

Contents lists available at SciVerse ScienceDirect

Journal of Number Theory

On sums of Apéry polynomials and related congruences *

Zhi-Wei Sun

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

ARTICLE INFO

Article history:
Received 23 July 2011
Revised 29 May 2012
Accepted 29 May 2012
Available online 21 July 2012
Communicated by David Goss

MSC:

primary 11A07, 11B65 secondary 05A10, 11B68, 11E25

Kevwords:

Apéry numbers and Apéry polynomials Bernoulli numbers Binomial coefficients Congruences

ABSTRACT

The Apéry polynomials are given by

$$A_n(x) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2 x^k \quad (n = 0, 1, 2, \ldots).$$

(Those $A_n = A_n(1)$ are Apéry numbers.) Let p be an odd prime. We show that

$$\sum_{k=0}^{p-1} (-1)^k A_k(x) \equiv \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{16^k} x^k \pmod{p^2},$$

and that

$$\sum_{k=0}^{p-1} A_k(x) \equiv \left(\frac{x}{p}\right) \sum_{k=0}^{p-1} \frac{\binom{4k}{k,k,k}}{(256x)^k} \pmod{p}$$

for any p-adic integer $x\not\equiv 0\pmod p$. This enables us to determine explicitly $\sum_{k=0}^{p-1}(\pm 1)^kA_k \mod p$, and $\sum_{k=0}^{p-1}(-1)^kA_k \mod p^2$ in the case $p\equiv 2\pmod 3$. Another consequence states that

$$\sum_{k=0}^{p-1} (-1)^k A_k(-2)$$

$$\equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p = x^2 + 4y^2 \ (x, y \in \mathbb{Z}), \\ 0 \pmod{p^2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

E-mail address: zwsun@nju.edu.cn. *URL:* http://math.nju.edu.cn/~zwsun.

^{*} Supported by the National Natural Science Foundation (grant 11171140) of China and the PAPD of Jiangsu Higher Education Institutions.

We also prove that for any prime p > 3 we have

$$\sum_{k=0}^{p-1} (2k+1)A_k \equiv p + \frac{7}{6} p^4 B_{p-3} \pmod{p^5}$$

where B_0, B_1, B_2, \ldots are Bernoulli numbers.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

The well-known Apéry numbers given by

$$A_n = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2 = \sum_{k=0}^n \binom{n+k}{2k}^2 \binom{2k}{k}^2 \quad (n \in \mathbb{N} = \{0, 1, 2, \ldots\})$$

play a central role in Apéry's proof of the irrationality of $\zeta(3) = \sum_{n=1}^{\infty} 1/n^3$ (see Apéry [Ap] and van der Poorten [Po]). They also have close connections to modular forms (cf. Ono [0, pp. 198–203]). The Dedekind eta function in the theory of modular forms is defined by

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1 - q^n) \text{ with } q = e^{2\pi i \tau},$$

where $\tau \in \mathbb{H} = \{z \in \mathbb{C}: \operatorname{Im}(z) > 0\}$ and hence |q| < 1. In 1987 Beukers [B] conjectured that

$$A_{(p-1)/2} \equiv a(p) \pmod{p^2}$$
 for any prime $p > 3$,

where a(n) (n = 1, 2, 3, ...) are given by

$$\eta^4(2\tau)\eta^4(4\tau) = q \prod_{n=1}^{\infty} (1 - q^{2n})^4 (1 - q^{4n})^4 = \sum_{n=1}^{\infty} a(n)q^n.$$

This was finally confirmed by Ahlgren and Ono [AO] in 2000.

We define Apéry polynomials by

$$A_n(x) = \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2 x^k = \sum_{k=0}^n \binom{n+k}{2k}^2 \binom{2k}{k}^2 x^k \quad (n \in \mathbb{N}).$$
 (1.1)

Clearly $A_n(1) = A_n$. Motivated by the Apéry polynomials, we also introduce a new kind of polynomials:

$$W_n(x) := \sum_{k=0}^n \binom{n}{k}^2 \binom{n-k}{k}^2 x^k = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k}^2 \binom{2k}{k}^2 x^k \quad (n \in \mathbb{N}).$$
 (1.2)

Recall that Bernoulli numbers B_0, B_1, B_2, \ldots are rational numbers given by

$$B_0 = 1$$
 and $\sum_{k=0}^{n} {n+1 \choose k} B_k = 0$ for $n \in \mathbb{Z}^+ = \{1, 2, 3, \ldots\}.$

It is well known that $B_{2n+1} = 0$ for all $n \in \mathbb{Z}^+$ and

$$\frac{x}{e^x-1} = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!} \quad \big(|x| < 2\pi\big).$$

Also, Euler numbers E_0, E_1, E_2, \ldots are integers defined by

$$E_0 = 1$$
 and $\sum_{\substack{k=0\\2|k}}^n \binom{n}{k} E_{n-k} = 0$ for $n \in \mathbb{Z}^+$.

It is well known that $E_{2n+1} = 0$ for all $n \in \mathbb{N}$ and

$$\sec x = \sum_{n=0}^{\infty} (-1)^n E_{2n} \frac{x^{2n}}{(2n)!} \quad \left(|x| < \frac{\pi}{2} \right).$$

Now we state our first theorem.

Theorem 1.1.

(i) Let p be an odd prime. Then

$$\sum_{k=0}^{p-1} (-1)^k A_k(x) \equiv \sum_{k=0}^{p-1} (-1)^k W_k(-x) \equiv \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{16^k} x^k \pmod{p^2}.$$
 (1.3)

Also, for any p-adic integer $x \not\equiv 0 \pmod{p}$, we have

$$\sum_{k=0}^{p-1} A_k(x) \equiv \sum_{k=0}^{p-1} W_k(x) \pmod{p^2}$$

$$\equiv \left(\frac{x}{p}\right) \sum_{k=0}^{p-1} \frac{\binom{4k}{k,k,k}}{(256x)^k} \pmod{p}, \tag{1.4}$$

where (-) denotes the Legendre symbol.

(ii) For any positive integer n we have

$$\frac{1}{n} \sum_{k=0}^{n-1} (2k+1) A_k(x) = \sum_{k=0}^{n-1} {n-1 \choose k} {n+k \choose k} {n+k \choose 2k+1} {2k \choose k} x^k.$$
 (1.5)

If p > 3 is a prime, then

$$\sum_{k=0}^{p-1} (2k+1)A_k \equiv p + \frac{7}{6}p^4 B_{p-3} \pmod{p^5}$$
 (1.6)

and

$$\sum_{k=0}^{p-1} (2k+1)A_k(-1) \equiv \left(\frac{-1}{p}\right)p - p^3 E_{p-3} \pmod{p^4}. \tag{1.7}$$

(iii) Given $\varepsilon \in \{\pm 1\}$ and $m \in \mathbb{Z}^+$, for any prime p we have

$$\sum_{k=0}^{p-1} (2k+1)\varepsilon^k A_k^m \equiv 0 \pmod{p}.$$

Remark 1.1. (i) Let p be an odd prime. The author [Su1,Su2] had conjectures on $\sum_{k=0}^{p-1} {2k \choose k}^3 / m^k$ mod p^2 with m=1,-8,16,-64,256,-512,4096. Motivated by the author's conjectures on $\sum_{k=0}^{p-1} A_k(x)$ mod p^2 with x=1,-4,9 in an initial version of this paper, Guo and Zeng [GZ, Theorem 1.3] recently showed that

$$\sum_{k=0}^{p-1} A_k(x) \equiv \sum_{k=0}^{(p-1)/2} {p+2k \choose 4k+1} {2k \choose k}^2 x^k \pmod{p^2}.$$

(ii) The values of

$$s_n = \frac{1}{n} \sum_{k=0}^{n-1} (2k+1) A_k \in \mathbb{Z}$$

with n = 1, ..., 8 are

respectively. On June 6, 2011 Richard Penner informed the author an interesting application of (1.5): (1.5) with x = 1 implies that s_n is the trace of the inverse of nH_n where H_n refers to the Hilbert matrix $(\frac{1}{i+j-1})_{1 \le i,j \le n}$.

Can we find integers $a_0, a_1, a_2, ...$ such that $\sum_{k=0}^{p-1} a_k \equiv 4x^2 - 2p \pmod{p^2}$ if $p = x^2 + y^2$ is a prime with x odd and y even? The following corollary provides an affirmative answer!

Corollary 1.1. Let p be any odd prime. Then

$$\sum_{k=0}^{p-1} (-1)^k A_k(-2) \equiv \sum_{k=0}^{p-1} (-1)^k A_k \left(\frac{1}{4}\right)$$

$$\equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p \equiv 1 \pmod{4} \& p = x^2 + y^2 \pmod{x}, \\ 0 \pmod{p^2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$
(1.8)

Proof. It is known (cf. Ishikawa [I]) that

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{64^k} \equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p \equiv 1 \pmod{4} \& p = x^2 + y^2 \pmod{4}, \\ 0 \pmod{p^2} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

The author conjectured that we can replace 64^k by $(-8)^k$ in the congruence, and this was recently confirmed by Z.H. Sun [S3]. So, applying (1.3) with x = -2, 1/4 we obtain (1.8). \Box

Corollary 1.2. Let p be an odd prime. Then

$$\sum_{k=0}^{p-1} A_k \equiv c(p) \pmod{p} \tag{1.9}$$

where

$$c(p) := \begin{cases} 4x^2 - 2p & \text{if } p \equiv 1, 3 \text{ (mod 8) } \& p = x^2 + 2y^2 \text{ (} x, y \in \mathbb{Z}\text{)}, \\ 0 & \text{if } (\frac{-2}{p}) = -1, \text{ i.e., } p \equiv 5, 7 \text{ (mod 8)}. \end{cases}$$

Also,

$$\sum_{k=0}^{p-1} (-1)^k A_k \equiv \left(\frac{-1}{p}\right) \sum_{k=0}^{p-1} (-1)^k A_k \left(\frac{1}{16}\right)$$

$$\equiv \begin{cases} 4x^2 - 2p \pmod{p} & \text{if } p \equiv 1 \pmod{3} \text{ and } p = x^2 + 3y^2 \ (x, y \in \mathbb{Z}), \\ 0 \pmod{p^2} & \text{if } p \equiv 2 \pmod{3}. \end{cases}$$
(1.10)

Proof. By [M05] and [Su4], we have

$$\sum_{k=0}^{p-1} \frac{\binom{4k}{k,k,k,k}}{256^k} \equiv c(p) \pmod{p^2}$$

as conjectured in [RV]. (Here we only need the mod p version which was proved in [M05].) So (1.9) follows from (1.4). The author [Su2] conjectured that

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{16^k} \equiv \left(\frac{-1}{p}\right) \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{256^k}$$

$$\equiv \begin{cases} 4x^2 - 2p \pmod{p^2} & \text{if } p \equiv 1 \pmod{3} \text{ and } p = x^2 + 3y^2 \ (x, y \in \mathbb{Z}), \\ 0 \pmod{p^2} & \text{if } p \equiv 2 \pmod{3}. \end{cases}$$

This was confirmed by Z.H. Sun [S3] in the case $p \equiv 2 \pmod{3}$, and the mod p version in the case $p \equiv 1 \pmod{3}$ follows from (4)–(5) in Ahlgren [A, Theorem 5]. So we get (1.10) by applying (1.3) with x = 1, 1/16. \square

Remark 1.2. The author conjectured that (1.9) also holds modulo p^2 , and that (1.10) is also valid modulo p^2 in the case $p \equiv 1 \pmod{3}$.

Corollary 1.3. For any odd prime p and integer x, we have

$$\sum_{k=0}^{p-1} (2k+1)A_k(x) \equiv p\left(\frac{x}{p}\right) \pmod{p^2}.$$
 (1.11)

Proof. This follows from (1.5) in the case n = p, for, $p \mid \binom{p+k}{2k+1}$ for every $k = 0, \ldots, (p-3)/2$, and $p \mid \binom{2k}{k}$ for all k = (p+1)/2, ..., p-1. \Box

We deduce Theorem 1.1(i) from our following result which has its own interest.

Theorem 1.2. Let p be an odd prime and let x be any p-adic integer.

(i) If $x \equiv 2k \pmod{p}$ with $k \in \{0, \dots, (p-1)/2\}$, then we have

$$\sum_{r=0}^{p-1} (-1)^r \binom{x}{r}^2 \equiv (-1)^k \binom{x}{k} \pmod{p^2}.$$
 (1.12)

(ii) If $x \equiv k \pmod{p}$ with $k \in \{0, ..., p-1\}$, then

$$\sum_{r=0}^{p-1} {x \choose r}^2 \equiv {2x \choose k} \pmod{p^2}.$$
 (1.13)

Remark 1.3. In contrast with (1.12) and (1.13), we recall the following identities (cf. [G, (3.32) and (3.66)]):

$$\sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^2 = (-1)^n \binom{2n}{n} \text{ and } \sum_{k=0}^n \binom{n}{k}^2 = \binom{2n}{n}.$$

Corollary 1.4. Let p be an odd prime.

(i) (Conjectured in [RV] and proved in [M03].) We have

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{16^k} \equiv \left(\frac{-1}{p}\right) \pmod{p^2}.$$

(ii) (Conjectured by the author [Su1] and confirmed in [S2].) If $p \equiv 1 \pmod{4}$ and $p = x^2 + y^2$ with $x \equiv 1 \pmod{4}$ and $y \equiv 0 \pmod{2}$, then

$$\sum_{k=0}^{p-1} \frac{\binom{2k}{k}^2}{(-16)^k} \equiv (-1)^{(p-1)/4} \left(2x - \frac{p}{2x}\right) \pmod{p^2}.$$
 (1.14)

Proof. Since $\binom{-1/2}{r} = \binom{2r}{r}/(-4)^r$ for all $r=0,1,\ldots$, applying (1.13) with x=-1/2 and k=(p-1)/2 we immediately get the congruence in part (i). When $p=x^2+y^2$ with $x\equiv 1\pmod 4$ and $y\equiv 0\pmod 2$, by (1.12) with x=-1/2 and k=1

(p-1)/4 we have

$$\sum_{r=0}^{p-1} \frac{\binom{2r}{r}^2}{(-16)^r} \equiv (-1)^{(p-1)/4} \binom{-1/2}{(p-1)/4} = \frac{\binom{(p-1)/2}{(p-1)/4}}{4^{(p-1)/4}} = \frac{\binom{(p-1)/2}{(p-1)/4}}{2^{(p-1)/2}}$$

$$\equiv \frac{2^{p-1} + 1}{2 \times 2^{(p-1)/2}} \left(2x - \frac{p}{2x}\right) \pmod{p^2} \quad \text{(by [CDE] or [BEW, (9.0.2)])}$$

$$\equiv (-1)^{(p-1)/4} \left(2x - \frac{p}{2x}\right) \pmod{p^2}$$

since $((-1)^{(p-1)/4}2^{(p-1)/2}-1)^2 \equiv 0 \pmod{p^2}$. This proves (1.14). \square

Corollary 1.5. Let $a_n := \sum_{k=0}^n {n \choose k}^2 C_k$ for n = 0, 1, 2, ..., where C_k denotes the Catalan number ${2k \choose k}/(k+1) = {2k \choose k} - {2k \choose k+1}$. Then, for any odd prime p we have

$$a_1 + \dots + a_{p-1} \equiv 0 \pmod{p^2}.$$
 (1.15)

Remark 1.4. We find no prime $p \le 5000$ with $\sum_{k=1}^{p-1} a_k \equiv 0 \pmod{p^3}$ and no composite number $n \le 70\,000$ satisfying $\sum_{k=1}^{n-1} a_k \equiv 0 \pmod{n^2}$. We conjecture that (1.15) holds for no composite p > 1.

The author [Su1, Remark 1.2] conjectured that for any prime p > 5 with $p \equiv 1 \pmod{4}$ we have

$$\sum_{k=0}^{p^{a}-1} \frac{k^{3} {2k \choose k}^{3}}{64^{k}} \equiv 0 \pmod{p^{2a}} \quad \text{for } a = 1, 2, 3, \dots.$$

This was recently confirmed by Z.H. Sun [S3] in the case a = 1. Note that

$$\frac{k^3 \binom{2k}{k}^3}{64^k} = (-1)^k k^3 \binom{-1/2}{k}^3 = \frac{(-1)^{k-1}}{8} \binom{-3/2}{k-1}^3 \quad \text{for all } k = 1, 2, 3, \dots$$

So, for any prime p > 5 with $p \equiv 1 \pmod{4}$ we have

$$\sum_{r=0}^{p-1} (-1)^r \binom{-3/2}{r}^3 \equiv 0 \pmod{p^2}.$$

Since $-3/2 \equiv -2(p+3)/4 \pmod{p}$, the result just corresponds to the case x = -3/2 of our following general theorem.

Theorem 1.3. Let p > 3 be a prime and let x be a p-adic integer with $x \equiv -2k \pmod{p}$ for some $k \in \{1, \ldots, \lfloor (p-1)/3 \rfloor\}$. Then we have

$$\sum_{r=0}^{p-1} (-1)^r \binom{x}{r}^3 \equiv 0 \pmod{p^2}.$$
 (1.16)

Similar to Apéry numbers, the central Delannoy numbers (see [CHV]) are defined by

$$D_n = \sum_{k=0}^n \binom{n+k}{2k} \binom{2k}{k} = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} \quad (n \in \mathbb{N}).$$

Such numbers arise naturally in many enumeration problems in combinatorics (cf. Sloane [S]); for example, D_n is the number of lattice paths from (0,0) to (n,n) with steps (1,0), (0,1) and (1,1). Now we give our result on central Delannoy numbers.

Theorem 1.4. Let p > 3 be a prime. Then

$$\sum_{k=0}^{p-1} D_k \equiv \left(\frac{-1}{p}\right) - p^2 E_{p-3} \pmod{p^3}. \tag{1.17}$$

We also have

$$\sum_{k=0}^{p-1} (2k+1)(-1)^k D_k \equiv p - \frac{7}{12} p^4 B_{p-3} \pmod{p^5}$$
 (1.18)

and

$$\sum_{k=0}^{p-1} (2k+1)D_k \equiv p + 2p^2 q_p(2) - p^3 q_p(2)^2 \pmod{p^4}, \tag{1.19}$$

where $q_p(2)$ denotes the Fermat quotient $(2^{p-1}-1)/p$.

Remark 1.5. In [Su3] the author determined $\sum_{k=1}^{p-1} D_k/k$ and $\sum_{k=1}^{p-1} D_k/k^2$ modulo an odd prime p.

In the next section we will show Theorems 1.1–1.2 and Corollary 1.5. Section 3 is devoted to our proofs of Theorems 1.3 and 1.4. In Section 4 we are going to raise some related conjectures for further research.

2. Proofs of Theorems 1.1-1.2 and Corollary 1.5

We first prove Theorem 1.2.

Proof of Theorem 1.2. (i) We now consider the first part of Theorem 1.2. Set

$$f_k(y) := \sum_{r=0}^{p-1} (-1)^r \binom{2k+py}{r}^2 \quad \text{for } k \in \mathbb{N}.$$
 (2.1)

We want to prove that

$$f_k(y) \equiv (-1)^k \binom{2k + py}{k} \pmod{p^2}$$
 (2.2)

for any *p*-adic integer *y* and $k \in \{0, 1, ..., (p-1)/2\}$.

Applying the Zeilberger algorithm (cf. [PWZ]) via Mathematica 7, we find that

$$(py + 2k + 2)f_{k+1}(y) + 4(py + 2k + 1)f_k(y)$$

$$= \frac{(p(y-1) + 2k + 3)^2 F_k(y)}{(py + 2k + 1)(py + 2k + 2)^2} {\binom{py + 2k + 2}{p - 1}}^2,$$
(2.3)

where

$$F_k(y) = 14 + 34k + 20k^2 - 10p - 12kp + 2p^2 + 17py + 20kpy - 6p^2y + 5p^2y^2.$$

Now fix a p-adic integer y. Observe that

$$\begin{split} f_{(p-1)/2}(y) &= \sum_{r=0}^{p-1} (-1)^r \binom{p-1+py}{r}^2 = \sum_{r=0}^{p-1} (-1)^r \prod_{0 < s \leqslant r} \left(1 - \frac{p(y+1)}{s}\right)^2 \\ &\equiv \sum_{r=0}^{p-1} (-1)^r \left(1 - \sum_{0 < s \leqslant r} \frac{2p(y+1)}{s}\right) = 1 - \sum_{r=1}^{p-1} (-1)^r \sum_{s=1}^r \frac{2p(y+1)}{s} \\ &= 1 - 2p(y+1) \sum_{s=1}^{p-1} \frac{1}{s} \sum_{r=s}^{p-1} (-1)^r = 1 - p(y+1) \sum_{j=1}^{(p-1)/2} \frac{1}{j} \\ &\equiv (-1)^{(p-1)/2} \binom{p-1+py}{(p-1)/2} \pmod{p^2}. \end{split}$$

For each $k \in \{0, ..., (p-3)/2\}$, clearly py + 2k + 1, $py + 2k + 2 \not\equiv 0 \pmod{p}$, and also

$$(p(y-1)+2k+3)^2 {py+2k+2 \choose p-1}^2 \equiv 0 \pmod{p^2}$$

since $\binom{py+2k+2}{p-1} = \frac{p}{py+2k+3} \binom{py+2k+3}{p} \equiv 0 \pmod{p}$ if $0 \le k < (p-3)/2$. Thus, by (2.3) we have

$$f_k(y) \equiv -\frac{py + 2k + 2}{4(py + 2k + 1)} f_{k+1}(y) \pmod{p^2}$$
 for $k = 0, \dots, \frac{p-3}{2}$.

If $0 \le k < (p-1)/2$ and

$$f_{k+1}(y) \equiv (-1)^{k+1} {2(k+1) + py \choose k+1} \pmod{p^2},$$

then

$$f_k(y) \equiv -\frac{py + 2k + 2}{4(py + 2k + 1)} (-1)^{k+1} \binom{2(k+1) + py}{k+1}$$

$$= \frac{(-1)^k (py + 2k + 2)^2}{4(k+1)(py + k+1)} \binom{2k + py}{k} \equiv (-1)^k \binom{2k + py}{k} \pmod{p^2}.$$

Therefore (2.2) holds for all k = 0, 1, ..., (p-1)/2. This proves Theorem 1.2(i).

(ii) The second part of Theorem 1.2 can be proved in a similar way. Here we mention that if we define

$$g_k(y) := \sum_{r=0}^{p-1} {k+py \choose r}^2 \quad \text{for } k \in \mathbb{N},$$
 (2.4)

then by the Zeilberger algorithm (cf. [PWZ]) we have the recursion

$$(py+k+1)g_{k+1}(y) - 2(2py+2k+1)g_k(y)$$

$$= -\frac{(p(y-1)+k+2)^2(3py-2p+3k+3)}{(py+k+1)^2} {py+k+1 \choose p-1}^2.$$

It follows that if $k \in \{0, ..., p-2\}$ and y is a p-adic integer then

$$g_{k+1}(y) \equiv {2(k+1) + 2py \choose k+1} \pmod{p^2}$$

$$\implies g_k(y) \equiv {2k + 2py \choose k} \pmod{p^2}.$$
(2.5)

In view of this, we have the second part of Theorem 1.2 by induction. The proof of Theorem 1.2 is now complete. \Box

Proof of Corollary 1.5. Observe that

$$\sum_{n=0}^{p-1} a_n = \sum_{k=0}^{p-1} C_k \sum_{n=k}^{p-1} \binom{n}{k}^2 = \sum_{k=0}^{p-1} C_k \sum_{j=0}^{p-1-k} \binom{k+j}{k}^2.$$

If $0 \le k \le p-1$ and $p-k \le j \le p-1$, then

$$\binom{k+j}{k} = \frac{(k+j)!}{k!j!} \equiv 0 \pmod{p}.$$

Therefore

$$\sum_{n=0}^{p-1} a_n \equiv \sum_{k=0}^{p-1} C_k \sum_{j=0}^{p-1} {k+j \choose k}^2 = \sum_{k=0}^{p-1} C_k \sum_{j=0}^{p-1} {x_k \choose j}^2,$$

where $x_k = -k - 1 \equiv p - 1 - k \pmod{p}$. Applying Theorem 1.2(ii) we get

$$\sum_{n=0}^{p-1} a_n \equiv \sum_{k=0}^{p-1} C_k \binom{2x_k}{p-1-k} = \sum_{k=0}^{p-1} (-1)^k \binom{p+k}{2k+1} C_k \pmod{p^2}.$$

So it suffices to show that for any $n \in \mathbb{Z}^+$ we have

$$\sum_{k=0}^{n-1} (-1)^k \binom{n+k}{2k+1} C_k = 1.$$
 (2.6)

We prove (2.6) by induction. Clearly, (2.6) holds for n = 1. Let n be any positive integer. By the Chu–Vandermonde identity

$$\sum_{k=0}^{n} {x \choose k} {y \choose n-k} = {x+y \choose n}$$

(see, e.g., [GKP, p. 169]), we have

$$\sum_{k=0}^{n-1} \binom{n+1}{k+1} \binom{n+k}{k} (-1)^k = \sum_{k=0}^{n-1} \binom{n+1}{n-k} \binom{-n-1}{k} = -\binom{-n-1}{n}.$$

Thus

$$\begin{split} \sum_{k=0}^{n} (-1)^k \binom{n+1+k}{2k+1} C_k - \sum_{k=0}^{n-1} (-1)^k \binom{n+k}{2k+1} C_k &= (-1)^n C_n + \sum_{k=0}^{n-1} (-1)^k \binom{n+k}{2k} C_k \\ &= (-1)^n C_n + \frac{1}{n+1} \sum_{k=0}^{n-1} \binom{n+1}{k+1} \binom{n+k}{k} (-1)^k \\ &= (-1)^n C_n - \frac{1}{n+1} \binom{-n-1}{n} = 0. \end{split}$$

This concludes the induction step. We are done. \Box

Now we can apply Theorem 1.2 to deduce the first part of Theorem 1.1.

Proof of Theorem 1.1(i). Let $\varepsilon \in \{\pm 1\}$. Then

$$\sum_{m=0}^{p-1} \varepsilon^m A_m(x) = \sum_{m=0}^{p-1} \varepsilon^m \sum_{k=0}^m {m+k \choose 2k}^2 {2k \choose k}^2 x^k$$

$$= \sum_{k=0}^{p-1} {2k \choose k}^2 x^k \sum_{m=k}^{p-1} \varepsilon^m {m+k \choose 2k}^2$$

$$= \sum_{k=0}^{p-1} {2k \choose k}^2 x^k \sum_{r=0}^{p-1-k} \varepsilon^{k+r} {2k+r \choose r}^2$$

$$= \sum_{k=0}^{p-1} {2k \choose k}^2 \varepsilon^k x^k \sum_{r=0}^{p-1-k} \varepsilon^r {p-1-2k-p \choose r}^2.$$

Set n = (p-1)/2. Clearly $\binom{2k}{k} \equiv 0 \pmod{p}$ for $k = n+1, \dots, p-1$, and

$$\binom{p-1-2k-p}{r} \equiv \binom{p-1-2k}{r} = 0 \pmod{p}$$

if $0 \le k \le n$ and $p - 1 - 2k < r \le p - 1$. Therefore

$$\sum_{m=0}^{p-1} \varepsilon^m A_m(x) \equiv \sum_{k=0}^n \binom{2k}{k}^2 \varepsilon^k x^k \sum_{r=0}^{p-1} \varepsilon^r \binom{2(n-k)-p}{r}^2 \pmod{p^2}.$$

Similarly,

$$\begin{split} \sum_{m=0}^{p-1} \varepsilon^m W_m(\varepsilon x) &= \sum_{m=0}^{p-1} \varepsilon^m \sum_{k=0}^{\lfloor m/2 \rfloor} \binom{m}{2k}^2 \binom{2k}{k}^2 (\varepsilon x)^k \\ &= \sum_{k=0}^n \binom{2k}{k}^2 \varepsilon^k x^k \sum_{m=2k}^{p-1} \varepsilon^m \binom{m}{2k}^2 \\ &= \sum_{k=0}^n \binom{2k}{k}^2 \varepsilon^k x^k \sum_{r=0}^{p-1-2k} \varepsilon^{2k+r} \binom{2k+r}{r}^2 \\ &\equiv \sum_{k=0}^n \binom{2k}{k}^2 \varepsilon^k x^k \sum_{r=0}^{p-1} \varepsilon^r \binom{2(n-k)-p}{r}^2 \pmod{p^2}. \end{split}$$

So we have

$$\sum_{m=0}^{p-1} \varepsilon^m A_m(x) \equiv \sum_{m=0}^{p-1} \varepsilon^m W_m(\varepsilon x) \equiv \sum_{k=0}^n \binom{2k}{k}^2 \varepsilon^k x^k S_k(\varepsilon) \pmod{p^2}, \tag{2.7}$$

where

$$S_k(\varepsilon) := \sum_{r=0}^{p-1} \varepsilon^r \binom{2(n-k)-p}{r}^2.$$

Applying Theorem 1.2(i) we get

$$S_k(-1) \equiv (-1)^{n-k} \binom{2(n-k)-p}{n-k} = (-1)^{n-k} \binom{-2k-1}{n-k}$$
$$= \binom{n+k}{n-k} = \binom{n+k}{2k} \equiv \frac{\binom{2k}{k}}{(-16)^k} \pmod{p^2}.$$

(The last congruence can be easily deduced, see. e.g., [S2, Lemma 2.2].) Combining this with (2.7) in the case $\varepsilon = -1$ we immediately obtain (1.3).

In view of Theorem 1.2(ii),

$$S_k(1) \equiv \binom{4(n-k)-2p}{2(n-k)} \pmod{p^2}.$$

Recall that $\binom{n+k}{n-k}(-16)^k \equiv \binom{2k}{k} \pmod{p^2}$. So, in view of (2.7) with $\varepsilon = 1$, we have

$$\sum_{m=0}^{p-1} A_m(x) \equiv \sum_{m=0}^{p-1} W_m(x) \equiv \sum_{k=0}^n \binom{n+k}{n-k}^2 (-16)^{2k} x^k \binom{4(n-k)-2p}{2(n-k)}$$

$$= \sum_{j=0}^n \binom{n+(n-j)}{j}^2 256^{n-j} x^{n-j} \binom{4j-2p}{2j}$$

$$= 16^{p-1} \sum_{k=0}^n \frac{\binom{4k-2p}{2k} \binom{2k-p}{k}^2}{256^k} x^{n-k} \pmod{p^2}.$$

If x is a p-adic integer with $x \not\equiv 0 \pmod{p}$, then

$$16^{p-1} \sum_{k=0}^{n} \frac{\binom{4k-2p}{2k} \binom{2k-p}{k}^2}{256^k} x^{n-k} \equiv \left(\frac{x}{p}\right) \sum_{k=0}^{n} \frac{\binom{4k}{2k} \binom{2k}{k}^2}{(256x)^k} \equiv \left(\frac{x}{p}\right) \sum_{k=0}^{p-1} \frac{\binom{4k}{k,k,k}}{(256x)^k} \pmod{p}.$$

and therefore (1.4) holds. \Box

Lemma 2.1. Let $k \in \mathbb{N}$. Then, for any $n \in \mathbb{Z}^+$ we have the identity

$$\sum_{m=0}^{n-1} (2m+1) \binom{m+k}{2k}^2 = \frac{(n-k)^2}{2k+1} \binom{n+k}{2k}^2.$$
 (2.8)

Proof. Obviously (2.8) holds when n = 1.

Now assume that n > 1 and (2.8) holds. Then

$$\sum_{m=0}^{n} (2m+1) \binom{m+k}{2k}^2 = \frac{(n-k)^2}{2k+1} \binom{n+k}{2k}^2 + (2n+1) \binom{n+k}{2k}^2$$
$$= \frac{(n+k+1)^2}{2k+1} \binom{n+k}{2k}^2 = \frac{(n+1-k)^2}{2k+1} \binom{(n+1)+k}{2k}^2.$$

Combining the above, we have proved the desired result by induction. \Box

Lemma 2.2. *Let* p > 3 *be a prime. Then*

$$\sum_{\substack{k=0\\k\neq(p-1)/2}}^{p-1} \frac{(-1)^k}{2k+1} \equiv -pE_{p-3} \pmod{p^2}.$$
 (2.9)

Proof. Observe that

$$\sum_{\substack{k=0\\k\neq (p-1)/2}}^{p-1} \frac{(-1)^k}{2k+1} = \frac{1}{2} \sum_{\substack{k=0\\k\neq (p-1)/2}}^{p-1} \left(\frac{(-1)^k}{2k+1} + \frac{(-1)^{p-1-k}}{(2(p-1-k)+1)} \right)$$

$$= -p \sum_{\substack{k=0\\k\neq (p-1)/2}}^{p-1} \frac{(-1)^k}{(2k+1)(2k+1-2p)}$$

$$\equiv -\frac{p}{4} \sum_{k=0}^{p-1} (-1)^k \left(k + \frac{1}{2} \right)^{p-3} \pmod{p^2}.$$

So we have reduced (2.9) to the following congruence

$$\sum_{k=0}^{p-1} (-1)^k \left(k + \frac{1}{2} \right)^{p-3} \equiv 4E_{p-3} \pmod{p}.$$
 (2.10)

Recall that the Euler polynomial of degree n is defined by

$$E_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{E_k}{2^k} \left(x - \frac{1}{2}\right)^{n-k}.$$

It is well known that

$$E_n(x) + E_n(x+1) = 2x^n.$$

Thus

$$2\sum_{k=0}^{p-1} (-1)^k \left(k + \frac{1}{2}\right)^{p-3} = \sum_{k=0}^{p-1} \left((-1)^k E_{p-3} \left(k + \frac{1}{2}\right) - (-1)^{k+1} E_{p-3} \left(k + 1 + \frac{1}{2}\right) \right)$$

$$= E_{p-3} \left(\frac{1}{2}\right) - (-1)^p E_{p-3} \left(p + \frac{1}{2}\right)$$

$$= 2E_{p-3} \left(\frac{1}{2}\right) = 2\frac{E_{p-3}}{2^{p-3}} \equiv 8E_{p-3} \pmod{p}$$

and hence (2.10) follows. We are done. \Box

For each m = 1, 2, 3, ... those rational numbers

$$H_n^{(m)} := \sum_{0 \le k \le n} \frac{1}{k^m} \quad (n = 0, 1, 2, ...)$$

are called harmonic numbers of order m. We simply write H_n for $H_n^{(1)}$. A well-known theorem of Wolstenholme asserts that $H_{p-1} \equiv 0 \pmod{p^2}$ and $H_{p-1}^{(2)} \equiv 0 \pmod{p}$ for any prime p > 3.

Lemma 2.3. Let p > 3 be a prime. Then

$$\sum_{k=0}^{(p-3)/2} \frac{H_k^{(2)}}{2k+1} \equiv -\frac{7}{4} B_{p-3} \pmod{p}. \tag{2.11}$$

Proof. Clearly,

$$\sum_{k=1}^{p-1} \frac{1}{k^3} = \sum_{k=1}^{(p-1)/2} \left(\frac{1}{k^3} + \frac{1}{(p-k)^3} \right) \equiv 0 \pmod{p}.$$

By [ST, (5.4)], $\sum_{k=1}^{p-1} H_k/k^2 \equiv B_{p-3} \pmod{p}$. Therefore

$$\begin{split} \sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k} &= \sum_{k=1}^{p-1} \frac{1}{k} \sum_{j=1}^k \frac{1}{j^2} = \sum_{j=1}^{p-1} \frac{H_{p-1} - H_{j-1}}{j^2} \\ &\equiv -\sum_{k=1}^{p-1} \frac{H_k}{k^2} + \sum_{k=1}^{p-1} \frac{1}{k^3} \equiv -B_{p-3} \pmod{p}. \end{split}$$

On the other hand,

$$\begin{split} \sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k} &= \sum_{k=1}^{(p-1)/2} \left(\frac{H_k^{(2)}}{k} + \frac{H_{p-k}^{(2)}}{p-k} \right) \\ &= \sum_{k=1}^{(p-1)/2} \left(\frac{H_k^{(2)}}{k} + \frac{H_{p-1}^{(2)} - H_{k-1}^{(2)}}{-k} \right) \equiv 2 \sum_{k=1}^{(p-1)/2} \frac{H_k^{(2)}}{k} - H_{(p-1)/2}^{(3)} \pmod{p}. \end{split}$$

It is known (see, e.g., [S1, Corollary 5.2]) that

$$H_{(p-1)/2}^{(3)} = \sum_{k=1}^{(p-1)/2} \frac{1}{k^3} \equiv -2B_{p-3} \pmod{p}.$$

So we have

$$\sum_{k=1}^{(p-1)/2} \frac{H_k^{(2)}}{k} \equiv \frac{1}{2} \left(\sum_{k=1}^{p-1} \frac{H_k^{(2)}}{k} + H_{(p-1)/2}^{(3)} \right) \equiv \frac{-B_{p-3} - 2B_{p-3}}{2} = -\frac{3}{2} B_{p-3} \pmod{p}.$$

Clearly

$$H_{(p-1)/2}^{(2)} \equiv \frac{1}{2} \sum_{k=1}^{(p-1)/2} \left(\frac{1}{k^2} + \frac{1}{(p-k)^2} \right) = \frac{1}{2} H_{p-1}^{(2)} \equiv 0 \pmod{p}.$$

Observe that

$$\sum_{k=0}^{(p-3)/2} \frac{H_k^{(2)}}{2k+1} \equiv -\sum_{k=0}^{(p-3)/2} \frac{H_k^{(2)}}{p-1-2k} = -\sum_{k=1}^{(p-1)/2} \frac{H_{(p-1)/2-k}^{(2)}}{2k}$$

$$\equiv -\frac{1}{2} \sum_{k=1}^{(p-1)/2} \frac{1}{k} \left(H_{(p-1)/2}^{(2)} - \sum_{j=0}^{k-1} \frac{1}{((p-1)/2-j)^2} \right)$$

$$\equiv 2 \sum_{k=1}^{(p-1)/2} \frac{1}{k} \sum_{j=0}^{k-1} \frac{1}{(2j+1)^2} \equiv 2 \sum_{k=1}^{(p-1)/2} \frac{1}{k} \left(H_{2k}^{(2)} - \sum_{j=1}^{k} \frac{1}{(2j)^2} \right)$$

$$= 4 \sum_{k=1}^{(p-1)/2} \frac{H_{2k}^{(2)}}{2k} - \frac{1}{2} \sum_{k=1}^{(p-1)/2} \frac{H_k^{(2)}}{k} \pmod{p}$$

and

$$\sum_{k=1}^{(p-1)/2} \frac{H_{2k}^{(2)}}{2k} = \sum_{k=1}^{p-1} \frac{1}{k} \sum_{j=1}^{k} \frac{1}{j^2} = \sum_{k=1}^{p-1} \frac{1}{k^3} + \sum_{1 \le j < k \le p-1} \frac{1}{j^2 k}$$

$$\equiv \frac{1}{8} H_{(p-1)/2}^{(3)} - \frac{3}{8} B_{p-3} \quad \text{(by Pan [P, (2.4)])}$$

$$\equiv \frac{1}{8}(-2B_{p-3}) - \frac{3}{8}B_{p-3} = -\frac{5}{8}B_{p-3} \pmod{p}.$$

So we finally get

$$\sum_{k=0}^{(p-3)/2} \frac{H_k^{(2)}}{2k+1} \equiv 4\left(-\frac{5}{8}B_{p-3}\right) - \frac{1}{2}\left(-\frac{3}{2}B_{p-3}\right) = -\frac{7}{4}B_{p-3} \pmod{p}.$$

This concludes the proof of (2.11). \Box

Proof of Theorem 1.1(ii). (i) Let n be any positive integer. Then

$$\sum_{m=0}^{n-1} (2m+1)A_m(x) = \sum_{m=0}^{n-1} (2m+1) \sum_{k=0}^m {m+k \choose 2k}^2 {2k \choose k}^2 x^k$$

$$= \sum_{k=0}^{n-1} {2k \choose k}^2 x^k \sum_{m=0}^{n-1} (2m+1) {m+k \choose 2k}^2$$

$$= \sum_{k=0}^{n-1} {2k \choose k}^2 x^k \frac{(n-k)^2}{2k+1} {n+k \choose 2k}^2 \quad \text{(by (2.8))}$$

$$= \sum_{k=0}^{n-1} \frac{(n-k)^2}{2k+1} {n \choose k}^2 {n+k \choose k}^2 x^k.$$

Since

$$(n-k)\binom{n}{k} = n\binom{n-1}{k}$$
 for all $k = 0, \dots, n-1$,

we have

$$\begin{split} \frac{1}{n} \sum_{m=0}^{n-1} (2m+1) A_m(x) &= \sum_{k=0}^{n-1} \binom{n-1}{k} \frac{n-k}{2k+1} \binom{n}{k} \binom{n+k}{k}^2 x^k \\ &= \sum_{k=0}^{n-1} \binom{n-1}{k} \frac{n-k}{2k+1} \binom{n+k}{2k} \binom{2k}{k} \binom{n+k}{k} x^k \\ &= \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n+k}{k} \binom{n+k}{2k+1} \binom{2k}{k} x^k. \end{split}$$

This proves (1.5).

Now we fix a prime p > 3. By the above,

$$\sum_{m=0}^{p-1} (2m+1)A_m(x) = \sum_{k=0}^{p-1} \frac{p^2}{2k+1} \binom{p-1}{k}^2 \binom{p+k}{k}^2 x^k.$$
 (2.12)

For $k \in \{0, ..., p - 1\}$, clearly

$${\binom{p-1}{k}}^2 {\binom{p+k}{k}}^2 = \prod_{0 < j \le k} \left(\frac{p-j}{j} \cdot \frac{p+j}{j}\right)^2 = \prod_{0 < j \le k} \left(1 - \frac{p^2}{j^2}\right)^2$$
$$\equiv \prod_{0 < j \le k} \left(1 - \frac{2p^2}{j^2}\right) \equiv 1 - 2p^2 H_k^{(2)} \pmod{p^4}.$$

Thus (2.12) implies that

$$\sum_{m=0}^{p-1} (2m+1)A_m(x) = \sum_{k=0}^{p-1} \frac{p^2}{2k+1} \left(1 - 2p^2 H_k^{(2)}\right) x^k \pmod{p^5}.$$
 (2.13)

Since $H_{(p-1)/2}^{(2)} \equiv 0 \pmod{p}$, taking x = -1 in (2.13) and applying (2.9) we obtain

$$\sum_{m=0}^{p-1} (2m+1)A_m(-1) \equiv \sum_{k=0}^{p-1} \frac{p^2(-1)^k}{2k+1} \equiv \frac{p^2(-1)^{(p-1)/2}}{2(p-1)/2+1} - p^3 E_{p-3} \pmod{p^4}$$

and hence (1.7) holds.

Now we prove (1.6). In view of (2.13) with x = 1, we have

$$\sum_{m=0}^{p-1} (2m+1)A_m \equiv \frac{p^2}{2(p-1)/2+1} \left(1 - 2p^2 H_{(p-1)/2}^{(2)}\right)$$

$$+ p^2 \sum_{k=0}^{(p-3)/2} \left(\frac{1 - 2p^2 H_k^{(2)}}{2k+1} + \frac{1 - 2p^2 H_{p-1-k}^{(2)}}{2(p-1-k)+1}\right)$$

$$= p - 2p^3 H_{(p-1)/2}^{(2)} + 2p^3 \sum_{k=0}^{(p-3)/2} \frac{2p + 2k + 1}{(2k+1)(4p^2 - (2k+1)^2)}$$

$$- 2p^4 \sum_{k=0}^{(p-3)/2} \left(\frac{H_k^{(2)}}{2k+1} + \frac{H_{p-1}^{(2)} - \sum_{0 < j \le k} (p-j)^{-2}}{2p - (2k+1)}\right)$$

$$\equiv p - 2p^3 H_{(p-1)/2}^{(2)} - 4p^4 \sum_{k=0}^{(p-3)/2} \frac{1}{(2k+1)^3}$$

$$- 2p^3 \sum_{k=0}^{(p-3)/2} \frac{1}{(2k+1)^2} - 4p^4 \sum_{k=0}^{(p-3)/2} \frac{H_k^{(2)}}{2k+1} \pmod{p^5}.$$

By [S1, Corollaries 5.1 and 5.2],

$$H_{p-1}^{(2)} \equiv \frac{2}{3} p B_{p-3} \pmod{p^2}, \qquad H_{(p-1)/2}^{(2)} \equiv \frac{7}{3} p B_{p-3} \pmod{p^2},$$

$$\sum_{k=0}^{(p-3)/2} \frac{1}{(2k+1)^2} = H_{p-1}^{(2)} - \frac{H_{(p-1)/2}^{(2)}}{4} \equiv \frac{p}{12} B_{p-3} \pmod{p^2},$$

and

$$\sum_{k=0}^{(p-3)/2} \frac{1}{(2k+1)^3} = H_{p-1}^{(3)} - \frac{H_{(p-1)/2}^{(3)}}{8} \equiv 0 - \frac{-2B_{p-3}}{8} = \frac{B_{p-3}}{4} \pmod{p}.$$

Combining these with Lemma 2.3, we finally obtain

$$\begin{split} \sum_{k=0}^{p-1} (2k+1)A_k &\equiv p - 2p^3 \frac{7}{3} p B_{p-3} - 4p^4 \frac{B_{p-3}}{4} - 2p^3 \frac{p}{12} B_{p-3} - 4p^4 \left(-\frac{7}{4} B_{p-3} \right) \\ &= p + \frac{7}{6} p^4 B_{p-3} \pmod{p^5}. \end{split}$$

So far we have proved the second part of Theorem 1.1. \Box

Part (iii) of Theorem 1.1 is easy.

Proof of Theorem 1.1(iii). As $A_0 = 1$ and $A_1 = 3$, the desired congruence with p = 2 holds trivially. Below we assume that p is an odd prime. If $k \in \{0, 1, ..., p - 1\}$, then

$$\begin{split} A_{p-1-k} &= \sum_{j=0}^{p-1} \binom{(p-1-k)+j}{2j}^2 \binom{2j}{j}^2 \\ &\equiv \sum_{j=0}^{p-1} \binom{j-k-1}{2j}^2 \binom{2j}{j}^2 = \sum_{j=0}^k \binom{j+k}{2j}^2 \binom{2j}{j}^2 = A_k \pmod{p}. \end{split}$$

Thus

$$\sum_{k=0}^{p-1} (2k+1)\varepsilon^k A_k^m = \sum_{k=0}^{p-1} (2(p-1-k)+1)\varepsilon^{p-1-k} A_{p-1-k}^m$$

$$\equiv -\sum_{k=0}^{p-1} (2k+1)\varepsilon^k A_k^m \pmod{p}$$

and hence we have the desired congruence. \Box

3. Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. Define

$$w_k(y) := \sum_{r=0}^{p-1} (-1)^r \binom{py - 2k}{r}^3 \quad \text{for } k \in \mathbb{N}.$$
 (3.1)

We want to show that $w_k(y) \equiv 0 \pmod{p^2}$ for any p-adic integer y and $k \in \{1, ..., \lfloor (p-1)/3 \rfloor\}$. By the Zeilberger algorithm (cf. [PWZ]), for k = 0, 1, 2, ... we have

$$(py - 2k)^{2} w_{k}(y) + 3(3py - 2(3k+1))(3py - 2(3k+2))w_{k+1}(y)$$

$$= \frac{P(k, p, y)(p(1-y) + 2k-1)^{3}}{(py - 2k)^{3}(py - 2k-1)^{3}} {\binom{py - 2k}{p-1}}^{3}$$
(3.2)

where P(k, p, y) is a suitable polynomial in k, p, y with integer coefficients such that $P(0, p, y) \equiv 0 \pmod{p^2}$. (Here we omit the explicit expression of P(k, p, y) since it is complicated.) Note also that

$$w_1(0) = \sum_{r=0}^{p-1} (-1)^r \binom{-2}{r}^3 = \sum_{r=0}^{p-1} (r+1)^3 = \frac{p^2(p+1)^2}{4} \equiv 0 \pmod{p^2}.$$

Fix a *p*-adic integer *y*. If $y \neq 0$, then (3.2) with k = 0 yields

$$\begin{split} &3(3py-2)(3py-4)w_1(y)\\ &\equiv \frac{P(0,p,y)(p(1-y)-1)^3}{(py)^3(py-1)^3} \bigg(\frac{py}{p-1}\binom{p(y-1)+p-1}{p-2}\bigg)\bigg)^3 \equiv 0 \pmod{p^2} \end{split}$$

and hence $w_1(y) \equiv 0 \pmod{p^2}$. If $1 < k+1 \le \lfloor (p-1)/3 \rfloor$, then by (3.2) we have

$$(py-2k)^2 w_k(y) + 3(3py-2(3k+1))(3py-2(3k+2))w_{k+1}(y) \equiv 0 \pmod{p^3}$$

since

$$\binom{py-2k}{p-1} = \frac{p}{py-2k+1} \binom{py-2k+1}{p} \equiv 0 \pmod{p}.$$

Thus, when $1 < k+1 \le \lfloor (p-1)/3 \rfloor$ we have

$$w_k(y) \equiv 0 \pmod{p^2} \implies w_{k+1}(y) \equiv 0 \pmod{p^2}.$$

So, by induction, $w_k(y) \equiv 0 \pmod{p^2}$ for all $k = 1, ..., \lfloor (p-1)/3 \rfloor$. In view of the above, we have completed the proof of Theorem 1.3. \square

Lemma 3.1. Let $n \in \mathbb{N}$. Then we have

$$\sum_{k=0}^{n} {x+k-1 \choose k} = {x+n \choose n}.$$
 (3.3)

Proof. By the Chu-Vandermonde identity (see, e.g., [GKP, p. 169]),

$$\sum_{k=0}^{n} {-x \choose k} {-1 \choose n-k} = {-x-1 \choose n}$$

which is equivalent to (3.3). Of course, it is easy to prove (3.3) by induction. \Box

Proof of Theorem 1.4. (i) Observe that

$$\sum_{n=0}^{p-1} D_n = \sum_{n=0}^{p-1} \sum_{k=0}^n \binom{n+k}{2k} \binom{2k}{k} = \sum_{k=0}^{p-1} \binom{2k}{k} \sum_{n=k}^{p-1} \binom{n+k}{2k}$$
$$= \sum_{k=0}^{p-1} \binom{2k}{k} \sum_{i=0}^{p-1-k} \binom{j+2k}{j}$$

$$= \sum_{k=0}^{p-1} {2k \choose k} {2k+1+p-1-k \choose p-1-k} \quad \text{(by Lemma 3.1)}$$

$$= \sum_{k=0}^{p-1} {2k \choose k} {p+k \choose 2k+1} = \sum_{k=0}^{p-1} \frac{k+1}{2k+1} {2k+1 \choose k} {p+k \choose 2k+1}$$

and thus

$$\sum_{n=0}^{p-1} D_n = \sum_{k=0}^{p-1} \frac{k+1}{2k+1} \binom{p+k}{k} \binom{p}{k+1} = p + \sum_{k=1}^{p-1} \frac{p}{2k+1} \binom{p-1}{k} \binom{p+k}{k}.$$

For k = 1, ..., p - 1 we clearly have

$$\binom{p-1}{k} \binom{p+k}{k} = (-1)^k \prod_{i=1}^k \left(1 - \frac{p^2}{j^2}\right) \equiv (-1)^k \left(1 - p^2 H_k^{(2)}\right) \pmod{p^4}; \tag{3.4}$$

in particular,

$$\binom{p-1}{(p-1)/2} \binom{p+(p-1)/2}{(p-1)/2} \equiv (-1)^{(p-1)/2} = \left(\frac{-1}{p}\right) \pmod{p^3}$$

since $H_{(p-1)/2}^{(2)} \equiv 0 \pmod{p}$. Therefore

$$\sum_{n=0}^{p-1} D_n \equiv \sum_{\substack{k=0\\k\neq (p-1)/2}}^{p-1} \frac{p}{2k+1} (-1)^k + \left(\frac{-1}{p}\right)$$
$$\equiv \left(\frac{-1}{p}\right) - p^2 E_{p-3} \pmod{p^3} \quad \text{(by (2.9))}.$$

This proves (1.17).

(ii) Now we prove (1.18) and (1.19). Let n be any positive integer. Then

$$\sum_{m=0}^{n-1} (2m+1)(-1)^m D_m = \sum_{m=0}^{n-1} (2m+1)(-1)^m \sum_{k=0}^m \binom{m+k}{2k} \binom{2k}{k}$$
$$= \sum_{k=0}^{n-1} \binom{2k}{k} \sum_{m=0}^{n-1} (2m+1)(-1)^m \binom{m+k}{2k}.$$

By induction, we have the identity

$$\sum_{m=0}^{n-1} (2m+1)(-1)^m \binom{m+k}{2k} = (-1)^n (k-n) \binom{n+k}{2k}.$$
 (3.5)

Thus

$$\begin{split} \sum_{m=0}^{n-1} (2m+1)(-1)^m D_m &= (-1)^{n-1} \sum_{k=0}^{n-1} \binom{2k}{k} (n-k) \binom{n+k}{2k} \\ &= (-1)^{n-1} \sum_{k=0}^{n-1} (n-k) \binom{n}{k} \binom{n+k}{k} \\ &= (-1)^{n-1} n \sum_{k=0}^{n-1} \binom{n-1}{k} \binom{n+k}{k}. \end{split}$$

Similarly,

$$\begin{split} \sum_{m=0}^{n-1} (2m+1)D_m &= \sum_{m=0}^{n-1} (2m+1) \sum_{k=0}^m \binom{m+k}{2k} \binom{2k}{k} \\ &= \sum_{k=0}^{n-1} \binom{2k}{k} \sum_{m=0}^{n-1} (2m+1) \binom{m+k}{2k} \\ &= n \sum_{k=0}^{n-1} C_k (n-k) \binom{n+k}{2k} = \sum_{k=0}^{n-1} \frac{n^2}{k+1} \binom{n-1}{k} \binom{n+k}{k}. \end{split}$$

In view of (3.4) and the above,

$$\frac{1}{p} \sum_{m=0}^{p-1} (2m+1)(-1)^m D_m = \sum_{k=0}^{p-1} {p-1 \choose k} {p+k \choose k}$$

$$\equiv \sum_{k=0}^{p-1} (-1)^k - p^2 \sum_{k=1}^{p-1} \sum_{0 < j \le k} \frac{(-1)^k}{j^2} = 1 - p^2 \sum_{j=1}^{p-1} \frac{1}{j^2} \sum_{k=j}^{p-1} (-1)^k$$

$$\equiv 1 - p^2 \sum_{j=1}^{(p-1)/2} \frac{1}{(2i)^2} = 1 - \frac{p^2}{4} H_{(p-1)/2}^{(2)} \equiv 1 - \frac{7}{12} p^3 B_{p-3} \pmod{p^4}$$

and hence (1.18) holds. Similarly,

$$\frac{1}{p} \sum_{m=0}^{p-1} (2m+1) D_m = \sum_{k=0}^{p-1} \frac{p}{k+1} \binom{p-1}{k} \binom{p+k}{k}
\equiv \binom{p+(p-1)}{p-1} + p \sum_{k=0}^{p-2} \frac{(-1)^k}{k+1} (1-p^2 H_k^{(2)}) \pmod{p^5}
\equiv \binom{2p-1}{p-1} - p \sum_{k=1}^{p-1} \frac{1+(-1)^k}{k} \equiv 1 - p H_{(p-1)/2} \pmod{p^3}.$$

(We have employed Wolstenholme's congruences $\binom{2p-1}{p-1} \equiv 1 \pmod{p^3}$ and $H_{p-1} \equiv 0 \pmod{p^2}$.) To obtain (1.19) it suffices to apply Lehmer's congruence (cf. [L])

$$H_{(p-1)/2} \equiv -2q_p(2) + pq_p^2(2) \pmod{p^2}$$
.

The proof of Theorem 1.4 is now complete. \Box

4. Some related conjectures

Our following conjecture was motivated by Theorem 1.1(i).

Conjecture 4.1. *Let* p > 3 *be a prime.*

(i) If $p \equiv 1 \pmod{3}$, then

$$\sum_{k=0}^{p-1} (-1)^k A_k \equiv \sum_{k=0}^{p-1} \frac{\binom{2k}{k}^3}{16^k} \pmod{p^3}.$$
 (4.1)

If $p \equiv 1, 3 \pmod{8}$, then

$$\sum_{k=0}^{p-1} A_k \equiv \sum_{k=0}^{p-1} \frac{\binom{4k}{k,k,k,k}}{256^k} \pmod{p^3}. \tag{4.2}$$

(ii) If x belongs to the set

$$\left\{ 1, -4, 9, -48, 81, -324, 2401, 9801, -25920, -777924, 96059601 \right\}$$

$$\cup \left\{ \frac{81}{256}, -\frac{9}{16}, \frac{81}{32}, -\frac{3969}{256} \right\}$$

and $x \not\equiv 0 \pmod{p}$, then we must have

$$\sum_{k=0}^{p-1} A_k(x) \equiv \left(\frac{x}{p}\right) \sum_{k=0}^{p-1} \frac{\binom{4k}{k,k,k,k}}{(256x)^k} \pmod{p^2}.$$

Remark 4.1. For those

$$x = -4, 9, -48, 81, -324, 2401, 9801, -25920, -777924, 96059601, \frac{81}{256}$$

the author (cf. [Su2]) had conjectures on $\sum_{k=0}^{p-1} \binom{4k}{k,k,k}/(256x)^k \mod p^2$. Motivated by this, Z.H. Sun [S2] guessed $\sum_{k=0}^{p-1} \binom{4k}{k,k,k}/(256x)^k \mod p^2$ for x=-9/16,81/32,-3969/256 in a similar way.

We have checked Conjecture 4.1 as well as all the other conjectures in this paper via Mathematica 7. Below we provide numerical evidences for (4.1) and (4.2).

Example 4.1. The values of A_0, A_1, \ldots, A_{10} are given by

584 307 365, 16 367 912 425, 468 690 849 005, 13 657 436 403 073

respectively. Via computation we find that

$$\sum_{k=0}^{6} (-1)^k A_k = 20\,673\,445, \qquad \sum_{k=0}^{6} \frac{\binom{2k}{k}^3}{16^k} = \frac{18\,825\,543}{262\,144},$$

and also

$$20673445 \times 262144 - 18825543 = 7^3 \times 15800002159$$
.

This verifies (4.1) for p = 7. By computation we have

$$\sum_{k=0}^{10} A_k = 14\,143\,101\,786\,223, \qquad \sum_{k=0}^{10} \frac{\binom{4k}{k,k,k}}{256^k} = \frac{22\,821\,835\,381\,970\,859\,184\,405}{18\,889\,465\,931\,478\,580\,854\,784},$$

and also

 $14\,143\,101\,786\,223 \times 18\,889\,465\,931\,478\,580\,854\,784 - 22\,821\,835\,381\,970\,859\,184\,405$ = $11^3 \times 200\,717\,985\,992\,690\,007\,194\,123\,778\,899\,817$.

This verifies (4.2) for p = 11.

Inspired by parts (ii) and (iii) of Theorem 1.1, we raise the following conjecture.

Conjecture 4.2. For any $\varepsilon \in \{\pm 1\}$, $m, n \in \mathbb{Z}^+$ and $x \in \mathbb{Z}$, we have

$$\sum_{k=0}^{n-1} (2k+1)\varepsilon^k A_k(x)^m \equiv 0 \pmod{n}. \tag{4.3}$$

If p > 5 is a prime, then

$$\sum_{k=0}^{p-1} (2k+1)A_k \equiv p - \frac{7}{2}p^2 H_{p-1} \pmod{p^6}.$$
 (4.4)

Remark 4.2. After reading an initial version of this paper, Guo and Zeng [GZ] proved the author's following conjectural results:

(a) For any $n \in \mathbb{Z}^+$ and $x \in \mathbb{Z}$ we have

$$\sum_{k=0}^{n-1} (2k+1)(-1)^k A_k(x) \equiv 0 \pmod{n}.$$

If p is an odd prime and x is an integer, then

$$\sum_{k=0}^{p-1} (2k+1)(-1)^k A_k(x) \equiv p\left(\frac{1-4x}{p}\right) \pmod{p^2}.$$

(b) For any prime p > 3 we have

$$\sum_{k=0}^{p-1} (2k+1)(-1)^k A_k \equiv p\left(\frac{p}{3}\right) \pmod{p^3}$$

and

$$\sum_{k=0}^{p-1} (2k+1)(-1)^k A_k(-2) \equiv p - \frac{4}{3}p^2 q_p(2) \pmod{p^3}.$$

Example 4.2. It is easy to check that

$$\sum_{k=0}^{9} (2k+1)A_k^2 = 4178310699572329761604780 \equiv 0 \pmod{10}$$

and

$$\sum_{k=0}^{9} (2k+1)(-1)^k A_k^2 = -4169201796654383947725970 \equiv 0 \pmod{10}.$$

So (4.3) holds when m = 2, n = 10, x = 1 and $\varepsilon \in \{\pm 1\}$. Via computation we find that

$$\sum_{k=0}^{10} (2k+1)A_k = 295\,998\,598\,024\,613, \qquad H_{10} = \frac{7381}{2520},$$

and

$$295\,998\,598\,024\,613-11+\frac{7}{2}\times11^2\times\frac{7381}{2520}=11^6\times\frac{120\,300\,114\,181}{720}.$$

This verifies (4.4) for p = 11.

Recall that for a prime p and a rational number x, the p-adic valuation of x is given by

$$\nu_p(x) = \sup\{a \in \mathbb{Z}: \text{ the denominator of } p^{-a}x \text{ is not divisible by } p\}.$$

Just like the Apéry polynomial $A_n(x) = \sum_{k=0}^n {n \choose k}^2 {n+k \choose k}^2 x^k$ we define

$$D_n(x) = \sum_{k=0}^n \binom{n}{k} \binom{n+k}{k} x^k.$$

Actually $D_n((x-1)/2)$ coincides with the Legendre polynomial $P_n(x)$ of degree n.

Our following conjecture involves p-adic valuations.

Conjecture 4.3.

(i) For any $n \in \mathbb{Z}^+$ the numbers

$$s(n) = \frac{1}{n^2} \sum_{k=0}^{n-1} (2k+1)(-1)^k A_k \left(\frac{1}{4}\right)$$

and

$$t(n) = \frac{1}{n^2} \sum_{k=0}^{n-1} (2k+1)(-1)^k D_k \left(-\frac{1}{4}\right)^3$$

are rational numbers with denominators $2^{2\nu_2(n!)}$ and $2^{3(n-1+\nu_2(n!))-\nu_2(n)}$ respectively. Moreover, the numerators of $s(1), s(3), s(5), \ldots$ are congruent to 1 modulo 12 and the numerators of $s(2), s(4), s(6), \ldots$ are congruent to 7 modulo 12. If p is an odd prime and $a \in \mathbb{Z}^+$, then

$$s(p^a) \equiv t(p^a) \equiv 1 \pmod{p}$$
.

For p = 3 and $a \in \mathbb{Z}^+$ we have

$$s(3^a) \equiv 4 \pmod{3^2}$$
 and $t(3^a) \equiv -8 \pmod{3^5}$.

(ii) Let p be a prime. For any positive integer n and p-adic integer x, we have

$$\nu_p \left(\frac{1}{n} \sum_{k=0}^{n-1} (2k+1)(-1)^k A_k(x) \right) \geqslant \min \left\{ \nu_p(n), \nu_p(4x-1) \right\}$$
 (4.5)

and

$$\nu_p\left(\frac{1}{n}\sum_{k=0}^{n-1}(2k+1)(-1)^kD_k(x)^3\right) \geqslant \min\{\nu_p(n),\nu_p(4x+1)\}. \tag{4.6}$$

Example 4.3. We check Conjecture 4.3 with n = p = 5. For n = 5 we have

$$2^{2\nu_2(n!)} = 2^{2\nu_2(120)} = 2^6 = 64$$

and

$$2^{3(n-1+\nu_2(n!))-\nu_2(n)} = 2^{3(5-1+3)-0} = 2^{21} = 2097152.$$

Via computation we find that

$$s(5) = \frac{19849}{64}$$
 and $t(5) = \frac{82547}{2097152}$.

Note that $19849 \equiv 1 \pmod{12}$ and $s(5) \equiv t(5) \equiv 1 \pmod{5}$. Also,

$$v_5\left(\frac{1}{5}\sum_{k=0}^4 (2k+1)(-1)^k A_k(-1)\right) = v_5(-13\,095) = 1 = v_5(\pm 5)$$

and

$$\nu_5 \left(\frac{1}{5} \sum_{k=0}^4 (2k+1)(-1)^k D_k(1)^3 \right) = \nu_5(59189205) = 1 = \nu_5(5).$$

Motivated by Theorem 1.3, we pose the following conjecture.

Conjecture 4.4. Let p be an odd prime and let $n \ge 2$ be an integer. Suppose that x is a p-adic integer with $x \equiv -2k \pmod{p}$ for some $k \in \{1, \ldots, \lfloor (p+1)/(2n+1) \rfloor\}$. Then we have

$$\sum_{r=0}^{p-1} (-1)^r {x \choose r}^{2n+1} \equiv 0 \pmod{p^2}.$$
 (4.7)

Example 4.4. Clearly $1/3 \equiv -2 \pmod{7}$ and |(7+1)/5| = 1. Via computation we find that

$$\sum_{r=0}^{6} (-1)^r \binom{1/3}{r}^5 = \frac{12\,107\,415\,300\,799\,972\,328}{12\,157\,665\,459\,056\,928\,801} = 7^2 \times \frac{247\,090\,108\,179\,591\,272}{12\,157\,665\,459\,056\,928\,801}.$$

So (4.7) holds when p = 7, n = 2 and x = 1/3.

Conjecture 4.5. *Let* $p \equiv 3 \pmod{4}$ *be a prime, and let* $m \in \mathbb{Z}$ *with* $p \nmid m(4m+1)$. *Then*

$$\sum_{k=0}^{p-1} \frac{W_k(-m^2)}{(4m+1)^k} \equiv \sum_{k=0}^{p-1} \frac{A_k(-m^2/(4m+1))}{(4m+1)^k} \equiv \sum_{k=0}^{p-1} \frac{\binom{2p}{k}}{(-16)^k} D_{2k} \left(\frac{1}{4m}\right) \pmod{p^2}.$$

Acknowledgment

The author is grateful to the referee for helpful comments.

References

- [A] S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, in: Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, Gainesville, Fl, 1999, in: Dev. Math., vol. 4, Kluwer, Dordrecht, 2001, pp. 1– 12.
- [AO] S. Ahlgren, K. Ono, A Gaussian hypergeometric series evaluation and Apéry number congruences, J. Reine Angew. Math. 518 (2000) 187–212.
- [Ap] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979) 11–13.
- [B] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987) 201–210.
- [BEW] B.C. Berndt, R.J. Evans, K.S. Williams, Gauss and Jacobi Sums, John Wiley & Sons, 1998.
- [CHV] J.S. Caughman, C.R. Haithcock, J.J.P. Veerman, A note on lattice chains and Delannoy numbers, Discrete Math. 308 (2008) 2623–2628.
- [CDE] S. Chowla, B. Dwork, R.J. Evans, On the mod p^2 determination of $\binom{(p-1)/2}{(p-1)/4}$, J. Number Theory 24 (1986) 188–196.
- [G] H.W. Gould, Combinatorial Identities, Morgantown Printing and Binding Co., 1972.
- [GKP] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, New York, 1994.
- [GZ] V.J.W. Guo, J. Zeng, Proof of some conjectures of Z.-W. Sun on congruences for Apéry polynomials, J. Number Theory 132 (2012) 1731–1740.
- [1] T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J. 118 (1990) 195-202.
- [L] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938) 350–360.

- [M03] E. Mortenson, A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function, J. Number Theory 99 (2003) 139–147.
- [M05] E. Mortenson, Supercongruences for truncated $_{n+1}F_n$ hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc. 133 (2005) 321–330.
- [O] K. Ono, Web of Modularity: Arithmetic of the Coefficients of Modular Forms and *q*-Series, Amer. Math. Soc., Providence, RI, 2003.
- [P] H. Pan, On a generalization of Carlitz's congruence, Int. J. Mod. Math. 4 (2009) 87–93.
- [PWZ] M. Petkovšek, H.S. Wilf, D. Zeilberger, A = B, A K Peters, Wellesley, 1996.
- [Po] A. van der Poorten, A proof that Euler missed... Apéry's proof of the irrationality of $\zeta(3)$, Math. Intelligencer 1 (1978/1979) 195–203.
- [RV] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, in: Calabi-Yau Varieties and Mirror Symmetry, Toronto, ON, 2001, in: Fields Inst. Commun., vol. 38, Amer. Math. Soc., Providence, RI, 2003, pp. 223–231.
- [S] N.J.A. Sloane, Sequence A001850 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org/A001850.
- [S1] Z.H. Sun, Congruences concerning Bernoulli numbers and Bernoulli polynomials, Discrete Appl. Math. 105 (2000) 193–223.
- [S2] Z.H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc. 139 (2011) 1915–1929.
- [S3] Z.H. Sun, Congruences concerning Legendre polynomials II, arXiv:1012.3898.
- [Su1] Z.W. Sun, On congruences related to central binomial coefficients, J. Number Theory 131 (2011) 2219-2238.
- [Su2] Z.W. Sun, Super congruences and Euler numbers, Sci. China Math. 54 (2011) 2509–2535.
- [Su3] Z.W. Sun, On Delannoy numbers and Schroder numbers, J. Number Theory 131 (2011) 2387-2397.
- [Su4] Z.W. Sun, On sums involving products of three binomial coefficients, preprint, arXiv:1012.3141.
- [ST] Z.W. Sun, R. Tauraso, New congruences for central binomial coefficients, Adv. in Appl. Math. 45 (2010) 125-148.