On Delannoy numbers and Schröder numbers ${ }^{\text {s }}$

Zhi-Wei Sun

Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China

A R T I C L E I N F O

Article history:

Received 23 October 2010
Accepted 20 June 2011
Available online 19 August 2011
Communicated by Ronald Graham

MSC:

primary 11A07, 11B75
secondary 05A15, 11B39, 11B68, 11E25

Keywords:

Congruences
Central Delannoy numbers
Euler numbers
Schröder numbers

A B S T R A C T

The nth Delannoy number and the nth Schröder number given by

$$
D_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \quad \text { and } \quad S_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \frac{1}{k+1}
$$

respectively arise naturally from enumerative combinatorics. Let p be an odd prime. We mainly show that

$$
\sum_{k=1}^{p-1} \frac{D_{k}}{k^{2}} \equiv 2\left(\frac{-1}{p}\right) E_{p-3} \quad(\bmod p)
$$

and

$$
\sum_{k=1}^{p-1} \frac{S_{k}}{m^{k}} \equiv \frac{m^{2}-6 m+1}{2 m}\left(1-\left(\frac{m^{2}-6 m+1}{p}\right)\right) \quad(\bmod p),
$$

where (-) is the Legendre symbol, $E_{0}, E_{1}, E_{2}, \ldots$ are Euler numbers, and m is any integer not divisible by p. We also conjecture that

$$
\sum_{k=1}^{p-1} \frac{D_{k}^{2}}{k^{2}} \equiv-2 q_{p}(2)^{2} \quad(\bmod p)
$$

where $q_{p}(2)$ denotes the Fermat quotient $\left(2^{p-1}-1\right) / p$.
© 2011 Elsevier Inc. All rights reserved.

[^0]0022-314X/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jnt.2011.06.005

1. Introduction

For $n \in \mathbb{N}=\{0,1,2, \ldots\}$, the (central) Delannoy number D_{n} denotes the number of lattice paths from the point $(0,0)$ to (n, n) with steps $(1,0),(0,1)$ and $(1,1)$, while the Schröder number S_{n} represents the number of such paths that never rise above the line $y=x$. It is known that

$$
D_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k}=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k}
$$

and

$$
S_{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} \frac{1}{k+1}=\sum_{k=0}^{n}\binom{n+k}{2 k} C_{k},
$$

where C_{k} stands for the Catalan number $\binom{2 k}{k} /(k+1)=\binom{2 k}{k}-\binom{2 k}{k+1}$. For information on D_{n} and S_{n}, the reader may consult [CHV,S], and p. 178 and p. 185 of [St].

Despite their combinatorial backgrounds, surprisingly Delannoy numbers and Schröder numbers have some nice number-theoretic properties.

As usual, for an odd prime p we let $(\dot{\bar{p}})$ denote the Legendre symbol. Recall that Euler numbers E_{0}, E_{1}, \ldots are integers defined by $E_{0}=1$ and the recursion:

$$
\sum_{\substack{k=0 \\ 2 \mid k}}^{n}\binom{n}{k} E_{n-k}=0 \text { for } n=1,2,3, \ldots
$$

Our first theorem is concerned with Delannoy numbers and their generalization.
Theorem 1.1. Let p be an odd prime. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{D_{k}}{k^{2}} \equiv 2\left(\frac{-1}{p}\right) E_{p-3} \quad(\bmod p) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{D_{k}}{k} \equiv-q_{p}(2) \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

where $q_{p}(2)$ denotes the Fermat quotient $\left(2^{p-1}-1\right) / p$. If we set

$$
D_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{k} x^{k} \quad(n \in \mathbb{N})
$$

then for any p-adic integer x we have

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{D_{k}(x)}{k} \equiv \frac{(-1+\sqrt{-x})^{p}+(-1-\sqrt{-x})^{p}+2}{p} \quad(\bmod p) \tag{1.3}
\end{equation*}
$$

Corollary 1.1. Let p be an odd prime. We have

$$
\begin{align*}
& \sum_{k=1}^{p-1} \frac{D_{k}(3)}{k} \equiv-2 q_{p}(2) \quad(\bmod p) \quad \text { provided } p \neq 3, \tag{1.4}\\
& \sum_{k=1}^{p-1} \frac{D_{k}(-4)}{k} \equiv \frac{3-3^{p}}{p} \quad(\bmod p), \tag{1.5}\\
& \sum_{k=1}^{p-1} \frac{D_{k}(-9)}{k} \equiv-6 q_{p}(2) \quad(\bmod p), \tag{1.6}
\end{align*}
$$

and also

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{D_{k}(-2)}{k} \equiv-\frac{4}{p} P_{p-\left(\frac{2}{p}\right)} \quad(\bmod p) \tag{1.7}
\end{equation*}
$$

where the Pell sequence $\left\{P_{n}\right\}_{n \geqslant 0}$ is given by

$$
P_{0}=0, \quad P_{1}=1, \quad \text { and } \quad P_{n+1}=2 P_{n}+P_{n-1} \quad(n=1,2,3, \ldots) .
$$

If $p \neq 5$, then

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{D_{k}(-5)}{k} \equiv-2 q_{p}(2)-\frac{5}{p} F_{p-\left(\frac{p}{5}\right)} \quad(\bmod p) \tag{1.8}
\end{equation*}
$$

where the Fibonacci sequence $\left\{F_{n}\right\}_{n \geqslant 0}$ is defined by

$$
F_{0}=0, \quad F_{1}=1, \quad \text { and } \quad F_{n+1}=F_{n}+F_{n-1} \quad(n=1,2,3, \ldots) .
$$

Now we propose two conjectures which seem challenging in the author's opinion.
Conjecture 1.1. Let $p>3$ be a prime. We have

$$
\begin{align*}
& \sum_{k=1}^{p-1} \frac{D_{k}^{2}}{k^{2}} \equiv-2 q_{p}(2)^{2} \quad(\bmod p) \tag{1.9}\\
& \sum_{k=1}^{p-1} \frac{D_{k}}{k} \equiv-q_{p}(2)+p q_{p}(2)^{2} \quad\left(\bmod p^{2}\right) \tag{1.10}\\
& \sum_{k=1}^{p-1} D_{k} S_{k} \equiv-2 p \sum_{k=1}^{p-1} \frac{(-1)^{k}+3}{k} \quad\left(\bmod p^{4}\right),
\end{align*}
$$

and

$$
\sum_{k=1}^{(p-1) / 2} D_{k} S_{k} \equiv \begin{cases}4 x^{2}(\bmod p) & \text { if } p \equiv 1(\bmod 4) \text { and } p=x^{2}+y^{2}(2 \nmid x, 2 \mid y) \\ 0(\bmod p) & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

Also, $\sum_{n=1}^{p-1} s_{n}^{2} / n \equiv-6(\bmod p)$, where

$$
s_{n}:=\sum_{k=0}^{n}\binom{n+k}{2 k}\binom{2 k}{k+1}=D_{n}-S_{n} .
$$

Remark 1.1. Let p be an odd prime. Though there are many congruences for $q_{p}(2) \bmod p,(1.9)$ is curious since its left-hand side is a sum of squares. It is known that $\sum_{k=1}^{p-1} 1 / k \equiv-p^{2} B_{p-3} / 3\left(\bmod p^{3}\right)$ if $p>3$, where $B_{0}, B_{1}, B_{2}, \ldots$ are Bernoulli numbers. if $p>3$. In addition, we can prove that $\sum_{k=0}^{p-1} D_{k} \equiv\left(\frac{-1}{p}\right)-p^{2} E_{p-3}\left(\bmod p^{3}\right)$ and $\sum_{k=0}^{p-1} D_{k}^{2} \equiv\left(\frac{2}{p}\right)(\bmod p)$.

Conjecture 1.2. Let $p>3$ be a prime. Then

$$
\begin{aligned}
\sum_{k=0}^{p-1}(-1)^{k} D_{k}(2)^{3} & \equiv \sum_{k=0}^{p-1}(-1)^{k} D_{k}\left(-\frac{1}{4}\right)^{3} \equiv\left(\frac{-2}{p}\right) \sum_{k=0}^{p-1}(-1)^{k} D_{k}\left(\frac{1}{8}\right)^{3} \\
& \equiv \begin{cases}\left(\frac{-1}{p}\right)\left(4 x^{2}-2 p\right)\left(\bmod p^{2}\right) & \text { if } p \equiv 1(\bmod 3) \text { and } p=x^{2}+3 y^{2}(x, y \in \mathbb{Z}), \\
0\left(\bmod p^{2}\right) & \text { if } p \equiv 2(\bmod 3) .\end{cases}
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \left(\frac{-1}{p}\right) \sum_{k=0}^{p-1}(-1)^{k} D_{k}\left(\frac{1}{2}\right)^{3} \\
& \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 1,7(\bmod 24) \text { and } p=x^{2}+6 y^{2}(x, y \in \mathbb{Z}), \\
8 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 5,11(\bmod 24) \text { and } p=2 x^{2}+3 y^{2}(x, y \in \mathbb{Z}), \\
0\left(\bmod p^{2}\right) & \text { if }\left(\frac{-6}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

And

$$
\begin{aligned}
\sum_{k=0}^{p-1}(-1)^{k} D_{k}(-4)^{3} & \equiv\left(\frac{-5}{p}\right) \sum_{k=0}^{p-1}(-1)^{k} D_{k}\left(-\frac{1}{16}\right)^{3} \\
& \equiv \begin{cases}4 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 1,4(\bmod 15) \text { and } p=x^{2}+15 y^{2}(x, y \in \mathbb{Z}), \\
12 x^{2}-2 p\left(\bmod p^{2}\right) & \text { if } p \equiv 2,8(\bmod 15) \text { and } p=3 x^{2}+5 y^{2}(x, y \in \mathbb{Z}), \\
0\left(\bmod p^{2}\right) & \text { if }\left(\frac{-15}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Remark 1.2. Note that $(-1)^{n} D_{n}(x)=D_{n}(-x-1)$ for any $n \in \mathbb{N}$, since

$$
\begin{aligned}
D_{n}(-x-1) & =\sum_{k=0}^{n}\binom{n}{k}\binom{-n-1}{k} \sum_{j=0}^{k}\binom{k}{j} x^{j} \\
& =\sum_{j=0}^{n}\binom{n}{j} x^{j} \sum_{k=0}^{n}\binom{-n-1}{k}\binom{n-j}{n-k} \\
& =\sum_{j=0}^{n}\binom{n}{j} x^{j}\binom{-j-1}{n}=(-1)^{n} D_{n}(x) .
\end{aligned}
$$

Concerning Schröder numbers we establish the following result.
Theorem 1.2. Let p be an odd prime and let m be an integer not divisible by p. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{S_{k}}{m^{k}} \equiv \frac{m^{2}-6 m+1}{2 m}\left(1-\left(\frac{m^{2}-6 m+1}{p}\right)\right) \quad(\bmod p) \tag{1.11}
\end{equation*}
$$

Example 1.1. Theorem 1.2 in the case $m=6$ gives that

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{S_{k}}{6^{k}} \equiv 0 \quad(\bmod p) \quad \text { for any prime } p>3 \tag{1.12}
\end{equation*}
$$

For technical reasons, we will prove Theorem 1.2 in the next section and show Theorem 1.1 and Corollary 1.1 in Section 3.

2. Proof of Theorem 1.2

Lemma 2.1. Let p be an odd prime and let m be any integer not divisible by p. Then

$$
\begin{equation*}
\sum_{k=1}^{p-1} \frac{C_{k}}{m^{k}} \equiv \frac{m-4}{2}\left(1-\left(\frac{m(m-4)}{p}\right)\right) \quad(\bmod p) \tag{2.1}
\end{equation*}
$$

Proof. This follows from [Su10, Theorem 1.1] in which the author even determined $\sum_{k=1}^{p-1} C_{k} /$ $m^{k} \bmod p^{2}$. However, we will give here a simple proof of (2.1).

For each $k=1, \ldots, p-1$, we clearly have

$$
\binom{(p-1) / 2}{k} \equiv\binom{-1 / 2}{k}=\frac{\binom{2 k}{k}}{(-4)^{k}} \quad(\bmod p)
$$

Note also that

$$
C_{p-1}=\frac{1}{2 p-1} \prod_{k=1}^{p-1} \frac{p+k}{k} \equiv-1 \quad(\bmod p)
$$

Therefore

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{C_{k}}{m^{k}} & \equiv \sum_{0<k<p-1}\binom{(p-1) / 2}{k} \frac{1}{k+1}\left(-\frac{4}{m}\right)^{k}+\frac{C_{p-1}}{m^{p-1}} \\
& \equiv-\frac{m}{4} \times \frac{2}{p+1} \sum_{k=1}^{(p-1) / 2}\binom{(p+1) / 2}{k+1}\left(-\frac{4}{m}\right)^{k+1}-1 \\
& \equiv-\frac{m}{2}\left(\left(1-\frac{4}{m}\right)^{(p+1) / 2}-1-\frac{p+1}{2}\left(-\frac{4}{m}\right)\right)-1
\end{aligned}
$$

$$
\begin{aligned}
& \equiv-\frac{m}{2}\left(\frac{m-4}{m} \times \frac{(m(m-4))^{(p-1) / 2}}{m^{p-1}}-1+\frac{2}{m}\right)-1 \\
& \equiv-\frac{m-4}{2}\left(\frac{m(m-4)}{p}\right)+\frac{m}{2}-2(\bmod p)
\end{aligned}
$$

and hence (2.1) follows.
Lemma 2.2. For any odd prime p we have

$$
\begin{equation*}
\sum_{k=1}^{p-1} S_{k} \equiv 2\left(\frac{-1}{p}\right)-2^{p} \quad\left(\bmod p^{2}\right) \tag{2.2}
\end{equation*}
$$

Proof. Recall the known identity (cf. (5.26) of [GKP, p. 169])

$$
\sum_{n=0}^{m}\binom{n}{k}=\binom{m+1}{k+1} \quad(k, m \in \mathbb{N}) .
$$

Then

$$
\begin{aligned}
\sum_{n=0}^{p-1} S_{n} & =\sum_{n=0}^{p-1} \sum_{k=0}^{n}\binom{n+k}{2 k} C_{k}=\sum_{k=0}^{p-1} C_{k} \sum_{n=k}^{p-1}\binom{n+k}{2 k} \\
& =\sum_{k=0}^{p-1} C_{k}\binom{p+k}{2 k+1}=\sum_{k=0}^{p-1} \frac{p}{k!(k+1)!(2 k+1)} \prod_{0<j \leqslant k}\left(p^{2}-j^{2}\right) \\
& \equiv \sum_{k=0}^{p-1} \frac{p(-1)^{k}(k!)^{2}}{k!(k+1)!(2 k+1)}=p \sum_{k=0}^{p-1}(-1)^{k}\left(\frac{2}{2 k+1}-\frac{1}{k+1}\right) \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
2 p \sum_{k=0}^{p-1} \frac{(-1)^{k}}{2 k+1} & =p \sum_{k=0}^{p-1}\left(\frac{(-1)^{k}}{2 k+1}+\frac{(-1)^{p-1-k}}{2(p-1-k)+1}\right) \\
& =p \sum_{k=0}^{p-1}(-1)^{k}\left(\frac{1}{2 k+1}+\frac{1}{2 p-(2 k+1)}\right) \\
& \equiv p(-1)^{(p-1) / 2}\left(\frac{1}{p}+\frac{1}{2 p-p}\right)=2\left(\frac{-1}{p}\right) \quad\left(\bmod p^{2}\right)
\end{aligned}
$$

Also,

$$
\begin{aligned}
-p \sum_{k=0}^{p-1} \frac{(-1)^{k}}{k+1} & =p \sum_{k=1}^{p} \frac{(-1)^{k}}{k} \\
& \equiv-\sum_{k=1}^{p-1} \frac{p}{k}\binom{p-1}{k-1}-1=-\sum_{k=0}^{p-1}\binom{p}{k}=1-2^{p} \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Combining the above, we obtain

$$
\sum_{n=0}^{p-1} S_{n} \equiv 2\left(\frac{-1}{p}\right)+1-2^{p} \quad\left(\bmod p^{2}\right)
$$

and hence (2.2) holds.
Proof of Theorem 1.2. In the case $m \equiv 1(\bmod p),(1.11)$ reduces to the congruence

$$
\sum_{k=1}^{p-1} S_{k} \equiv-2\left(1-\left(\frac{-1}{p}\right)\right) \quad(\bmod p)
$$

which follows from (2.2) in view of Fermat's little theorem.
Below we assume that $m \not \equiv 1(\bmod p)$. Then

$$
\sum_{n=1}^{p-1} \frac{1}{m^{n}} \equiv \sum_{n=1}^{p-1} m^{p-1-n}=\frac{m^{p-1}-1}{m-1} \equiv 0 \quad(\bmod p)
$$

and hence

$$
\sum_{n=1}^{p-1} \frac{S_{n}}{m^{n}} \equiv \sum_{n=1}^{p-1} \frac{S_{n}-1}{m^{n}}=\sum_{n=1}^{p-1} \frac{\sum_{k=1}^{n}\binom{n+k}{2 k} C_{k}}{m^{n}}=\sum_{k=1}^{p-1} \frac{C_{k}}{m^{k}} \sum_{n=k}^{p-1} \frac{\binom{n+k}{2 k}}{m^{n-k}} \quad(\bmod p)
$$

Given $k \in\{1, \ldots, p-1\}$, we have

$$
\sum_{n=k}^{p-1} \frac{\binom{n+k}{2 k}}{m^{n-k}}=\sum_{r=0}^{p-1-k} \frac{\binom{2 k+r}{r}}{m^{r}}=\sum_{r=0}^{p-1-k} \frac{\binom{-2 k-1}{r}}{(-m)^{r}} \equiv \sum_{r=0}^{p-1-k} \frac{\binom{p-1-2 k}{r}}{(-m)^{r}} \quad(\bmod p)
$$

If $(p-1) / 2<k<p-1$, then

$$
C_{k}=\frac{(2 k)!}{k!(k+1)!} \equiv 0 \quad(\bmod p)
$$

Therefore

$$
\begin{aligned}
\sum_{n=1}^{p-1} \frac{S_{n}}{m^{n}} & \equiv \sum_{k=1}^{(p-1) / 2} \frac{C_{k}}{m^{k}}\left(1-\frac{1}{m}\right)^{p-1-2 k}+\frac{C_{p-1}}{m^{p-1}} \\
& \equiv \sum_{k=1}^{p-1} \frac{C_{k}}{m^{k}}\left(\frac{m}{m-1}\right)^{2 k} \equiv \sum_{k=1}^{p-1} \frac{C_{k}}{m_{0}^{k}}(\bmod p)
\end{aligned}
$$

where m_{0} is an integer with $m_{0} \equiv(m-1)^{2} / m(\bmod p)$. By Lemma 2.1,

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{C_{k}}{m_{0}^{k}} & \equiv \frac{m_{0}-4}{2}\left(1-\left(\frac{m_{0}\left(m_{0}-4\right)}{p}\right)\right) \\
& =\frac{m m_{0}-4 m}{2 m}\left(1-\left(\frac{m m_{0}\left(m m_{0}-4 m\right)}{p}\right)\right) \\
& \equiv \frac{(m-1)^{2}-4 m}{2 m}\left(1-\left(\frac{(m-1)^{2}-4 m}{p}\right)\right)(\bmod p) .
\end{aligned}
$$

So (1.11) follows. We are done.

3. Proofs of Theorem 1.1 and Corollary 1.1

We need some combinatorial identities.
Lemma 3.1. For any $n \in \mathbb{N}$, we have

$$
\begin{equation*}
\sum_{r=0}^{2 n} \frac{(-1)^{r}\binom{2 n}{r}}{2 n+1-2 r}=\frac{(-16)^{n}}{(2 n+1)\binom{2 n}{n}} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{r=0}^{2 n} \frac{(-1)^{r}\binom{2 n}{r}}{(2 n+1-2 r)^{2}}=\frac{(-16)^{n}}{(2 n+1)^{2}\binom{2 n}{n}} \tag{3.2}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\sum_{k=-n}^{n} \frac{(-1)^{k}}{(2 k+1)^{s}}\binom{2 n}{n-k}=\frac{16^{n}}{(2 n+1)^{s}\binom{2 n}{n}} \quad \text { for } s=1,2 \tag{3.3}
\end{equation*}
$$

Proof. If we denote by a_{n} the left-hand side of (3.1), then the well-known Zeilberger algorithm (cf. [PWZ]) yields the recursion

$$
a_{n+1}=-\frac{8(n+1)}{2 n+3} a_{n} \quad(n=0,1,2, \ldots)
$$

So (3.1) can be easily proved by induction. (3.2) is equivalent to [Su11, (2.5)] which was shown by a similar method. Clearly (3.3) is just a combination of (3.1) and (3.2). We are done.

Proof of Theorem 1.1. Let $s \in\{1,2\}$ and let x be any p-adic integer. We claim that

$$
\begin{equation*}
\delta_{s, 2} \delta_{p, 3}+\sum_{n=1}^{p-1} \frac{D_{n}(x)}{n^{s}} \equiv \sum_{k=1}^{(p-1) / 2} \frac{(-x)^{k}}{k^{s}}(\bmod p) \tag{3.4}
\end{equation*}
$$

Clearly,

$$
\sum_{n=1}^{p-1} \frac{D_{n}(x)-1}{n^{s}}=\sum_{n=1}^{p-1} \frac{\sum_{k=1}^{n}\binom{n+k}{2 k}\binom{2 k}{k} x^{k}}{n^{s}}=\sum_{k=1}^{p-1}\binom{2 k}{k} x^{k} \sum_{n=k}^{p-1} \frac{\binom{n+k}{2 k}}{n^{s}} .
$$

Note that $\sum_{n=1}^{p-1} 1 / n^{s} \equiv-\delta_{s, 2} \delta_{p, 3}(\bmod p)$ since

$$
\sum_{k=1}^{p-1} \frac{1}{(2 k)^{s}} \equiv \sum_{n=1}^{p-1} \frac{1}{n^{s}} \quad(\bmod p)
$$

As $p \left\lvert\,\binom{ 2 k}{k}\right.$ for $k=(p+1) / 2, \ldots, p-1$, and

$$
\sum_{n=k}^{p-1} \frac{\binom{n+k}{2 k}}{n^{s}}=\sum_{r=0}^{p-1-k} \frac{\binom{2 k+r}{r}}{(k+r)^{s}} \equiv(-2)^{s} \sum_{r=0}^{p-1-k} \frac{(-1)^{r}\binom{p-1-2 k}{r}}{(p-2 k-2 r)^{s}} \quad(\bmod p)
$$

for $k=1, \ldots,(p-1) / 2$, by applying Lemma 3.1 we obtain from the above that

$$
\begin{aligned}
\delta_{s, 2} \delta_{p, 3}+\sum_{n=1}^{p-1} \frac{D_{n}(x)}{n^{s}} & \equiv(-2)^{s} \sum_{k=1}^{(p-1) / 2}\binom{2 k}{k} x^{k} \frac{(-16)^{(p-1) / 2-k}}{(p-2 k)^{s}\binom{p-1-2 k}{(p-1) / 2-k}} \\
& \equiv \sum_{k=1}^{(p-1) / 2}\binom{2 k}{k} \frac{x^{k}}{k^{s}} 4^{(p-1) / 2-k}\binom{-1 / 2}{(p-1) / 2-k}^{-1} \\
& \equiv \sum_{k=1}^{(p-1) / 2}\binom{2 k}{k} \frac{x^{k}}{k^{s} 4^{k}}\binom{(p-1) / 2}{k}^{-1} \\
& \equiv \sum_{k=1}^{(p-1) / 2}\binom{2 k}{k} \frac{x^{k}}{k^{s} 4^{k}}\binom{-1 / 2}{k}^{-1}=\sum_{k=1}^{(p-1) / 2} \frac{(-x)^{k}}{k^{s}}(\bmod p)
\end{aligned}
$$

In the case $s=2$ and $x=1$, (3.4) yields the congruence

$$
\delta_{p, 3}+\sum_{n=1}^{p-1} \frac{D_{n}}{n^{2}} \equiv \sum_{k=1}^{(p-1) / 2} \frac{(-1)^{k}}{k^{2}}(\bmod p)
$$

By Lehmer [L, (20)],

$$
\sum_{\substack{k=1 \\ 2 \mid k}}^{(p-1) / 2} \frac{1}{k^{2}} \equiv \delta_{p, 3}+\left(\frac{-1}{p}\right) E_{p-3} \quad(\bmod p)
$$

and hence

$$
\sum_{k=1}^{(p-1) / 2} \frac{(-1)^{k}}{k^{2}}=2 \sum_{\substack{k=1 \\ 2 \mid k}}^{(p-1) / 2} \frac{1}{k^{2}}-\sum_{k=1}^{(p-1) / 2} \frac{1}{k^{2}} \equiv \delta_{p, 3}+2\left(\frac{-1}{p}\right) E_{p-3} \quad(\bmod p)
$$

since $\sum_{k=1}^{(p-1) / 2}\left(1 / k^{2}+1 /(p-k)^{2}\right)=\sum_{k=1}^{p-1} 1 / k^{2} \equiv 0(\bmod p)$ if $p>3$. So (1.1) follows.

With the help of (3.4) in the case $s=x=1$, we have

$$
\begin{aligned}
\sum_{n=1}^{p-1} \frac{D_{n}}{n} & \equiv \sum_{k=1}^{(p-1) / 2} \frac{(-1)^{k}}{k} \equiv \frac{1}{2} \sum_{k=1}^{(p-1) / 2}\left(\frac{(-1)^{k}}{k}+\frac{(-1)^{p-k}}{p-k}\right) \\
& \equiv-\frac{1}{2} \sum_{k=1}^{p-1} \frac{1}{k}\binom{p-1}{k-1}=-\frac{1}{2 p} \sum_{k=1}^{p-1}\binom{p}{k}=-q_{p}(2) \quad(\bmod p)
\end{aligned}
$$

This proves (1.2).
Now fix a p-adic integer x. Observe that

$$
\begin{aligned}
p \sum_{k=1}^{(p-1) / 2} \frac{(-x)^{k}}{k} & \equiv-2 \sum_{k=1}^{(p-1) / 2} \frac{p}{2 k}\binom{p-1}{2 k-1}(-x)^{k} \\
& =\sum_{\substack{j=1 \\
2 \mid j}}^{p}\binom{p}{j}(-1)^{p-j}\left((\sqrt{-x})^{j}+(-\sqrt{-x})^{j}\right) \\
& =(-1+\sqrt{-x})^{p}+(-1-\sqrt{-x})^{p}+2 \quad\left(\bmod p^{2}\right) .
\end{aligned}
$$

Combining this with (3.4) in the case $s=1$ we immediately get (1.3).
The proof of Theorem 1.1 is now complete.
Remark 3.1. By modifying our proof of (1.2) and using the new identity $\sum_{r=0}^{2 n}\binom{2 n}{r} /(2 n+1-2 r)=$ $2^{2 n} /(2 n+1)$, we can prove the congruence $\sum_{k=1}^{p-1}(-1)^{k} S_{k} / k \equiv 4\left(\left(\frac{2}{p}\right)-1\right)(\bmod p)$ for any odd prime p. Combining this with $\sum_{k=1}^{p-1}(-1)^{k} D_{k} / k \equiv-4 P_{p-\left(\frac{2}{p}\right)} / p(\bmod p)($ an equivalent form of $(1.7))$ we obtain that $\sum_{k=1}^{p-1}(-1)^{k} S_{k} / k \equiv 4\left(1-\left(\frac{2}{p}\right)-P_{p-\left(\frac{2}{p}\right)} / p\right)(\bmod p)$.

Proof of Corollary 1.1. Note that $\omega=(-1+\sqrt{-3}) / 2$ is a primitive cubic root of unity. If $p \neq 3$, then

$$
(-1+\sqrt{-3})^{p}+(-1-\sqrt{-3})^{p}=(2 \omega)^{p}+\left(2 \omega^{2}\right)^{p}=-2^{p}
$$

and hence (1.3) with $x=3$ yields the congruence in (1.4).
Clearly (1.5) follows from (1.3) with $x=-4$.
Since $2^{p}-4^{p}+2=\left(2-2^{p}\right)\left(2^{p}+1\right) \equiv 6\left(1-2^{p-1}\right)\left(\bmod p^{2}\right)$, (1.3) in the case $x=-9$ yields (1.6).
The companion sequence $\left\{Q_{n}\right\}_{n \geqslant 0}$ of the Pell sequence is defined by $Q_{0}=Q_{1}=2$ and $Q_{n+1}=$ $2 Q_{n}+Q_{n-1}(n=1,2,3, \ldots)$. It is well known that

$$
Q_{n}=(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n} \quad \text { for all } n \in \mathbb{N}
$$

(1.3) with $x=-2$ yields the congruence

$$
\sum_{k=1}^{p-1} \frac{D_{k}(-2)}{k} \equiv \frac{2-Q_{p}}{p} \quad(\bmod p)
$$

Since $Q_{p}-2 \equiv 4 P_{p-\left(\frac{2}{p}\right)}\left(\bmod p^{2}\right)$ by the proof of [ST, Corollary 1.3], (1.7) follows immediately.

Recall that the Lucas sequence $\left\{L_{n}\right\}_{n} \geqslant 0$ is given by

$$
L_{0}=2, \quad L_{1}=1, \quad \text { and } \quad L_{n+1}=L_{n}+L_{n-1} \quad(n=1,2,3, \ldots) .
$$

It is well known that

$$
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n} \quad \text { for all } n \in \mathbb{N}
$$

Putting $x=-5$ in (1.3) we get

$$
\begin{aligned}
\sum_{k=1}^{p-1} \frac{D_{k}(-5)}{k} & \equiv \frac{2-2^{p} L_{p}}{p}=\frac{2^{p}\left(1-L_{p}\right)+2-2^{p}}{p} \\
& \equiv-\frac{2}{p}\left(L_{p}-1\right)-2 q_{p}(2)(\bmod p)
\end{aligned}
$$

It is known that $2\left(L_{p}-1\right) \equiv 5 F_{p-\left(\frac{p}{5}\right)}\left(\bmod p^{2}\right)$ provided $p \neq 5$ (see the proof of [ST, Corollary 1.3]). So (1.8) holds if $p \neq 5$. We are done.

References

[CHV] J.S. Caughman, C.R. Haithcock, J.J.P. Veerman, A note on lattice chains and Delannoy numbers, Discrete Math. 308 (2008) 2623-2628.
[GKP] R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, New York, 1994.
[L] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann. of Math. 39 (1938) 350-360.
[PWZ] M. Petkovšek, H.S. Wilf, D. Zeilberger, $A=B$, A.K. Peters, Wellesley, 1996.
[S] N.J.A. Sloane, Sequences A001850, A006318 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org/.
[St] R.P. Stanley, Enumerative Combinatorics, vol. 2, Cambridge Univ. Press, Cambridge, 1999.
[Su10] Z.W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients, Sci. China Math. 53 (2010) 2473-2488, http://arxiv. org/abs/0909.5648.
[Su11] Z.W. Sun, On congruences related to central binomial coefficients, J. Number Theory 131 (2011) 2219-2238.
[ST] Z.W. Sun, R. Tauraso, New congruences for central binomial coefficients, Adv. in Appl. Math. 45 (2010) 125-148.

[^0]: Supported by the National Natural Science Foundation of China.
 E-mail address: zwsun@nju.edu.cn.
 URL: http://math.nju.edu.cn/~zwsun.

