pp} .41-44]$.) Note that those $F_{n}=u_{n}(1,-1)$ and $L_{n}=$ $v_{n}(1,-1)$ are well-known Fibonacci numbers and Lucas numbers respectively.

Here is our first theorem.
Theorem 1.1. Let $p>3$ be a prime and let $A, B \in \mathbb{Z}$ with $p \nmid A$. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{v_{k}(A, B) H_{k}}{k A^{k}} \equiv 0(\bmod p) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{u_{k}(A, B) H_{k}}{k A^{k}} \equiv \frac{2}{p} \sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}}(\bmod p) \tag{1.2}
\end{equation*}
$$

Since $v_{k}(2,1)=2$ for all $k \in \mathbb{N}$, Theorem 1.1 yields the following consequence.

Corollary 1.1 ([Su]). For any prime $p>3$ we have

$$
\sum_{k=1}^{p-1} \frac{H_{k}}{k 2^{k}} \equiv 0(\bmod p)
$$

Remark. In 1987 S . W. Coffman [C] proved that $\sum_{k=1}^{\infty} H_{k} /\left(k 2^{k}\right)=\pi^{2} / 12$.
Applying Theorem 1.1 with $A=1$ and $B=-1$ we get the following corollary.

Corollary 1.2. Let $p>3$ be a prime. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{H_{k} L_{k}}{k} \equiv 0(\bmod p) \quad \text { and } \sum_{k=1}^{p-1} \frac{F_{k} H_{k}}{k} \equiv \frac{2}{p} \sum_{k=1}^{p-1} \frac{F_{k}}{k}(\bmod p) . \tag{1.3}
\end{equation*}
$$

Let ω denote the cubic root $(-1+\sqrt{-3}) / 2$. For $n \in \mathbb{N}$ we have

$$
u_{n}(-1,1)=u_{n}(\omega+\bar{\omega}, \omega \bar{\omega})=\frac{\omega^{n}-\bar{\omega}^{n}}{\sqrt{-3}}=\left(\frac{n}{3}\right)
$$

and

$$
u_{n}(1,1)=(-1)^{n-1} u_{n}(-1,1)=(-1)^{n-1}\left(\frac{n}{3}\right)
$$

where (-) denotes the Jacobi symbol. By induction, for any $k \in \mathbb{N}$ we have
$u_{4 k}(2,2)=0, u_{4 k+1}(2,2)=(-4)^{k}$ and $u_{4 k+2}(2,2)=u_{4 k+3}(2,2)=2(-4)^{k}$.
Now we state our second theorem.
Theorem 1.2. Let $p>3$ be a prime.
(i) Let $A, B \in \mathbb{Z}$ with $p \nmid B$ and $\left(\frac{A^{2}-4 B}{p}\right)=1$. Then, for any $n \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(1+B^{-k}\right) u_{k}(A, B) H_{k}^{n} \equiv 0(\bmod p) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(1-B^{-k}\right) v_{k}(A, B) H_{k}^{n} \equiv 0(\bmod p) \tag{1.5}
\end{equation*}
$$

(ii) We have

$$
\begin{equation*}
\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) H_{k} \equiv 0(\bmod p) \tag{1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(\frac{k}{3}\right) H_{k} \equiv \frac{\left(\frac{p}{3}\right)-1}{4} q_{p}(3)(\bmod p) \tag{1.7}
\end{equation*}
$$

where $q_{p}(3)$ refers to the Fermat quotient $\left(3^{p-1}-1\right) / p$. Also,

$$
\begin{equation*}
\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) k H_{k} \equiv \frac{1-\left(\frac{p}{3}\right)}{2}(\bmod p) \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(1+2^{-k}\right) u_{k}(2,2) H_{k} \equiv 0(\bmod p) \tag{1.9}
\end{equation*}
$$

Since $F_{2 k}=u_{k}(3,1), F_{k}=u_{k}(1,-1)$ and $L_{k}=v_{k}(1,-1)$ for all $k \in \mathbb{N}$, Theorem 1.2(i) implies the following result.
Corollary 1.3. Let p be a prime with $p \equiv \pm 1(\bmod 5)$. Then

$$
\begin{equation*}
\sum_{k=0}^{p-1} F_{2 k} H_{k}^{n} \equiv \sum_{\substack{k=0 \\ 2 \mid k}}^{p-1} F_{k} H_{k}^{n} \equiv \sum_{\substack{k=0 \\ 2 \nmid k}}^{p-1} L_{k} H_{k}^{n} \equiv 0(\bmod p) \tag{1.10}
\end{equation*}
$$

for every $n=0,1,2, \ldots$.
Our third theorem seems curious and unexpected.
Theorem 1.3. Let $p>5$ be a prime. If $\left(\frac{p}{15}\right)=1$, i.e., $p \equiv 1,2,4,8(\bmod 15)$, then

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{u_{k}(1,4)}{2^{k}} H_{k} \equiv 0(\bmod p) \tag{1.11}
\end{equation*}
$$

If $\left(\frac{p}{15}\right)=-1$, i.e., $p \equiv 7,11,13,14(\bmod 15)$, then

$$
\begin{equation*}
\sum_{k=0}^{p-1} \frac{u_{k+1}(1,4)}{2^{k}} H_{k} \equiv 0(\bmod p) \tag{1.12}
\end{equation*}
$$

In the next section we are going to prove Theorems 1.1 and 1.2. Section 3 is devoted to the proof of Theorem 1.3.

To conclude this section we pose three related conjectures.
Recall that harmonic numbers of the second order are given by

$$
H_{n}^{(2)}=\sum_{0<k \leqslant n} \frac{1}{k^{2}} \quad(n=0,1,2, \ldots)
$$

Conjecture 1.1. Let $p>3$ be a prime. Then

$$
\sum_{k=0}^{p-1}(-2)^{k}\binom{2 k}{k} H_{k}^{(2)} \equiv \frac{2}{3} q_{p}(2)^{2}(\bmod p)
$$

where $q_{p}(2)=\left(2^{p-1}-1\right) / p$. If $p>5$, then we have

$$
\sum_{k=0}^{p-1}(-1)^{k}\binom{2 k}{k} H_{k}^{(2)} \equiv \frac{5}{2}\left(\frac{p}{5}\right) \frac{F_{p-\left(\frac{p}{5}\right)}^{2}}{p^{2}}(\bmod p)
$$

Conjecture 1.2. Let p be an odd prime. Then

$$
\begin{array}{ll}
\sum_{k=0}^{p-1} \frac{u_{k}(2,-1)}{(-8)^{k}}\binom{2 k}{k}^{2} \equiv 0(\bmod p) & \text { if } p \equiv 5(\bmod 8) \\
\sum_{k=0}^{p-1} \frac{u_{k}(2,-1)}{32^{k}}\binom{2 k}{k}^{2} \equiv 0(\bmod p) & \text { if } p \equiv 7(\bmod 8) \\
\sum_{k=0}^{p-1} \frac{v_{k}(2,-1)}{(-8)^{k}}\binom{2 k}{k}^{2} \equiv 0(\bmod p) & \text { if } p \equiv 5,7(\bmod 8), \\
\sum_{k=0}^{p-1} \frac{v_{k}(2,-1)}{32^{k}}\binom{2 k}{k}^{2} \equiv 0(\bmod p) & \text { if } p \equiv 5(\bmod 8)
\end{array}
$$

Also,

$$
\begin{gathered}
\sum_{k=0}^{p-1} \frac{u_{k}(4,1)}{4^{k}}\binom{2 k}{k}^{2} \equiv 0(\bmod p) \quad \text { if } p \equiv 2(\bmod 3), \\
\sum_{k=0}^{p-1} \frac{u_{k}(4,1)}{64^{k}}\binom{2 k}{k}^{2} \equiv 0(\bmod p) \quad \text { if } p \equiv 11(\bmod 12), \\
\sum_{k=0}^{p-1} \frac{v_{k}(4,1)}{4^{k}}\binom{2 k}{k}^{2} \equiv \sum_{k=0}^{p-1} \frac{v_{k}(4,1)}{64^{k}}\binom{2 k}{k}^{2} \equiv 0(\bmod p) \text { if } p \equiv 5(\bmod 12) .
\end{gathered}
$$

Conjecture 1.3. Let $p>3$ be a prime. Then

$$
\sum_{k=0}^{p-1}\binom{p-1}{k}\binom{2 k}{k}\left((-1)^{k}-(-3)^{-k}\right) \equiv\left(\frac{p}{3}\right)\left(3^{p-1}-1\right)\left(\bmod p^{3}\right)
$$

If $p \equiv \pm 1(\bmod 12)$, then

$$
\begin{aligned}
& \quad \sum_{k=0}^{p-1}\binom{p-1}{k}\binom{2 k}{k}(-1)^{k} u_{k}(4,1) \equiv(-1)^{(p-1) / 2} u_{p-1}(4,1)\left(\bmod p^{3}\right) . \\
& \text { If } p \equiv \pm 1(\bmod 8), \text { then }
\end{aligned}
$$

$$
\sum_{k=0}^{p-1}\binom{p-1}{k}\binom{2 k}{k} \frac{u_{k}(4,2)}{(-2)^{k}} \equiv(-1)^{(p-1) / 2} u_{p-1}(4,2)\left(\bmod p^{3}\right)
$$

2. Proofs of Theorems 1.1 and 1.2

Let p be an odd prime. For $k=0,1, \ldots, p-1$ we obviously have

$$
\begin{equation*}
(-1)^{k}\binom{p-1}{k}=\prod_{0<j \leqslant k}\left(1-\frac{p}{j}\right) \equiv 1-p H_{k}\left(\bmod p^{2}\right) . \tag{2.1}
\end{equation*}
$$

This basic fact is useful in the study of congruences involving harmonic numbers.

Lemma 2.1. Let $n \geqslant j>0$ be integers. Then

$$
\sum_{k=j}^{n}\binom{k-1}{j-1}=\binom{n}{j}
$$

Proof. This is a known identity due to Shih-chieh Chu (cf. (5.26) of [GKP, p. 169]). By comparing the coefficients of x^{j-1} on both sides of the identity

$$
\sum_{k=1}^{n}(1+x)^{k-1}=\frac{(1+x)^{n}-1}{(1+x)-1}
$$

we get a simple proof of the desired identity.
Proof of Theorem 1.1. Let α and β be the two roots of the equation
$x^{2}-A x+B=0$. In view of Lemma 2.1,

$$
\begin{aligned}
& \sum_{j=1}^{p-1} \frac{v_{j}(A, B)}{j A^{j}}(-1)^{j}\binom{p-1}{j} \\
= & \sum_{j=1}^{p-1} \frac{v_{j}(A, B)}{j A^{j}}(-1)^{j} \sum_{k=j}^{p-1}\binom{k-1}{j-1} \\
= & \sum_{k=1}^{p-1} \sum_{j=1}^{k}\binom{k-1}{j-1} \frac{(-1)^{j} v_{j}(A, B)}{j A^{j}} \\
= & \sum_{k=1}^{p-1} \frac{1}{k} \sum_{j=1}^{k}\binom{k}{j}\left(\left(-\frac{\alpha}{A}\right)^{j}+\left(-\frac{\beta}{A}\right)^{j}\right) \\
= & \sum_{k=1}^{p-1} \frac{(1-\alpha / A)^{k}+(1-\beta / A)^{k}-2}{k}=\sum_{k=1}^{p-1} \frac{\beta^{k}+\alpha^{k}}{k A^{k}}-2 \sum_{k=1}^{p-1} \frac{1}{k} \\
\equiv & \sum_{k=1}^{p-1} \frac{v_{k}(A, B)}{k A^{k}}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Since

$$
(-1)^{k}\binom{p-1}{k}-1 \equiv-p H_{k}\left(\bmod p^{2}\right) \quad \text { for } k=1, \ldots, p-1
$$

(1.1) follows from the above.

Similarly,

$$
\begin{aligned}
& (\alpha-\beta) \sum_{j=1}^{p-1} \frac{u_{j}(A, B)}{j A^{j}}(-1)^{j}\binom{p-1}{j} \\
= & \sum_{j=1}^{p-1} \frac{(\alpha-\beta) u_{j}(A, B)}{j A^{j}}(-1)^{j} \sum_{k=j}^{p-1}\binom{k-1}{j-1} \\
= & \sum_{k=1}^{p-1} \sum_{j=1}^{k}\binom{k-1}{j-1} \frac{(-1)^{j}(\alpha-\beta) u_{j}(A, B)}{j A^{j}} \\
= & \sum_{k=1}^{p-1} \frac{1}{k} \sum_{j=1}^{k}\binom{k}{j}\left(\left(-\frac{\alpha}{A}\right)^{j}-\left(-\frac{\beta}{A}\right)^{j}\right) \\
= & \sum_{k=1}^{p-1} \frac{(1-\alpha / A)^{k}-(1-\beta / A)^{k}}{k}=\sum_{k=1}^{p-1} \frac{\beta^{k}-\alpha^{k}}{k A^{k}} \\
= & (\beta-\alpha) \sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}} .
\end{aligned}
$$

Thus, if $\Delta=A^{2}-4 B \neq 0$ then

$$
\sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}}\left(1-p H_{k}\right) \equiv-\sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}}\left(\bmod p^{2}\right)
$$

and hence (1.2) follows.
Now suppose that $\Delta=0$. By induction, $u_{k}=k(A / 2)^{k-1}$ for $k=$ $0,1,2, \ldots$ Thus

$$
\begin{aligned}
& \sum_{j=1}^{p-1} \frac{u_{j}(A, B)}{j A^{j}}(-1)^{j}\binom{p-1}{j} \\
= & \sum_{j=1}^{p-1} \frac{(-1)^{j}}{2^{j-1} A}\binom{p-1}{j}=\frac{2}{A} \sum_{j=1}^{p-1}\binom{p-1}{j}\left(-\frac{1}{2}\right)^{j} \\
= & \frac{2}{A}\left(\left(1-\frac{1}{2}\right)^{p-1}-1\right)=\frac{2}{A} \cdot \frac{1-2^{p-1}}{2^{p-1}} \\
= & -\frac{2}{A} \sum_{j=0}^{p-2} \frac{2^{j}}{2^{p-1}}=-\frac{2}{A} \sum_{k=1}^{p-1} \frac{1}{2^{k}}=-\sum_{k=1}^{p-1} \frac{u_{k}(A, B)}{k A^{k}} .
\end{aligned}
$$

This yields (1.2) with the help of (2.1).
So far we have completed the proof of Theorem 1.1.
Lemma 2.2. Let $A, B \in \mathbb{Z}$ and $\Delta=A^{2}-4 B$. Suppose that p is an odd prime with $p \nmid B \Delta$. Then we have the congruence

$$
\begin{equation*}
\left(\frac{A \pm \sqrt{\Delta}}{2}\right)^{p-\left(\frac{\Delta}{p}\right)} \equiv B^{\left(1-\left(\frac{\Delta}{p}\right)\right) / 2}(\bmod p) \tag{2.2}
\end{equation*}
$$

in the ring of algebraic integers.
Proof. Both $\alpha=(A+\sqrt{\Delta}) / 2$ and $\beta=(A-\sqrt{\Delta}) / 2$ are roots of the equation $x^{2}-A x+B=0$. Observe that

$$
2 \alpha^{p} \equiv 2^{p} \alpha^{p}=(A+\sqrt{\Delta})^{p} \equiv A^{p}+(\sqrt{\Delta})^{p} \equiv A+\left(\frac{\Delta}{p}\right) \sqrt{\Delta}(\bmod p)
$$

Similarly,

$$
2 \beta^{p} \equiv A-\left(\frac{\Delta}{p}\right) \sqrt{\Delta}(\bmod p)
$$

Thus, if $\left(\frac{\Delta}{p}\right)=1$, then
$\alpha^{p-1} B=\alpha^{p} \beta \equiv \alpha \beta=B(\bmod p)$ and $\beta^{p-1} B=\alpha \beta^{p} \equiv \alpha \beta=B(\bmod p)$,
hence $\alpha^{p-1} \equiv 1 \equiv \beta^{p-1}(\bmod p)$. When $\left(\frac{\Delta}{p}\right)=-1$, by the above we have

$$
\alpha^{p+1}=\alpha \alpha^{p} \equiv \alpha \beta=B(\bmod p) \text { and } \beta^{p+1}=\beta^{p} \beta \equiv \alpha \beta=B(\bmod p)
$$

This concludes the proof.
Proof of Theorem 1.2. (i) The equation $x^{2}-A x+B=0$ has two roots

$$
\alpha=\frac{A+\sqrt{\Delta}}{2} \text { and } \beta=\frac{A-\sqrt{\Delta}}{2}
$$

where $\Delta=A^{2}-4 B$. Also,

$$
H_{p-1-k}=H_{p-1}-\sum_{0<j \leqslant k} \frac{1}{p-j} \equiv H_{k}(\bmod p) \quad \text { for } k=0,1, \ldots, p-1
$$

As $\left(\frac{\Delta}{p}\right)=1$, with the help of Lemma 2.2, for any $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\sum_{k=0}^{p-1} v_{k}(A, B) H_{k}^{n} & =\sum_{k=0}^{p-1} v_{p-1-k}(A, B) H_{p-1-k}^{n} \\
& \equiv \sum_{k=0}^{p-1}\left(\alpha^{p-1-k}+\beta^{p-1-k}\right) H_{k}^{n} \\
& \equiv \sum_{k=0}^{p-1}\left(\frac{\beta^{k}}{B^{k}}+\frac{\alpha^{k}}{B^{k}}\right) H_{k}^{n}=\sum_{k=0}^{p-1} B^{-k} v_{k}(A, B) H_{k}^{n}(\bmod p)
\end{aligned}
$$

This proves (1.5). Similarly,

$$
\begin{aligned}
& (\alpha-\beta) \sum_{k=0}^{p-1} u_{k}(A, B) H_{k}^{n}=\sum_{k=0}^{p-1}\left(\alpha^{p-1-k}-\beta^{p-1-k}\right) H_{p-1-k}^{n} \\
\equiv & \sum_{k=0}^{p-1}\left(\frac{\beta^{k}}{B^{k}}-\frac{\alpha^{k}}{B^{k}}\right) H_{k}^{n}=(\beta-\alpha) \sum_{k=0}^{p-1} B^{-k} u_{k}(A, B) H_{k}^{n}(\bmod p) .
\end{aligned}
$$

As $(\alpha-\beta)^{2}=\Delta \not \equiv 0(\bmod p),(1.4)$ follows.
(ii) If $p \equiv 1(\bmod 3)$ (i.e., $\left.\left(\frac{-3}{p}\right)=1\right)$, then by putting $A= \pm 1$ and $B=1$ in (1.4) we get (1.6) and (1.7). Now we prove (1.6) and (1.7) in the
case $p \equiv 2(\bmod 3)$. Observe that

$$
\begin{aligned}
& \sum_{k=0}^{p-1}(-1)^{k}\binom{k}{3}\left(\binom{p-1}{k}(-1)^{k}-1\right) \\
= & \sum_{k=0}^{p-1}\binom{p-1}{k}\left(\frac{k}{3}\right)-\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) \\
= & \sum_{k=0}^{p-1}\binom{p-1}{k} \frac{\omega^{k}-\bar{\omega}^{k}}{\sqrt{-3}}-\sum_{k=0}^{p-1}(-1)^{k} \frac{\omega^{k}-\bar{\omega}^{k}}{\sqrt{-3}} \\
= & \frac{1}{\sqrt{-3}}\left((1+\omega)^{p-1}-(1+\bar{\omega})^{p-1}\right)-\frac{1}{\sqrt{-3}}\left(\frac{1+\omega^{p}}{1+\omega}-\frac{1+\bar{\omega}^{p}}{1+\bar{\omega}}\right) \\
= & \frac{1}{\sqrt{-3}}\left(\left(-\omega^{2}\right)^{p-1}-(-\omega)^{p-1}-\frac{-\omega^{2 p}}{-\omega^{2}}+\frac{-\omega^{p}}{-\omega}\right)=0 .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \sum_{k=0}^{p-1}\binom{k}{3}\left(\binom{p-1}{k}(-1)^{k}-1\right) \\
= & \sum_{k=0}^{p-1}\binom{p-1}{k}(-1)^{k} \frac{\omega^{k}-\bar{\omega}^{k}}{\sqrt{-3}}-\sum_{j=1}^{(p-2) / 3} \sum_{d=0}^{2}\left(\frac{3 j-d}{3}\right)-\left(\frac{p-1}{3}\right) \\
= & \frac{1}{\sqrt{-3}}\left((1-\omega)^{p-1}-\left(1-\omega^{2}\right)^{p-1}\right)-\left(\frac{p-1}{3}\right) \\
= & \frac{1}{\sqrt{-3}}(1-\omega)^{p-1}\left(1-\left(-\omega^{2}\right)^{p-1}\right)-1
\end{aligned}
$$

and hence

$$
\begin{aligned}
& \sum_{k=0}^{p-1}\left(\frac{k}{3}\right)\left(\binom{p-1}{k}(-1)^{k}-1\right) \\
= & \frac{1-\omega^{2}}{\sqrt{-3}}(1-\omega)^{p-1}-1=\frac{-\omega^{2}}{\sqrt{-3}}(1-\omega)^{p}-1 \\
= & \frac{-\omega^{2}}{\sqrt{-3}}\left(\sqrt{-3} \omega^{2}\right)^{p}-1=-(-3)^{(p-1) / 2} \omega^{2+2 p}-1 \\
= & -\left((-3)^{(p-1) / 2}-\left(\frac{-3}{p}\right)\right) \\
\equiv & -\frac{\left(\frac{-3}{p}\right)}{2}\left((-3)^{p-1}-\left(\frac{-3}{p}\right)^{2}\right)=\frac{3^{p-1}-1}{2}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Combining these with (2.1) we immediately obtain (1.6) and (1.7).
Next we show (1.8). Observe that

$$
\begin{aligned}
& \sum_{k=0}^{p-\left(\frac{p}{3}\right)}(-1)^{k}\left(\frac{k}{3}\right) k=\sum_{q=1}^{\left(p-\left(\frac{p}{3}\right)\right) / 6} \sum_{r=0}^{5}(-1)^{6 q-r}\left(\frac{6 q-r}{3}\right)(6 q-r) \\
= & \sum_{q=1}^{\left(p-\left(\frac{p}{3}\right)\right) / 6}((6 q-1)+(6 q-2)-(6 q-4)-(6 q-5))=p-\left(\frac{p}{3}\right)
\end{aligned}
$$

and hence

$$
\sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) k=\frac{1+\left(\frac{p}{3}\right)}{2} p-\left(\frac{p}{3}\right)
$$

Also,

$$
\begin{aligned}
& \sum_{k=0}^{p-1}\binom{p-1}{k}\left(\frac{k}{3}\right) k=(p-1) \sum_{k=1}^{p-1}\binom{p-2}{k-1}\left(\frac{k}{3}\right) \\
= & (p-1) \sum_{j=0}^{p-2}\binom{p-2}{j} \frac{\omega^{j+1}-\bar{\omega}^{j+1}}{\sqrt{-3}}=\frac{p-1}{\sqrt{-3}}\left(\omega(1+\omega)^{p-2}-\bar{\omega}(1+\bar{\omega})^{p-2}\right) \\
= & \frac{p-1}{\sqrt{-3}}\left(\omega\left(-\omega^{2}\right)^{p-2}-\omega^{2}(-\omega)^{p-2}\right)=\frac{p-1}{\sqrt{-3}}\left(\omega^{p}-\omega^{2 p}\right)=(p-1)\left(\frac{p}{3}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \sum_{k=0}^{p-1}(-1)^{k}\left(\frac{k}{3}\right) k\left(\binom{p-1}{k}(-1)^{k}-1\right) \\
= & (p-1)\left(\frac{p}{3}\right)-\left(\frac{1+\left(\frac{p}{3}\right)}{2} p-\left(\frac{p}{3}\right)\right)=\frac{\left(\frac{p}{3}\right)-1}{2} p .
\end{aligned}
$$

This implies (1.8) due to (2.1).
Finally we prove (1.9). If $p \equiv 1(\bmod 4)$ (i.e., $\left.\left(\frac{-4}{p}\right)=1\right)$, then (1.4) in the case $A=B=2$ yields (1.9). Below we assume that $p \equiv 3(\bmod 4)$. Note that

$$
u_{k}(2,2)=\frac{(1+i)^{k}-(1-i)^{k}}{2 i} \quad \text { for all } k \in \mathbb{N}
$$

Thus

$$
2 i \sum_{k=0}^{p-1}\binom{p-1}{k}(-1)^{k}\left(2^{-k}+1\right) u_{k}(2,2)
$$

$=\sum_{k=0}^{p-1}\binom{p-1}{k}\left((-2)^{-k}+(-1)^{k}\right)\left((1+i)^{k}-(1-i)^{k}\right)$
$=\left(1-\frac{1+i}{2}\right)^{p-1}-\left(1-\frac{1-i}{2}\right)^{p-1}+(1-(1+i))^{p-1}-(1-(1-i))^{p-1}$
$=\left(\frac{1-i}{2}\right)^{p-1}-\left(\frac{1+i}{2}\right)^{p-1}+(-i)^{p-1}-i^{p-1}$
$=\left(\frac{-2 i}{4}\right)^{(p-1) / 2}-\left(\frac{2 i}{4}\right)^{(p-1) / 2}=2 i \frac{i^{(p+1) / 2}}{2^{(p-1) / 2}}$
and hence

$$
\begin{equation*}
\sum_{k=0}^{p-1}\binom{p-1}{k}(-1)^{k}\left(2^{-k}+1\right) u_{k}(2,2)=\frac{(-1)^{(p+1) / 4}}{2^{(p-1) / 2}} \tag{2.3}
\end{equation*}
$$

Also,

$$
\begin{aligned}
& 2 i \sum_{k=0}^{p-1}\left(2^{-k}+1\right) u_{k}(2,2) \\
= & \sum_{k=0}^{p-1}\left(2^{-k}+1\right)\left((1+i)^{k}-(1-i)^{k}\right) \\
= & \frac{1-((1+i) / 2)^{p}}{1-(1+i) / 2}-\frac{1-((1-i) / 2)^{p}}{1-(1-i) / 2}+\frac{1-(1+i)^{p}}{1-(1+i)}-\frac{1-(1-i)^{p}}{1-(1-i)} \\
= & (1+i)-2\left(\frac{1+i}{2}\right)^{p+1}-\left((1-i)-2\left(\frac{1-i}{2}\right)^{p+1}\right) \\
& +i-i(1+i)(1+i)^{p-1}+i-i(1-i)(1-i)^{p-1} \\
= & 2 i-2\left(\frac{2 i}{4}\right)^{(p+1) / 2}+2\left(\frac{-2 i}{4}\right)^{(p+1) / 2} \\
& +2 i+(1-i)(2 i)^{(p-1) / 2}-(1+i)(-2 i)^{(p-1) / 2} \\
= & 4 i+2(2 i)^{(p-1) / 2}=2 i\left(2+i^{(p-3) / 2} 2^{(p-1) / 2}\right)
\end{aligned}
$$

and hence

$$
\begin{equation*}
\sum_{k=0}^{p-1}\left(2^{-k}+1\right) u_{k}(2,2)=2-(-1)^{(p+1) / 4} 2^{(p-1) / 2} \tag{2.4}
\end{equation*}
$$

Combining (2.1), (2.3) and (2.4) we obtain

$$
\begin{aligned}
& -p \sum_{k=0}^{p-1}\left(2^{-k}+1\right) u_{k}(2,2) H_{k} \\
\equiv & \frac{(-1)^{(p+1) / 4}}{2^{(p-1) / 2}}-2+(-1)^{(p+1) / 4} 2^{(p-1) / 2} \\
\equiv & \frac{(-1)^{(p+1) / 4}}{2^{(p-1) / 2}}\left(2^{(p-1) / 2}-(-1)^{(p+1) / 4}\right)^{2} \equiv 0\left(\bmod p^{2}\right)
\end{aligned}
$$

since

$$
\left(\frac{2}{p}\right)=(-1)^{\left(p^{2}-1\right) / 8}=(-1)^{(p+1) / 4 \times(p-1) / 2}=(-1)^{(p+1) / 4} .
$$

Therefore (1.9) holds.
By the above, we have completed the proof of Theorem 1.2.

3. Proof of Theorem 1.3

Lemma 3.1. Let $A, B \in \mathbb{Z}$. Let p be an odd prime with $\left(\frac{B}{p}\right)=1$. Suppose that $b^{2} \equiv B(\bmod p)$ where $b \in \mathbb{Z}$. Then

$$
u_{(p-1) / 2}(A, B) \equiv \begin{cases}0(\bmod p) & \text { if }\left(\frac{A^{2}-4 B}{p}\right)=1 \\ \frac{1}{b}\left(\frac{A-2 b}{p}\right)(\bmod p) & \text { if }\left(\frac{A^{2}-4 B}{p}\right)=-1\end{cases}
$$

and

$$
u_{(p+1) / 2}(A, B) \equiv \begin{cases}\left(\frac{A-2 b}{p}\right)(\bmod p) & \text { if }\left(\frac{A^{2}-4 B}{p}\right)=1 \\ 0(\bmod p) & \text { if }\left(\frac{A^{2}-4 B}{p}\right)=-1\end{cases}
$$

Proof. The congruences are known results, see, e.g., $[\mathrm{S}]$.
Lemma 3.2. Let $u_{n}=u_{n}(1,4)$ for $n \in \mathbb{N}$. Then, for any prime $p>5$ we have

$$
\begin{equation*}
u_{p}-2^{p-1}\left(\frac{p}{15}\right) \equiv 2^{\left(\frac{p}{15}\right)-2} u_{p-\left(\frac{p}{15}\right)}\left(\bmod p^{2}\right) \tag{3.1}
\end{equation*}
$$

Proof. The two roots

$$
\alpha=\frac{1+\sqrt{-15}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{-15}}{2}
$$

of the equation $x^{2}-x+4=0$ are algebraic integers. Clearly

$$
-15 u_{p}=(\alpha-\beta)^{2} u_{p}=(\alpha-\beta)\left(\alpha^{p}-\beta^{p}\right) \equiv(\alpha-\beta)^{p+1}=(-15)^{(p+1) / 2}(\bmod p)
$$

and hence

$$
u_{p} \equiv(-15)^{(p-1) / 2} \equiv\left(\frac{-15}{p}\right)=\left(\frac{p}{15}\right)(\bmod p)
$$

Also,

$$
v_{p}=\alpha^{p}+\beta^{p} \equiv(\alpha+\beta)^{p}=1(\bmod p),
$$

where v_{n} refers to $v_{n}(1,4)$. (In fact, both $u_{p}(A, B)$ and $v_{p}(A, B)$ modulo p are known for any $A, B \in \mathbb{Z}$.) By induction, $u_{n}+v_{n}=2 u_{n+1}$ for any $n \in \mathbb{N}$.

Case 1. $\left(\frac{p}{15}\right)=1$. In this case,

$$
4 u_{p-1}=u_{p}-u_{p+1}=\frac{u_{p}-v_{p}}{2} \equiv \frac{1-1}{2}=0(\bmod p)
$$

and

$$
v_{p-1}=2 u_{p}-u_{p-1} \equiv 2 \equiv 2^{p}(\bmod p) .
$$

Since

$$
\begin{aligned}
\left(v_{p-1}-2^{p}\right)\left(v_{p-1}+2^{p}\right) & =\left(\alpha^{p-1}+\beta^{p-1}\right)^{2}-4(\alpha \beta)^{p-1} \\
& =\left(\alpha^{p-1}-\beta^{p-1}\right)^{2}=-15 u_{p-1}^{2} \equiv 0\left(\bmod p^{2}\right),
\end{aligned}
$$

we must have $v_{p-1} \equiv 2^{p}\left(\bmod p^{2}\right)$ and hence

$$
2 u_{p}=u_{p-1}+v_{p-1} \equiv u_{p-1}+2^{p}\left(\bmod p^{2}\right)
$$

Case 2. $\left(\frac{p}{15}\right)=-1$. In this case,

$$
2 u_{p+1}=u_{p}+v_{p} \equiv-1+1=0(\bmod p)
$$

and

$$
v_{p+1}=2 u_{p+2}-u_{p+1}=u_{p+1}-8 u_{p} \equiv 8 \equiv 2^{p+2}(\bmod p) .
$$

As

$$
\begin{aligned}
\left(v_{p+1}-2^{p+2}\right)\left(v_{p+1}+2^{p+2}\right) & =\left(\alpha^{p+1}+\beta^{p+1}\right)^{2}-4(\alpha \beta)^{p+1} \\
& =\left(\alpha^{p+1}-\beta^{p+1}\right)^{2}=-15 u_{p+1}^{2} \equiv 0\left(\bmod p^{2}\right)
\end{aligned}
$$

we must have $v_{p+1} \equiv 2^{p+2}\left(\bmod p^{2}\right)$ and hence

$$
\begin{aligned}
8 u_{p} & =2\left(u_{p+1}-u_{p+2}\right)=2 u_{p+1}-\left(u_{p+1}+v_{p+1}\right) \\
& =u_{p+1}-v_{p+1} \equiv u_{p+1}-2^{p+2}\left(\bmod p^{2}\right)
\end{aligned}
$$

Combining the above, we immediately obtain the desired result.

Proof of Theorem 1.3. Set $\delta=\left(1-\left(\frac{p}{15}\right)\right) / 2$. Then

$$
\sum_{k=0}^{p-1} \frac{u_{k+\delta}}{2^{k}} H_{k} \equiv \sum_{k=0}^{p-1} \frac{u_{k+\delta}}{2^{k}} \cdot \frac{1-(-1)^{k}\binom{p-1}{k}}{p}(\bmod p)
$$

So it suffices to show

$$
\begin{equation*}
\sum_{k=0}^{p-1} u_{k+\delta} 2^{p-1-k} \equiv \sum_{k=0}^{p-1}\binom{p-1}{k} u_{k+\delta}(-2)^{p-1-k}\left(\bmod p^{2}\right) \tag{3.2}
\end{equation*}
$$

which implies (1.11) and (1.12) in the cases $\delta=0,1$ respectively. Recall that

$$
u_{k+\delta}=\frac{\alpha^{k+\delta}-\beta^{k+\delta}}{\alpha-\beta}
$$

where

$$
\alpha=\frac{1+\sqrt{-15}}{2} \quad \text { and } \quad \beta=\frac{1-\sqrt{-15}}{2}
$$

are the two roots of the equation $x^{2}-x+4=0$. Since

$$
\sum_{k=0}^{p-1} x^{k} y^{p-1-k}=\frac{x^{p}-y^{p}}{x-y} \quad \text { and } \quad \sum_{k=0}^{p-1}\binom{p-1}{k} x^{k} y^{p-1-k}=(x+y)^{p-1}
$$

(3.2) can be rewritten as follows:

$$
\begin{align*}
& \frac{1}{\alpha-\beta}\left(\alpha^{\delta} \frac{\alpha^{p}-2^{p}}{\alpha-2}-\beta^{\delta} \frac{\beta^{p}-2^{p}}{\beta-2}\right) \\
\equiv & \frac{\alpha^{\delta}(\alpha-2)^{p-1}-\beta^{\delta}(\beta-2)^{p-1}}{\alpha-\beta}\left(\bmod p^{2}\right) . \tag{3.3}
\end{align*}
$$

Note that $(\alpha-2)(\beta-2)=4+\alpha \beta-2(\alpha+\beta)=4+4-2=6$ and

$$
\begin{aligned}
& \alpha^{\delta}\left(\alpha^{p}-2^{p}\right)(\beta-2)-\beta^{\delta}(\alpha-2)\left(\beta^{p}-2^{p}\right) \\
= & \left(2^{p}-\alpha^{p}\right)\left(\alpha^{\delta+1}+\alpha^{\delta}\right)+\left(\beta^{\delta+1}+\beta^{\delta}\right)\left(\beta^{p}-2^{p}\right) \\
= & 2^{p}\left(\alpha^{\delta+1}-\beta^{\delta+1}+\alpha^{\delta}-\beta^{\delta}\right)-\left(\alpha^{p+\delta+1}-\beta^{p+\delta+1}\right)-\left(\alpha^{p+\delta}-\beta^{\beta+\delta}\right) \\
= & (\alpha-\beta)\left(2^{p}\left(u_{\delta+1}+u_{\delta}\right)-\left(u_{p+\delta+1}+u_{p+\delta}\right)\right) \\
= & (\alpha-\beta)\left(2^{p+\delta}-2 u_{p+\delta}+4 u_{p+\delta-1}\right) .
\end{aligned}
$$

So the left-hand side of (3.3) coincides with

$$
\frac{2^{p+\delta}-2 u_{p+\delta}+4 u_{p+\delta-1}}{6}=\frac{2^{p+\delta-1}-u_{p+\delta}+2 u_{p+\delta-1}}{3}
$$

Since $(\alpha-2)^{2}=-3 \alpha$ and $(\beta-2)^{2}=-3 \beta$, we have

$$
\begin{aligned}
& \frac{\alpha^{\delta}(\alpha-2)^{p-1}-\beta^{\delta}(\beta-2)^{p-1}}{\alpha-\beta} \\
= & \frac{\alpha^{\delta}(-3 \alpha)^{(p-1) / 2}-\beta^{\delta}(-3 \beta)^{(p-1) / 2}}{\alpha-\beta} \\
= & (-3)^{(p-1) / 2} \frac{\alpha^{(p-1) / 2+\delta}-\beta^{(p-1) / 2+\delta}}{\alpha-\beta}=(-3)^{(p-1) / 2} u_{\left(p-\left(\frac{p}{15}\right)\right) / 2} .
\end{aligned}
$$

Applying Lemma 3.1 with $A=1$ and $B=4$, we get that

$$
\begin{equation*}
u_{\left(p-\left(\frac{p}{15}\right)\right) / 2} \equiv 0(\bmod p) \quad \text { and } u_{\left(p+\left(\frac{p}{15}\right)\right) / 2} \equiv\left(\frac{-3}{p}\right) 2^{\left(\left(\frac{p}{15}\right)-1\right) / 2}(\bmod p) \tag{3.4}
\end{equation*}
$$

For any $n \in \mathbb{N}$ we have

$$
u_{2 n}=\frac{\alpha^{2 n}-\beta^{2 n}}{\alpha-\beta}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\left(\alpha^{n}+\beta^{n}\right)=u_{n} v_{n}
$$

If $\left(\frac{p}{15}\right)=1$, then by (3.4) we have $u_{(p-1) / 2} \equiv 0(\bmod p)$ and

$$
v_{(p-1) / 2}=2 u_{(p+1) / 2}-u_{(p-1) / 2} \equiv 2\left(\frac{-3}{p}\right)(\bmod p),
$$

hence

$$
\begin{aligned}
u_{p-1} & =u_{(p-1) / 2} v_{(p-1) / 2} \\
& \equiv 2\left(\frac{-3}{p}\right) u_{(p-1) / 2} \equiv 2(-3)^{(p-1) / 2} u_{(p-1) / 2}\left(\bmod p^{2}\right) .
\end{aligned}
$$

If $\left(\frac{p}{15}\right)=-1$, then by (3.4) we have $u_{(p+1) / 2} \equiv 0(\bmod p)$ and

$$
\begin{aligned}
v_{(p+1) / 2} & =2 u_{(p+3) / 2}-u_{(p+1) / 2}=u_{(p+1) / 2}-8 u_{(p-1) / 2} \\
& \equiv-8\left(\frac{-3}{p}\right) 2^{-1}=-4\left(\frac{-3}{p}\right)(\bmod p),
\end{aligned}
$$

hence

$$
\begin{aligned}
u_{p+1} & =u_{(p+1) / 2} v_{(p+1) / 2} \\
& \equiv-4\left(\frac{-3}{p}\right) u_{(p+1) / 2} \equiv-4(-3)^{(p-1) / 2} u_{(p+1) / 2}\left(\bmod p^{2}\right) .
\end{aligned}
$$

Thus the right-hand side of (3.3) is congruent to $u_{p-\left(\frac{p}{15}\right)} /\left(2(-2)^{\delta}\right) \bmod$ p^{2} 。

By the above, (3.3) is equivalent to the following congruence

$$
\begin{equation*}
\frac{2^{p+\delta-1}-u_{p+\delta}+2 u_{p+\delta-1}}{3} \equiv \frac{u_{p-\left(\frac{p}{15}\right)}}{2(-2)^{\delta}}\left(\bmod p^{2}\right) \tag{3.5}
\end{equation*}
$$

If $\left(\frac{p}{15}\right)=1$, then $\delta=0$, and hence (3.5) reduces to the congruence

$$
2\left(2^{p-1}-u_{p}+2 u_{p-1}\right) \equiv 3 u_{p-1} \quad\left(\bmod p^{2}\right)
$$

which is equivalent to (3.1) since $\left(\frac{p}{15}\right)=1$. When $\left(\frac{p}{15}\right)=-1$, we have $\delta=1$ and hence (3.5) can be rewritten as

$$
-4\left(2^{p}-u_{p+1}+2 u_{p}\right) \equiv 3 u_{p+1} \quad\left(\bmod p^{2}\right)
$$

which follows from (3.1) since $\left(\frac{p}{15}\right)=-1$. This concludes the proof.
Acknowledgments. The author is grateful to the two referees for their helpful comments.

References

[BPQ] A. T. Benjamin, G. O. Preston and J. J. Quinn, A Stirling encounter with harmonic numbers, Math. Mag. 75 (2002), 95-103.
[BB] D. Borwein and J. M. Borwein, On an intriguing integral and some series related to $\zeta(4)$, Proc. Amer. Math. Soc. 123 (1995), 1191-1198.
[C] S. W. Coffman, Problem 1240 and Solution: An infinite series with harmonic numbers, Math. Mag. 60 (1987), 118-119.
[GKP] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, New York, 1994.
[HT] C. Helou and G. Terjanian, On Wolstenholme's theorem and its converse, J. Number Theory 128 (2008), 475-499.
[R] P. Ribenboim, The Book of Prime Number Records, Springer, New York, 1989.
[S] Z. H. Sun, Values of Lucas sequences modulo primes, Rocky Mount. J. Math. 33 (2003), 1123-1145.
[Su] Z. W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140 (2012), 415-428.
[W] J. Wolstenholme, On certain properties of prime numbers, Quart. J. Math. 5 (1862), 35-39.

[^0]: 2010 Mathematics Subject Classification. Primary 11A07, 11B39; Secondary 05A10, 33 B 99.

 Keywords. Congruences, harmonic numbers, Lucas sequences.
 Supported by the National Natural Science Foundation (grant 11171140) of China.

